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Abstract: Electric vehicles are receiving widespread attention around the world due to their improved
performance and zero carbon emissions. The effectiveness of electric vehicles depends on proper
interfacing between energy storage systems and power electronics converters. However, the power
delivered by energy storage systems illustrates unstable, unregulated and substantial voltage drops.
To overcome these limitations, electric vehicle converters, controllers and modulation schemes are
necessary to achieve a secured and reliable power transfer from energy storage systems to the
electric motor. Nonetheless, electric vehicle converters and controllers have shortcomings including
a large number of components, high current stress, high switching loss, slow dynamic response
and computational complexity. Therefore, this review presents a detailed investigation of different
electric vehicle converters highlighting topology, features, components, operation, strengths and
weaknesses. Moreover, this review explores the various types of electric vehicle converter controllers
and modulation techniques concerning functional capabilities, operation, benefits and drawbacks.
Besides, the significance of optimization algorithms in electric vehicle converters is illustrated
along with their objective functions, executions and various factors. Furthermore, this review
explores the key issues and challenges of electric vehicle converters, controllers and optimizations to
identify future research gaps. Finally, important and specific suggestions are delivered toward the
development of an efficient converter for future sustainable electric vehicle applications.

Keywords: DC-DC converter; electric vehicle; intelligent controller; modulation techniques; meta-
heuristic optimization; battery storage systems

1. Introduction

The world climate and environment are facing serious threats due to the carbon
emission caused by diesel-based vehicles [1,2]. The increased use of fossil fuels in diesel-
based vehicles is one of the main reasons for global warming and climate change issues [3,4].
A recent report suggests that transportation is responsible for contributing 24% of global
carbon emissions [5]. Another study by the European Union mentions that carbon dioxide
(CO2) emissions by the transport sector are approximately 27%, while 70% of emissions are
directly emitted by vehicle transport [6]. To address these concerns, electric vehicles (EVs)
have received massive attention around the world due to their zero carbon emissions, low
noise, light weight, improved performance and efficiency [7,8]. However, EVs are facing
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challenges with regard to battery cost, recharge time and driving range [9,10], as well as the
proper functionality of various types of converters in the EV drivetrain [11,12]. The efficient
functionality of EVs requires appropriate interfacing between energy storage systems
(ESSs) and power converters as well as advanced driver assistance systems, acceleration lip
regulation, active control systems and anti-lock brake systems. Ding et al. [13] evaluated
the longitudinal vehicle speed of EVs using multi-sensor fusion with a low-cost inertial
measurement unit, BeiDou navigation positioning module and global positioning system.
Zhang et al. [14] developed a robust sliding mode controller for motor-driven EVs to obtain
a robust and accurate motion control of EVs. A time delay objective function with a linear
quadratic regulator problem is formulated to decrease the control efforts and tracking
error. The simulation and hardware-in-the-loop (HIL) tests confirmed that the proposed
controller enhanced the lateral stability of the vehicle in comparison to another optimal
controller scheme.

EVs are structured using different types of ESSs connected with various types of
power electronic converters [15–17]. Generally, ESSs are charged by taking current and
voltage from the grid or charging stations through AC-DC converters [18]. Afterwards,
ESSs deliver the required energy to the motor to accelerate the vehicle. However, the power
delivered by ESSs has unstable characteristics and considerable voltage drops [19–21]. Thus,
DC-DC converters play a key role in converting the unregulated power flow to a regulated
one [22–24]. Zhang et al. [25] presented the research progress of hybrid ESS development
focusing on sizing, DC/DC converter configuration and an energy management strategy
in EV applications. The effectiveness of the proposed topology was verified using a case
study and the results indicated a reduction of the battery degradation rate by 40% in
comparison to the battery-based storage system. Nonetheless, the appropriate design of
DC-DC converters is challenging since it depends on input voltage, duty cycle and load
parameters [26–28]. In addition, DC-DC converters present non-linear behavior and lightly
damped dynamics due to the switching actions [29,30]. To overcome the non-linearity
issues, as well as achieve fast dynamics and desired output voltage, the design of an
efficient controller is an urgent necessity.

The main purpose of using a controller in EV converters is to obtain steady-state and
dynamic characteristics with short settling time, a faster response and few steady-state
errors [31,32]. A quick dynamic response reduces electromagnetic interference (EMI),
switching losses and current stress. Various types of linear and non-linear controllers are
being employed to control the DC-DC converters in EVs [33]. Linear controllers have a
simple construction and easy implementation; however, they are ineffective under param-
eter variation and load disturbance [34,35]. To address these shortcomings, intelligent
controllers are utilized and have been successful in achieving excellent dynamics, improved
stability and outstanding transient response [36,37]. In addition, intelligent controllers have
a robust, flexible and smooth execution and can handle highly non-linear and complex
systems with imprecise inputs [38–40].

The optimization algorithm in EV converters aims to optimize the design as well as
to meet various performance requirements while many constraints are taken into consid-
eration [41,42]. The design of the converter can be upgraded by reducing the number
of passive components, weight and associated cost. In line with that, the effectiveness
of the converter can be improved by reducing converter loss, switching angle and input
current ripple [43]. A multi-objective function helps to achieve all the necessities toward
the development of an advanced converter in EVs [44]. However, the formulation of a
multi-objective function is a laborious task and lots of parameters, variables and constraints
need to be assigned, including input current, weight, number of phases and switching
frequency.

A few notable review articles have addressed converter design and operation in EVs.
Chakraborty et al. [45] explored various DC-DC converters in EVs, focusing on converter
topologies and evaluation criteria. Nevertheless, they did not explain the controller and
optimization methods and related implementation issues of various converters in EVs.
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Jagadeesh and Indragandhi [46] outlined and compared different DC-DC converters in
EV applications. However, the explanation of the converter was limited to only a few
methods. Moreover, the operation, control and optimization of the converter were not
studied in detail. Bellur et al. [47] overviewed the DC-DC converters in vehicular applica-
tions. Nonetheless, the authors did not highlight the key implementation issues explicitly.
Anbazhagan et al. [48] presented bidirectional DC-DC converters for EV applications,
highlighting both isolated and non-isolated converters; however, the operation, control,
modulation and optimization were not discussed in detail. Krithika and Subramani [49]
reviewed various power converters in hybrid electric vehicles (HEVs) concerning unidi-
rectional, bidirectional, isolated and non-isolated types. Nonetheless, the authors did not
provide a detailed explanation of each converter. Moreover, the intelligent control schemes
and modulation techniques of the converters were not covered in detail. Kumar et al. [50]
focused on power conversion topologies, highlighting various viable converters and con-
trollers in HEV applications. However, the authors did not provide the categorization of
the converters and implementation issues.

To bridge the existing research gaps, this review unveils new contributions with a
detailed investigation of converters in EVs. The review offers the following contributions:

• A comprehensive explanation of various DC-DC converters for EVs is delivered. In
line with that, the classification of EV converters along with their structure, execution
process, purpose, achievements, benefits and drawbacks are provided.

• The categories of EV converter controllers, including linear controllers and intelligent
controllers, are reported. Besides, the various functional features, control operation,
target, contributions, merits and demerits are discussed thoroughly.

• The modulation schemes employed in various controllers in EVs are outlined concern-
ing the target and outcomes.

• The EV converter optimization algorithms with respect to objective functions, con-
straints, pros and cons are highlighted.

• The existing issues and challenges of EV converters, controllers, modulation and
optimization approaches with regard to design, implementation, computational com-
plexity, objective function and performance are explained rigorously.

• Selective future proposals for the design and progress of an efficient converter are delivered.

Content analysis was chosen to conduct this survey. The appropriate article selection
of this review was carried out through three screening phases. The first screening was
the literature survey which was performed using the Google Scholar, Scopus science
database, Web of Science and Research Gate platforms. A total of 638 articles were explored
after the first screening. Next, the second screening was carried out using important
keywords, including DC-DC converter, electric vehicle, intelligent controller, modulation
techniques, metaheuristic optimization, battery storage systems. Apart from keywords,
the paper title, abstract and article contents were viewed to find the relevant articles.
The authors identified a total of 372 articles after the second screening. Afterward, the
third screening and assessment were conducted based on the number of citations, review
process and impact factor and, accordingly, a total of 180 articles published in recent
conference proceedings, books, recognized webpages and notable journals were identified.
The authors read the selected 180 articles thoroughly to extract useful information as well
as carry out critical review, analysis and discussion relating to EV converters, controllers,
modulation, optimization, issues and challenges. The schematic diagram of the reviewing
methodology is shown in Figure 1.

The results obtained through the three screening phases were divided into five groups.
Firstly, EV converter classification, topologies, operation, contributions, strengths and
weaknesses are provided. Secondly, EV converter controller types, characteristics, control
operation, targets, contributions, benefits and shortcomings are discussed. Besides, EV
converter modulation schemes were explored. Thirdly, EV converter optimization algo-
rithms along with their objective functions, constraints, advantages and disadvantages are
highlighted. Fourthly, numerous key issues and challenges of EV converters and related
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controllers and optimization were identified. Lastly, the review offers some important
proposals for future improvements of EV converters toward sustainable EV development.
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Figure 1. Schematic diagram of the reviewing methodology. EV: electric vehicle.

The paper is structured into seven sections. Section 2 gives the overview of EV
converters under control, modulation and optimization strategies. Section 3 covers the
detailed classification and explanation of various DC-DC converters in EVs. The EV
converter controller types, characteristics and operation are explained in Section 4. In
line with that, this section also discusses the EV converter modulation schemes. The role
of optimization algorithms in EV converters is covered in Section 5. The current issues
and research gaps are highlighted in Section 6. The concluding comments and future
recommendations are outlined in Section 7.

2. Overview of EV Converter Controllers, Modulations and Optimizations

The architecture of an EV drivetrain includes ESSs, converters, controllers, modulation,
optimization and an electric motor. ESSs, including a battery, supercapacitors (SCs) and
fuel cells (FCs), are connected to a DC-DC converter through a suitable controller and
modulation scheme. The connection from the DC-DC converter to the electric motor is
established through a high-voltage (HV) DC bus follows by a DC-AC inverter, as presented
in Figure 2.
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ESSs are responsible for delivering stable and consistent power to the motor; how-
ever, they suffer from unregulated behavior, voltage drops and slow dynamic responses.
The battery storage system (BSS) exhibits compact size, high energy density and mature
reliability and hence is suitable to provide a lifelong energy supply [51]. The SCs offer
low energy density but they have fast charging and discharging capabilities which make
them ideal for delivering power instantaneously at high acceleration [52]. Thus, the hybrid
energy storage system combining BSSs and SCs can bring benefits in terms of long lifecycle,
fast response and low stress to the batteries; however, the cost of the entire storage system
increases [53]. In the case of FCs, they provide high energy density but have shortcomings
including high cost, slow dynamic response and limited supporting infrastructure.

To connect the ESS with the HV DC link of the drivetrain, each DC-DC converter
needs definite requirements and specifications. Firstly, bidirectional DC-DC converters
support regenerative braking and improve efficiency [54–56]. Secondly, a DC-DC converter
with appropriate control and modulation is necessary to carry out fast charging and dis-
charging operations in SCs as well as to avoid incompatible operations [57–59]. Thirdly,
the topology of a DC-DC converter with few passive components is preferred for SCs to
minimize the transition duration between the charging and discharging phases [60–62]. On
the contrary, fast dynamic control is not required in the case of BSSs due to long interval
charging profiles [63]; however, the lower input current ripples are suitable to extend
the lifespan of BSSs [64,65]. Fourthly, a DC-DC converter in EVs exhibits a high voltage
gain and high power output [66–68]. Fifthly, BSSs and SCs obtain low output voltage;
hence, an HV DC-DC converter is needed to achieve a high voltage level by storing the
energy either in capacitors or inductors using diodes, insulated gate bipolar transistors
(IGBTs) and metal–oxide–semiconductor field-effect transistors (MOSFETs) [28,69–71]. An
ideal DC-DC converter offers several benefits, including low price, light weight, compact
size, efficiency, scalability and controllability, which are highly desirable in the EV auto-
motive industry [72–74]. Regardless of having many benefits, an HV DC-DC has several
shortcomings, such as low efficiency because of hard-switching, very flat voltage gain,
incapability to achieve high power density and difficulties to construct a high bandwidth
control loop [75–79].

The various controllers and modulation are integrated with the converter to elevate
the performance and robustness. An efficient controller is important to attain proper
coordination and management of ESSs, fast tracking, reliable power distribution and
lower steady-state error [80–82]. Besides, the modulation technique is crucial to achieve a
controlled output voltage/current, low harmonics and low switching losses. To enhance the
control operational efficiency of the converter, optimization algorithms can be employed.
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The aim of the optimization in a converter is to achieve a low ripple current and reduce
converter loss, the number of components and development time [43,83–85].

3. EV Converter Types and Configurations

The complete classification of EV converters, including topology, control, modulation
and optimization, is presented in Figure 3. The configuration of converters in EVs can
be categorized into two groups: non-isolated and isolated. The non-isolated converter
is appropriate for EVs under medium- and high-power operation [86,87], while isolated
DC-DC converters are suitable in EVs with low- and medium-power purposes [88,89].
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3.1. Non-Isolated Converter

Non-isolated bidirectional DC-DC converters includes conventional DC-DC convert-
ers and interleaved DC-DC converters. Among them, conventional DC-DC converters
are commonly employed due to their low cost, simple topology and easy control tech-
nique. The interleaved DC-DC converters have become popular due to their improved
performance and efficiency.

3.1.1. Cuk Converter

The Cuk converter (CC) in EVs provides flexibility to regulate the output to be lower
or higher in comparison to the input voltage. The CC features a lower output ripple
and improved efficiency since it a shares a single magnetic core [63]. Besides, the CC has
uniformity of the current at both the input and output terminal as well as continuous power
transfer through the capacitor, leading to lower EMI radiation in the switches. Additionally,
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the CC implements an L-C filter which can regulate the peak-to-peak ripple current of the
inductor more efficiently than a DC-DC buck–boost converter. However, the CC suffers
from some losses due to high current stress on the switch and the larger number of reactive
components [90].

Pandey and Singh [91] designed a converter with an improved power factor for EV
charging by utilizing a DC-DC CC. The power factor was corrected through the continuous
conduction mode of the primary inductor operated by the CC. The design was modeled
and simulated in MATLAB. Ananthapadmanabha et al. [63] presented an improved CC for
EV battery charging applications by utilizing a switched inductor. The author discussed
several aspects, like modeling, analysis, simulation and experimentation results. The
proposed converter was rated at 500 W, 48 V/10.4 A. The performance of the converter
was evaluated based on total harmonic distortion (THD). Reshma et al. [92] designed a
proportional integral (PI) controller-based CC to operate the electric motor in vehicular
applications under two operational modes: accelerate and regenerative. In addition, four-
quadrant operation was implemented by the authors to validate the effectiveness of the CC.
The reports illustrated that the CC delivered stable and ripple-free output in comparison to
the parallel switch boost converter.

The CC topology for EV applications is designed using two inductors, two capacitors
and two switches, as shown in Figure 4a. The capacitor transfers energy alternately through
the commutation between switches. Besides, inductors L1 and L2 help to transform the
energy from the BSS to the electric motor. Moreover, the CC can operate in both continuous
and discontinuous current mode operation. The output voltage V0 across the load during
the continuous mode of operation for the DC-DC CC is expressed as [92]

Vo = Vi(
−D

1− D
) (1)

where Vi and D stand for the input voltage and duty cycle, respectively.

3.1.2. Switched-Capacitor Bidirectional Converter

The switched-capacitor bidirectional converter (SCBC) in EVs utilizes synchronous
rectification to execute the turn-on and turn-off operations. The SCBC does not require
extra components and has improved power conversion efficiency through the proper
utilization of power switches [93–95]. However, the SCBC has low voltage stress, a wide-
reaching voltage gain and needs a smaller number of components. Besides, the SCBC
suffers from a high ripple current and cannot offer high efficiency under widespread input
to output voltages.

Zhang et al. [96] designed an SCBC for an EV application without the magnetic
coupling that can deliver continuous inductor current and a stable switched-capacitor
voltage through the switched capacitors. A prototype was developed with a capacity of
300 W with a high and low voltage of 300 V and 40~100 V, respectively. An efficiency
of more than 90% was obtained under both step-up and step-down modes. Janabi and
Wang [97] proposed a switched capacitor voltage boost converter for an EV application. The
proposed topology replaced the traditional voltage source inverter (VSI) with a doubling
of the area of the linear modulation region and eliminating both the large inductor in
the boost DC-DC stage and the large filtering capacitor which thus resulted in higher
energy density and a lower cost. Zhang et al. [98] developed a hybrid bidirectional DC-
DC converter with an SCBC for hybrid energy source-based EVs. The proposed SCBC
achieved lower voltage stress under wide-ranging voltage gain. The authors designed an
experimental prototype of the converter rated at 400 W to verify the characteristic and
theoretical analysis. Liu et al. [99] suggested an integrated voltage balancing topology
for series-connected battery packs using a parallel-connected switched-capacitor (PCSC)
converter and coupled buck–boost (CBB) converter. The proposed topology was validated
using the two experimental prototypes applied to series-connected Li-ion battery strings. The
results indicated that the CBB–PCSC equalizer performed better than other conventional
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equalizers with regard to cost, size, efficiency and balancing speed. Shang et al. [100] proposed
a compact high-frequency heater based on a resonant switched-capacitor (RSC) converter to
obtain self-heating for lithium-ion batteries. The performance and theoretical analysis of the
proposed configuration were verified using an experimental test bench with a temperature
chamber, dSPACE, MOSFETs, power analyzer and six series-connected Li-ion batteries. The
proposed topology illustrated excellent reliability, cost-effectiveness and achieved a good
trade-off between high efficiency (96.4%) and fast heating speed (2.67 ◦C/min).
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Figure 4. Configuration of a non-isolated DC-DC converter for EVs: (a) Cuk converter, (b) switched-
capacitor bidirectional converter, (c) couple inductor bidirectional converter, (d) quasi-Z-source
converter and (e) multi-device interleaved bidirectional converter.

This converter is designed using three capacitors (C1, C2, C3) and one inductor (L)
and four switches (S1, S2, S3 and S4), as depicted in Figure 4b. When the SCBC is under
step-up mode, the switch ON operation is executed by S1 and S3 while the switch OFF
operation is performed by S2 and S4. The current is transferred from the BSSs to L while
C1 is charged by C2. On the contrary, when the SCBC is under the step-down mode, the
switch ON and switch OFF operations are carried out by S2, S4 and S1, S3, respectively. L is
charged by C2 whilst C1 takes charge current from C0. The motor takes energy from L, C2
and C0 [96]. The voltage gain of the SCBC can be written as:

Vo

Vi
=

2
1− D

(2)

3.1.3. Coupled Inductor Bidirectional Converter

A coupled inductor bidirectional converter (CIBC) in EVs provides high efficiency
due to its high voltage gain and low voltage stress [101]. Besides, the CIBC has secondary
leakage inductance which results in low reverse recovery of the output diode [102]. Due to
the usage of the heavy inductor in a power boost converter, a CIBC is much preferred as
compared with multiple discrete inductors as it provides less iron loss and low inductor
current ripples [103]. Furthermore, the CIBC offers other benefits including voltage trans-
formation, changing the impedance of a circuit and galvanic isolation. However, one of
the limitations of couple inductor technology is the introduction of leakage inductance,
causing resonance and voltage spikes [104].

Gonzalez-Castano et al. [105] presented a CIBC converter to control the DC voltage
in EVs. The effectiveness of the CIBC was validated with the buck and boost mode of
operation which showed satisfactory results. Kascak [106] designed a CIBC topology
to execute the bidirectional current flow between the input sources and the three-phase
inverter in EVs. Ayachit et al. [107] proposed a CIBC converter for EV charging applications
with a low part count and a wide voltage conversion ratio. The proposed converter consists
of a smaller number of components as compared with other traditional DC-DC converters
in EVs. Various electrical parameters, such as current and voltage stresses and DC voltage
and current transfer functions, were derived from the proposed design. Wu et al. [108]
developed a CIBC for an EV application to enhance the voltage gain and decrease the
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switching voltage stress. An experimental model of the converter rated as 1 kW, 40–60 V to
400 V was designed to validate its performance.

The CIBC allows the reduction of the overall volume in comparison with the multi-
core solution of other topologies of the converter. The configuration of the CIBC for an
EV application consists of the presence of only one magnetic core which allows a smaller
volume as compared with other topologies, as shown in Figure 4c. The voltage gain of the
CIBC can be expressed as:

Vo

Vi
=

2 + n− D
1− D

(3)

3.1.4. Quasi-Z-Source Bidirectional Converter

The quasi-Z-source bidirectional converter (QZBC) is employed in EVs due to its
advantageous features, including simple topology, common ground and wide-ranging volt-
age gain. Generally, a conventional two-level QZBC is designed for EV operation [109–111].
Besides, this converter offers low voltage stress with reasonable static and dynamic perfor-
mance. However, it has the drawbacks of discontinuous input current and capacitance of
high voltage stress.

Zhang et al. [112] proposed a QZBC for hybrid energy sources in EVs. The authors
developed a 300 W prototype indicating 40~120 V and 240 V on the low voltage side and
the high voltage side, respectively. The experimental results indicated that the highest and
lowest efficiencies of 96.44% and 88.17% were achieved, respectively, in step-up and step-
down mode with decreasing input current and low losses. Devarajan and Sivaraman [113]
presented a novel bidirectional QZBC for EV applications. A fixed switching frequency
was achieved by applying the smoothing technique to the function of the sliding surface. In
addition, a proportional–integral–derivative (PID controller was utilized in handling errors
in current and voltage across the capacitor. Hu et al. [114] designed a battery storage system
based on QZBC topology in EVs. The work discussed the steady-state power distribution
operation under different operating modes, such as traction mode, regenerative mode
and recovery mode. Furthermore, the optimization of battery current stress and dynamic
power regulation are executed using various controllers including time-domain controllers
and frequency-domain controllers.

A switched-quasi-Z-source network is built using two inductors (L1, L2), three capaci-
tances (C1, C2, C0) and three power switches (S1, S2 and S3), as displayed in Figure 4d. The
bidirectional power flow in the low-voltage and high-voltage sides is executed through
the step-up and step-down operation processes, respectively. During the step-up mode, S1
is switched ON, and S2 and S3 are switched OFF. The capacitance C1 is discharged and,
accordingly, power is transmitted to C2 and L2 via S1. Voltage gain can be expressed as:

MBoost =
1 + DBoost
1− DBoost

(4)

where M and D denote the voltage gain and duty cycle, respectively. During the step-down
mode, S1 is switched OFF and S2, S3 are switched ON. The capacitance C1 is discharged
via S2 and L1, L2 and C2 are charged via S3. Accordingly, voltage gain can be written as:

MBuck =
DBuck

2− DBuck
(5)

3.1.5. Multi-Device Interleaved Bidirectional Converter

The multi-device interleaved bidirectional converter (MDIBC) has become increasingly
popular in EVs because of its advantageous features, including size, cost-effectiveness,
high efficiency and lower ripples [115]. The MDIBC in EVs maintains a constant magnitude
in obtaining input current and the output voltage ripples without an increase in the
number of components like an inductor, capacitor and filter circuits. The reliability of
the MDIBC is increased as compared with other conventional converters due to several
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factors, such as common heat sink, control scheme and mutual sharing of common DC
link capacitor at the output, thus reducing shortcomings in terms of electrical faults and
breakdowns. Furthermore, the overall efficiency as well as effectiveness are enhanced
due to the utilization of regenerative braking power. In addition, the MDIBC is the
preferred choice for high-power utilization in terms of interconnecting an HV battery to
a DC link of an inverter. Nonetheless, the converter suffers from stability and sensitivity
issues due to the transient state of the load current profile. Besides, the operation of the
MDIBC is quite tricky to analyze under steady-state and transient conditions Besides,
components like a capacitor filter, heat sink and high-power inductor add extra weight to
the converter [116–121].

Hegazy et al. [121] investigated the performance of the MDIBC for EVs using MAT-
LAB/Simulink and accordingly built a TMS320F2808 DSP-based 30 kW prototype to
validate the results through experiments. The simulation and experimental reports proved
the superiority of the MDIBC topology over other DC-DC converters with respect to relia-
bility and high performance. Chakraborty et al. [11] proposed an interleaved bidirectional
DC-DC converter for EVs to achieve multi-objective targets between model functionalities,
accuracy and execution time. The proposed interleaved converter was validated and
optimized using a dSPACE SCALEXIO hardware-in-the-loop test bench with a minimal
latency of 18 µs. The result showed a difference of less than 1.25% in the accuracy between
the modeling approach and test beach approach. Shang et al. [122] introduced interleaved
parallel topology-based resonant LC converters to self-heat batteries in vehicular applica-
tions using a high-frequency sine-wave (SW) heater. Accordingly, a thermoelectric model
was designed to determine the optimal parameters of the SW heater. The experimental
results demonstrated that the proposed topology reduced the electrochemical heat, ohmic
loss and heating time effectively.

The MDIBC topology is configured using two power sources, BSSs and SCs, where
BSSs act as the main power source while SCs operate as the auxiliary power source,
as shown in Figure 4e. The MDIBC can be termed as a multi-port multi-phase inter-
leaved converter that utilizes an interleaving technique and employs two high-frequency
switches [123]. The circuitry design of the MDIBC comprises multiple parallel switches per
phase which are linked to the interleaving control strategy technique. Due to its bidirec-
tional characteristic, switching signals are shifted by 360◦/(N × S) per phase [124]. The
output of the converter is controlled by various controllers such as feedback linearization,
conventional dual loop and state feedback. The expression of the duty cycle of the MDIBC
is presented in the following equation [116,123,125–127]:

D =
1
N
(1− Vin

Vout
) (6)

3.2. Isolated Converter

The isolated bidirectional converter is designed using three primary phases, including
DC/AC/DC. A high-frequency transformer (HFT) is utilized to lift the input voltage at
higher values through the utilization of the intermediate AC stage. The HFT is respon-
sible for providing galvanic isolation, leading to high voltage gain. The various isolated
converters for EV applications are presented in the following sections.

3.2.1. Push–Pull Converter

The DC-DC push–pull converter (PPC) topology in EV operation is based on the
transformer action which transforms the power from one side of the circuit to the other
side, i.e., primary to secondary. The PPC has various advantages, such as simplicity
and higher efficiency due to lower peak current, resulting in lower conduction losses.
Nonetheless, the PPC suffers from smaller filters as compared to other DC-DC converters.
In addition, precautions are necessary while a switching operation is carried out since
switches at the same time might potentially damage the converter due to the formation of
a low impedance path and very high current [128].
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Wu et al. [129] presented a modified voltage-fed three-phase DC-DC PPC for EV
applications. The proposed configuration achieved low switching losses and high efficiency
as compared with conventional three-phase topology. Hendra et al. [130] employed state-
space averaging to design a PPC for vehicular applications. A control strategy is applied
to obtain a soft-start mechanism that minimized the starting power and voltage peak on
the primary side. The simulation outcomes demonstrated the feasibility of PPC topology
in the EVs in obtaining high efficiency as well as low current and voltage harmonics at
the output.

The operation in the DC-DC PPC for EVs is different from other topologies, such as a
flyback converter that stores energy during the first phase of the switching sequence and
then transfers the energy to the load in the next switching sequence. The circuit configura-
tion of the PPC is designed using a rectifier diode, bypass capacitor, transformer circuit and
power switches. The configuration of the bidirectional DC-DC PPC for an EV drivetrain
comprises a rectifier diode, bypass capacitor, transformer circuit and four switches, S1, S2,
S3 and S4, which operate simultaneously, as shown in Figure 5a. The output voltage is
regulated in a feed-forward manner by the transformer action. Furthermore, the output
of the transformer is determined by the turn ratios. The necessity for a loop stabilization
technique is eliminated due to well-regulated outputs. The working principle of the PPC
consists of two modes, i.e., PUSH mode and PULL mode. When the converter is func-
tioning in PUSH mode, switch S2 is ON and current flows from the battery to S2. At the
same time, current in the transformer flows through switch S4 and the output capacitor.
Similarly, when the converter is operating in PULL mode, switch S1 is turned on and hence
current transfers from the battery to S1. The flow of current through the output capacitor
in both cycles is in the same direction, hence a positive output voltage is generated [131].
The expression for voltage gain in the DC-DC PPC is given as:

Vout

Vin
= nD (7)

3.2.2. Flyback Converter

The flyback converter (FC) is an isolated DC-DC converter that originates from the
buck–boost converter consisting of an inductor split into the form of a transformer [132].
The energy is stored in the DC-DC FC during the ON state while energy is transferred
in the OFF state [133]. The FC is primarily applied in low-power applications due to its
cost-effectiveness, multiple isolated outputs, high output voltages and electrical isolation
characteristics [134]. In addition, the FC eliminates inductive filters, thus saving cost and in
turn providing filtered output. Furthermore, due to the elimination of freewheeling diodes,
the FC can be utilized in applications with high load voltages compared with forward
converters [135]. However, the FC possesses several disadvantages, such as high ripple
current, high input capacitance and high losses.

Shen et al. [136] designed a DC-DC FC for EVs with a resistor, transformer and
integrated circuit (IC). The performance degradation and system fault conditions were
calculated based on the probability density distribution model. The model was validated
through simulation and experimental works. Tseng et al. [137] developed an integrated
derived boost–FC for an EV application. The proposed design integrated boost and an
FC to obtain high voltage gain. Bhattacharya et al. [138] designed an FC for hybrid EVs
which exhibited lower output current ripple, high gain and reduced leakage inductance.
Sangeetha et al. [139] developed a multi-FC topology that incorporated lower leakage
inductance to an acceptable limit.

A bidirectional DC-DC FC is configured for EVs containing two switches, two capac-
itors and a transformer for isolation purposes, as displayed in Figure 5b. The working
principle of the FC takes place in two modes, i.e., switch ON operation and switch OFF
operation. The transformer action takes place during the switch ON operational stage,
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while creating a voltage across each side of the transformer. Accordingly, the magnetizing
current for the closed switch operation becomes:

∆iLmclosed
=

VsDT
Lm

(8)

Vs = Vp
N2

N1
(9)

In contrast, the magnetizing current is generated during the switch ON operational
stage, thus the open switch operation becomes:

∆iLmopen
=
−V0(1− D)T

Lm

N1

N2
(10)

where, Vp, Vs and V0 are the primary, secondary and output voltage, respectively. T is the
total time duration, Lm is the magnetizing inductance. N2/N1 is the turn ratio.

Electronics 2021, 10, x FOR PEER REVIEW  13 of 40 
 

 

output voltage is regulated in a feed‐forward manner by the transformer action. Further‐

more, the output of the transformer is determined by the turn ratios. The necessity for a 

loop  stabilization  technique  is  eliminated due  to well‐regulated outputs. The working 

principle of the PPC consists of two modes, i.e., PUSH mode and PULL mode. When the 

converter is functioning in PUSH mode, switch S₂ is ON and current flows from the bat‐

tery to S₂. At the same time, current in the transformer flows through switch S₄ and the 

output capacitor. Similarly, when the converter is operating in PULL mode, switch S₁ is 

turned on and hence current transfers from the battery to S₁. The flow of current through 

the output capacitor in both cycles is in the same direction, hence a positive output voltage 

is generated [131]. The expression for voltage gain in the DC‐DC PPC is given as: 

𝑉
𝑉

𝑛𝐷  (7)

 

BSSs

G

D

S
Inverter
DC/AC

Motor
1S 2S

0C

L

3S

4S

(a) 

G

D

S

Inverter
DC/AC

MotorBSSs

inC

1S

0C

2
S

(b) 

G

D

S
Inverter
DC/AC MotorBSSs

1S

2S

3S

4S

rL
rC

sL 2C

5S

6S

7S

8S

1C

(c) 

Figure 5. Cont.



Electronics 2021, 10, 477 14 of 37Electronics 2021, 10, x FOR PEER REVIEW  14 of 40 
 

 

G

D

S
Inverter
DC/AC Motor

0C

BSSs

L
1S

2S

1C

2C

3S

4S

3C

4C

(d) 

BSSs

L

G

D

S
Inverter
DC/AC Motor

SCs

1S

2S

3S

4S

1S

2S

3S

4S

1S 3S

2S 4S

0C

L

(e) 

Figure 5. Configuration of isolated DC‐DC converter for EVs: (a) push–pull converter, (b) flyback 

converter, (c) resonant converter, (d) zero‐voltage switching converter and (e) multi‐port isolated 

converter. 

3.2.2. Flyback Converter 

The flyback converter (FC) is an isolated DC‐DC converter that originates from the 

buck–boost converter consisting of an inductor split into the form of a transformer [132]. 

The energy is stored in the DC‐DC FC during the ON state while energy is transferred in 

the OFF state [133]. The FC is primarily applied in low‐power applications due to its cost‐

effectiveness, multiple isolated outputs, high output voltages and electrical isolation char‐

acteristics [134]. In addition, the FC eliminates inductive filters, thus saving cost and in 

turn providing filtered output. Furthermore, due to the elimination of freewheeling di‐

odes, the FC can be utilized in applications with high load voltages compared with for‐

ward converters  [135]. However,  the FC possesses several disadvantages, such as high 

ripple current, high input capacitance and high losses. 

Shen et al. [136] designed a DC‐DC FC for EVs with a resistor, transformer and inte‐

grated circuit (IC). The performance degradation and system fault conditions were calcu‐

lated  based  on  the  probability  density  distribution model.  The model was  validated 

through simulation and experimental works. Tseng et al. [137] developed an integrated 

derived boost–FC for an EV application. The proposed design integrated boost and an FC 

to obtain high voltage gain. Bhattacharya et al. [138] designed an FC for hybrid EVs which 

Figure 5. Configuration of isolated DC-DC converter for EVs: (a) push–pull converter, (b) flyback con-
verter, (c) resonant converter, (d) zero-voltage switching converter and (e) multi-port isolated converter.

3.2.3. Resonant Converter

A DC-DC resonant converter (RC) for EV powertrain applications consists of a combi-
nation of inductors and capacitors which is known as the resonant tank. The resonant tank
is utilized in tuning to resonance at a given frequency. The RC comprises four switches,
four diodes and two resonant frequency components, Lr and Cr, as presented in Figure 5c.
The magnetization inductance is used as the resonant element to execute the operation of
the converter. Furthermore, the control in the RC under a no-load condition is resolved
through the elimination of the magnetization current. The DC-DC RC for vehicular appli-
cations exhibits high efficiency and low switching loss [140]. In addition, other benefits,
such as zero circulating current and zero voltage switching operation, provide better oper-
ation and efficiency for the battery charging profile [141]. Nonetheless, the RC has some
limitations, such as heat problems due to magnetizing currents and complex design of the
transformer [142].

Moradisizkoohi et al. [143] designed a modular topology using an RC converter based
on Gallium Nitride (GaN) switches for EVs. The proposed design utilized enhancement-
mode Gallium Nitride (eGaN) switches due to their high efficiency and switching speed.
Furthermore, a 1 kW, 600 V, 100 kHz hardware design was set up to validate the design. Vu
and Choi [144] employed a constant current and constant voltage (CV) charging mechanism
to design a dual full-bridge LLC-based RC for EVs. The proposed converter achieved
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higher accuracy with zero-voltage switching (ZVS) and zero-current switching (ZCS)
under constant current charge operation for all the switches. Bai et al. [145] introduced
a bidirectional DC-DC RC for EVs as well as vehicle-to-grid (V2G) applications over a
wide range of voltage levels. It was concluded that the proposed DC-DC RC topology
achieves higher efficiency and a high conversion ratio at low cost. The quality factor (Q)
and resonant frequency (Fr) for the DC-DC resonant circuit are expressed as follows:

Q =

√
Lr/Cr

Rac
(11)

Fr =
1

2π
√

LrCr
(12)

3.2.4. Zero-Voltage Switching Converter

The zero-voltage switching converter (ZVSC) exhibits lossless switching, cold start-
ing and contains less circuitry in comparison with other conventional converters for EV
applications [146]. The ZVSC is appropriate for the EV drivetrain due to its components’
reduced size, easy control technique and significant power density. Furthermore, the ZVSC
can work without additional circuitry for soft switching and provide technical benefits,
including friendly control methodology and higher efficiency [147]. Besides, the ZVSC
needs less control and accessory power in comparison to the full-bridge component [148].
Nevertheless, the ZVSC experiences voltage stress across the switches in high-power appli-
cations. Furthermore, a large capacitor is required to limit ripples at the converter output.
Due to the absence of a fault tolerance mechanism, the converter is not appropriate for
operation above 10 kW [148–151].

Pahlevaninezhad et al. [151] introduced a novel full-bridge ZVSC in EVs to provide
power effectively under varying load conditions. A current-driven rectifier was employed
to execute the soft-switching operation, leading to a higher efficiency under all load settings.
The validation was carried out using a 3 kW prototype and the experimental reports
illustrated the superiority and feasibility of the ZVSC. Aamir et al. [152] proposed a high-
gain ZVSC converter with a smaller number of switches for hybrid electric vehicles. The
design consists of a voltage-clamped circuit, a coupled inductor and three active switches
intended for the bidirectional operation of the converter. The ZVSC achieved an efficiency
of 96% and 92% under boost operation mode and buck operation mode, respectively.

The design of the ZVSC includes dual half-bridge circuitries on the input side as well
as the output side of the transformer, as depicted in Figure 5d. An inductor with BSSs
followed by half-bridge switches is used to build the input side of the converter. The output
side of the converter composes the remaining half-bridge switches and filter capacitor.
A combination of switches and capacitors in parallel is required for the application of
soft switching in the converter. The converter is operated in two different modes, boost
mode and buck mode. The ZVSC works in boost mode when the power flows from the
low-voltage side to the high-voltage side, while it operates in buck mode when the power
transfers from high voltage to low voltage [148,153]. The equation of the duty cycle (D) for
the ZVSC is given as:

(1− D)× D =
n×Vout

2Vin
(13)

3.2.5. Multi-Port Isolated Converter

The multi-port isolated converter (MPIC) integrates the multiple input sources to
extract the benefit of an individual source. The power recovered in the MPIC during the
process of regenerative braking can be utilized to feed the power back to the input source,
thus improving the efficiency as well as the functionality of the converter. Nonetheless, the
MPIC has some shortcomings. Due to an increase in the number of switches, synchroniza-
tion becomes difficult. Furthermore, the weight of the converter also increases due to the
presence of a bulky transformer [154].
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Zhao et al. [155] constructed three-port bidirectional DC-DC converters for EVs. The
performance of the converter was improved using phase shift control, duty cycle control
and overall system loss assessment. A controller-based converter model was designed
and decoupled power flow management was executed to achieve a quick response in
the dynamic state. The theoretical analysis was justified using a 1.5 kW prototype. The
results demonstrated the suitability of the proposed topology in the EV drivetrain. Khan
et al. [156] designed a smart electric vehicle charging station with multi-dimensional power
flow capabilities by utilizing an isolated multi-port converter. The design was implemented
in MATLAB/Simulink software and validated with a hardware prototype. In addition, the
design suggests that EVs and energy storage batteries can be charged from the grid at the
same time.

An isolated multi-winding transformer connects all the input ports, as displayed in
Figure 5e. An interleaving technique is utilized to connect input sources as well as to
minimize the input current and output voltage ripples. In addition, a parallel connection
of two boost DC/DC converters is employed to combine various energy sources [157–159].
Table 1 illustrates the functional features and the number of components of the various
DC-DC converters in EVs. A comparative analysis among the DC-DC converters in EVs is
depicted in Table 2.

Table 1. Functional feature and component comparison between DC-DC converters in electric vehicle.

DC-DC
Converter

Current/Voltage
Ripple

Switching
Frequency

Complexity of
Control Circuit

High Power
Conversion

EMI
Suppression Cost Voltage

Gain

Active Components Passive
Components

D SW HFT L C

CC Simple High Simple Appropriate Reduced Low −D
1−D

2 2 0 2 2

SCBC Moderate High Moderate Appropriate Needed Medium 2
1−D

4 4 0 1 3

CIBC Moderate High Moderate Appropriate Needed Low 2+n−D
1−D

3 3 0 2 3

QZBC Simple High Complex Appropriate Needed Medium 1+D
1−D

3 3 0 2 3

MDIBC Complex Low Complex Appropriate Reduced Low 1
1−ND

16 16 0 4 1

PPC Simple High Complex Appropriate Reduced Low nD 4 4 1 1 1
FC Simple High Moderate Not appropriate Needed Low nD

1−D
2 2 1 0 2

RC Simple High Moderate Appropriate Reduced Low n|j2π fsw | 8 8 1 2 3
ZVSC Complex Low Complex Appropriate Reduced Medium 2

n D(1− D) 4 4 1 1 5
MPIC Complex Low Complex Appropriate Needed High n+1

1−D
12 12 1 2 1

D is the number of diodes, SW is the number of switches, HFT is the number of high-frequency transformers, L is the number of inductances,
C is the number of capacitances, n is the transformer turns ratio, N is the number of phases, fsw is the switching frequency. CC: Cuk
converter; SCBC: switched-capacitor bidirectional converter; CIBC: coupled inductor bidirectional converter; QZBC: quasi-Z source
converter; MDIBC: multi-device interleaved bidirectional converter; PPC: push–pull converter; FC: fuel cell; RC: resonant converter; ZVSC:
zero-voltage switching converter; MPIC: multi-port isolated converter; EMI: electromagnetic interference.

Table 2. Comparative analysis of various DC-DC converters used in EVs.

Type Ref. DC-DC Converter Objective Outcomes Benefits Drawbacks

Non-isolated
converter

[92] CC -To prevent high
energy loss.

-Provides stable and
ripple-free output.

-Peak-to-peak ripple current
of inductors is smaller.
-Continuous input and

output currents.

-Difficult to stabilize.
-Uncontrolled and

undamped resonance.

[93] SCBC -To obtain high voltage
gain and efficiency.

-Efficiency is greater
than 90%.

-Cost-effective.
-Compact design.

-Current output limited.

-High ripple current.
-Fails to maintain higher

efficiency for a wide
range of ratios of input

to output voltages.

[106] CIBC
-To reduce output

current and inductor
current ripples.

-Increase in the
efficiency by increasing

coupling coefficient.

-Small size.
-Low cost.

-Reduced ripples.

-Limited scope for
further improvement.
-No consideration for

voltage ripples.

[112] QZBC
-To obtain wide range of

voltage gain, and an
absolute common ground.

-Maximum and
minimum efficiency are

96.44% and88.17%,
respectively.

-Lower switch stress.
-Smaller component ratings.

-Buck/boost capability.

-Input current is
discontinuous.

-Capacitor has high
voltage stress.
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Table 2. Cont.

Type Ref. DC-DC Converter Objective Outcomes Benefits Drawbacks

[121] MDBIC

-To reduce the number
of passive components.
-To decrease the ripples

in input current and
output voltage.

-To obtain proper control
and fast

transient response.

-Obtains low EMI and
low stress.

-Halves current and
voltage ripple in
comparison to

interleaved boost
converter (IBC).

-Halves inductor and
capacitor size compared

to IBC.

-Low current stress.
-High efficiency.

-Ideal for high-power
conversion.

-Simple control approach.
-Reduced heat sink and

component size.

-Complex circuit due to
the high number of

components.
-Duty cycle is very

sensitive under load
variation.

-Study under
steady-state and

transient conditions
is complex.

Isolated
converter

[130] PPC -To change the voltage of
DC power supply.

-Limits the starting
power.

-Achieves low current
and voltage on the

primary side.

-Better utilization of
transistors and transformers.

-Reduces EMI.
-Less filtering required.

-Central tap transformer.
-Two switches are not

widely used in flux
walking phenomena.

[139] FC
-To enable support of a

wide input
voltage range.

-Attains lower leakage
inductance to an
acceptable limit.

-Primary is isolated from the
output.

-Can provide multiple output
voltages.

-Ability to regulate the
multiple output voltages.

-Has ripple current.
-Higher losses.

-More output and input
capacitance.

-Has the right half pole
in the

compensation loop.

[145] RC
-To minimize magnetic

components and passive
filters.

-Obtains high
step-up/down

capability.
-Achieves high efficiency.

-Attains wide voltage
gain range.

-Low cost.
-High conversion ratio.

-High efficiency.

-Expensive controller.
-Complex integrated

transformer.

[151] ZVSC

-To provide satisfactory
power under wide range

load variations.
-To perform the

soft-switching with
acceptable efficiency.
-To clamp the output
diode bridge voltage.

-Achieves zero voltage
switching under all load

conditions.
-Ensures a stable and
reliable process under

no-load condition
through the symmetric

auxiliary circuits.

-Low EMI.
-Low switching loss.

-Additional clamping circuit
is not required.

-Large capacitor is
needed.

-High current ratings.
-Poor fault-tolerant

capability.

[155] MPIC

-To control duty cycle to
optimize the system

behavior.
-To minimize the overall

system losses.
-To investigate the

dynamic analysis and
related control strategy.

-Achieves a fast dynamic
response.

-Independent control of
power flow.

-Achieves high efficiency
through duty cycle

control and
phase-shift control.

-High voltage gain.
-Low output voltage ripple

current.
-Galvanic isolation.

-Large number of
components.

-Complex analysis under
steady-state and

transient conditions.
-High sensitivity

corresponds to duty
cycle under load

changes.
-Difficult to achieve

proper synchronization.

4. EV Converter Controller Schemes

DC-DC converters are nonlinear and exhibit lightly damped dynamics due to switch-
ing behavior [160]. Therefore, a suitable control technique of DC-DC converters is essential
to obtain a regulated and fixed output voltage. The control of converters based on classical
linear regulators, such as proportional–integral (PI) regulators, is available, however, the
PI control strategy suffers from limited and unsatisfactory performance with a large load
and system parameter variation [161]. To overcome these concerns, intelligent controllers
are introduced due to their quick response, excellent dynamic performance and strong
controllability. This paper summarizes the various control strategies and suggests the most
viable solutions in EV applications.

4.1. Proportional–Integral Control

The proportional–integral (PI) controller is based on a feedback control loop that
estimates an error signal from the difference between the output of a system and a reference
value. The PI controller provides zero control error and it is insensitive to the measurement
channel, thus the PI controller can be used to increase the stability and to avoid large
disturbances during the system operation [162]. The application of the PI controller in EV
converters is illustrated in the following subsections.
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4.1.1. PI Controller in Battery Lifespan Improvement

A PI controller-based DC-DC converter mechanism is established for EVs employing
multiple energy sources, including BSSs, SCs and FCs [156]. Advanced vehicle simulator
software (ADVISOR) is proposed in this study considering the state of charge of the battery
and supercapacitor, speed of the vehicle and power demand. Though FCs are taken as
the main energy source, they exhibit poor efficiency during light loads, and thus rely on
a battery to supply the power in this situation. The complementary switching is used in
the battery converter to avoid discontinuous transition which further reduces the current
peaks and saves the active and passive components from dangerous stresses. The overall
lifespan of the battery and the temperature adaptability of the hybrid system are improved
significantly. The battery maximum energy was calculated as:

Energymax =
Ahmax·Vnom·3600 s/h

1000 J/kJ
(14)

where Vnom is the nominal voltage, Rint is the internal resistance and Ahmax denotes the
maximum ampere-hour of the battery. However, optimal size and cost are not considered
in this study.

4.1.2. PI Controller in Stability Improvement of an Integrated Charging System

Kang et al. [163] discussed the PI control methods for DC-DC converters to enhance
the stability of an integrated charging system in a hybrid EV (HEV). In this research, the
feed-forward compensation method is employed to regulate the DC-link voltage and load
current in the transient state, which improves the overall system stability. The advantage
of this system is that it does not require additional capacitance, leading to a reduction in
the system volume and cost. Figure 6 depicts the block diagram of the PI control-based
DC-DC converter where the controller operation is executed in constant current (CC) and
constant voltage (CV) modes. During CC mode, the operation of the DC-DC current
controller depends on the reference current i∗Bt, whereas during CV mode, the operation of
the controller relies on the reference voltage v∗Bt.
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converter [163].

4.1.3. PI Controller in Universal Three-Level Bridge Converter

Al-Ogaili et al. [164] suggested a PI-based voltage-oriented control (VOC) scheme to
control the universal three-level bridge converter through the control of input voltage and
output current. The control architecture is shown in Figure 7. Here, the PI voltage controller
controls the DC-link voltage (VDC) which is compared with a reference voltage, Vdc_ref to
estimate the reference current signal, id_ref. The PI current controller minimizes the error
between the reference current id_ref and the inner loop of the active id current component
to estimate the reference voltage signal, vd_ref. Similarly, the other PI controller manages
to reduce the iq current component to zero to estimate the reference voltage signal vq_ref.
The active current component id is regulated by the DC-link voltage control approach
that helps to balance the active power flow. On the other hand, the regulation of reactive
component iq to zero ensures the unity power factor operation. The steady-state error is
reduced with this proposed system.
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4.1.4. PI Controller in a Bidirectional Interleaved Hybrid Converter

Saleeb et al. [165] proposed a PI controller in a dual-loop control strategy for a bidi-
rectional interleaved hybrid converter (BIHC). It is evident from Figure 8 that the PI
controller-based BIHC is designed to regulate the DC output voltage to a safe value. The
amplitude of the input reference current (I*) of the proposed design is formed, which is
then multiplied with the output of the phase-locked loop (PLL). The PI controller helps in
tracing the inductor current (IL1, IL2, IL3) to the reference current and, accordingly, the
appropriate gateway signals (GS1-GS6) are generated. This topology offers benefits in
terms of fixed switching frequency, resulting in battery life improvement, higher processing
capability and improved reliability [166].
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4.2. Rule-Based Control

The robustness and reliability of the rule-based controller depend on the specifications,
designer knowledge, constraints and practical aspects. This section describes the various
rule-based control techniques used in EVs.

4.2.1. Fuzzy Logic Control

Ferreira et al. [167] suggested a fuzzy logic control (FLC)-based multiple-input power
electronic converter (MIPEC) to attain high efficiency in EVs, as shown in Figure 9. The
BSSs, SCs and FCs are used, where the input current is controlled by BSSs and the regulation
of the DC-link voltage is performed by SCs. The battery energy load current and SCs are
taken as the input of FLC, while the BSS output current correction and FCs are introduced
as the output variables. The MIPEC interfaces between the DC-link bus, ESSs and generator.
The power flow between the sources and load is coordinated by the fuzzy system while
ensuring adequate operational conditions for the traction system. Although FLC provides
satisfactory results, it does not confirm the optimal solution under different situations.
Moreover, low-cost, flexible and efficient operation of MIPECs, including low EMI, is yet to
be developed for EV applications. Adam et al. [168] proposed an FLC-based bidirectional
converter in EVs to carry out the control operation of battery charging and discharging
current, which provided higher capacity and longer lifespan. The simulation results
demonstrated satisfactory outcomes of the converter with regard to stable output voltage
and high operating efficiency. Narayana et al. [169] designed a bidirectional DC-DC
converter topology based on FLC in EVs that illustrated cost-effectiveness, a smaller
number of components and high efficiency.
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Figure 9. Block diagram of bidirectional mode operation of PI-based DC-DC converter [163]. MIPEC:
Multiple-input power electronic converter

4.2.2. Neuro-Fuzzy Logic Control

The adaptive neuro-fuzzy inference system (ANFIS) is the combination of both neural
networks and fuzzy inference systems, and thus is quicker and more accurate than the
traditional fuzzy system. Reddy and Sudhakar [170] designed an EV powertrain with
FCs, a boost converter, three-phase inverter, motor and ANFIS controller, as denoted in
Figure 10. An ANFIS-based maximum power point tracking (MPPT) controller is employed
to extract the maximum energy from FCs. The proposed ANFIS controller demonstrates
satisfactory performance in comparison to FLC, reducing the average time to reach the
maximum power point by 17.74% and increasing the average DC-link power by 1.95%.
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4.2.3. Fuzzy PI Control

An intelligent energy management system employing fuzzy PI energy for BSSs and
SCs in an HEV is proposed in [171]. Here, the adaptive PI controller is used to prevent
deep discharging or over-charging, and the fuzzy-based low pass filter is used for optimal
power sharing. Both the control methods are responsible for adjusting the battery current
based on the maximum current of the DC-DC converter. The output of the fuzzy system
is fed to the proportional and integral gain of the PI controller. In [172], a multi-input
DC-DC converter is designed based on fuzzy PI for EVs to obtain fast tracking capability as
well as to control the bidirectional power management with fewer steady-state errors and
proper utilization of energy sources. Here, the load demand, source status and the control
switching signals are utilized to execute the operation of a buck–boost converter. The
source-side average current mode control is executed by the PI controller which contains
the inner current control loop and outer voltage loop. In the proposed method, the control
operation of the inductor current is carried out by adjusting the individual source current
for a specified load. A logical switching mechanism to alternate the control action between
PI and fuzzy is proposed based on the speed error value (5 rpm in this case), as depicted in
Figure 11. The PI controller operates below this limit and fuzzy operates above this speed
error limit.

4.3. Artificial Neural Network Control

Intelligent control based on an artificial neural network (ANN) for the half-bridge
LLC resonant converter in EV applications is presented in [173]. The proposed topol-
ogy achieves an excellent solution with regard to long battery lifespan and high energy
efficiency, leading to obtaining more miles per charge in EVs. The performance of the
ANN-based LLC resonant converter is evaluated using the mean square error (MSE).
Here, the reference values are compared with the input voltage, load voltage and dynamic
load values. The measured error value is controlled by switching frequency through the
Levenberg–Marquardt training algorithm and the activation function of the ANN. Six
different states of load are considered in this study. The results indicate that the ANN
obtains peak efficiency, ripple voltage and THD of 96.2%, 0.5 V and below 5%, respectively.
Teja et al. [174] proposed an ANN control-based bidirectional converter to execute power
flow control under two operational processes, namely, the energy regeneration stage and
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dual-source powering stage. The simulation outcomes demonstrated that the ANN control
performed better than PI control in terms of fast response and reduced current ripple.
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4.4. Sliding Mode Control

An adaptive sliding mode control (ASMC) scheme is applied to achieve the current
tracking control for boost converters in EVs [175]. The control operation of ASMC is
enhanced with optimal reaching law (EORL). The simulations and experimental results
illustrate that EORL-based ASMC delivers better results than conventional ASMC methods
in terms of stable power distribution, tracking control and convergence time [176]. In [177],
a novel method utilizing sliding mode (SM) control-based buck–boost bidirectional con-
verter is proposed. The DC-DC converter is designed. The proposed method does not
require an additional sensor and demonstrates strong robustness under the changing input
voltage and converter load. In [178], SMC is applied to address the harmonic issue of the
bidirectional DC/DC converter in SCs for HEVs. In [179], an adaptive fractional order
sliding mode control (AFSMC)-based boost converter is built to attain current tracking
control for a hybrid storage system with BSSs and SCs. A Lyapunov function is developed
using the adaptation rules and tracking current error. The simulation outcomes demon-
strate the effectiveness of the proposed design over the conventional SMC system with
regard to a fast transient response and robustness under uncertainties. Table 3 presents
the operational feature comparison among various controllers. The comparative perfor-
mance analysis of various control strategies used in EV drivetrains is presented in Table 4.
Liu et al. [180] presented a novel coupled thermoelectric model to charge a LiFePO4 battery
using a constrained generalized predictive control (GPC)-based charging control strategy.
The proposed model aimed to achieve fast charging as well as keep the internal temper-
ature of the battery within an acceptable range. A controlled auto-regressive integrated
moving average (CARIMA) model was built as a self-tuning model for the GPC controller,
which was optimized by the recursive least squares (RLS) algorithm. Then the charging
current was adjusted using the GPC controller under different control parameters, internal
temperatures and heat dissipation rates. Ouyang et al. [181] introduced a leader–followers
framework using an optimal charging control strategy with multi-objective optimization
aiming to reduce the energy loss of a series-connected Li-ion battery pack and fulfill the
user demand. The proposed framework integrated the online closed-loop regulation and
offline scheduling to enhance the robustness and decrease the computational burden for the
charger controller. The proposed charging control strategy was validated under different
tests, including state of charge (SOC) settings, weight coefficients in the cost function
and measurement noise and the results demonstrated the effectiveness in a real-world
environment compared with those methods with complex battery models.
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Table 3. Feature comparison of different controller strategies used in EV converters.

Feature Proportional Integral
(PI) Control Fuzzy Control Artificial Neural

Network (ANN) Control
Sliding Mode
(SM) Control

Control operation Linear Artificial intelligence Artificial intelligence Non-linear
Control complexity Medium Less High High

Mathematical modeling Required Not required Not required Required
Sensitivity High Low Low Low

Dynamic response Average Excellent Excellent Good
overshoot Large Negligible Negligible Negligible

Control suitability Lower order systems All types of system All types of system All types of system
Capability to handle

complexity Difficult Very easy Easy Easy

Table 4. The comparative study of various control methods employed in converters of EVs.

Ref. Control Technique Target Contributions Advantages Disadvantages

[164] PI control

-To control input voltage and
output current.

-To reduce the error between
the reference current and the

inner loop of the active
current component.

-Manages to reduce the
current component to zero.

- Helps to balance the active
power flow.

- Ensures unity power factor
operation.-Reduces the

steady-state error.

-Easy execution.
-Simple design.

-Unstable operation due to
inappropriate tuning.

-Needs precise mathematical
modeling.

-Inappropriate for highly
non-linear, time-varying

systems.
-Poor transient response

under a
time-delayed system.

[167] Fuzzy control

-To control peak current,
voltage andaverage power

demand.
-To achieve high efficiency.
-To interface between ESSs,
generator and the voltage

DC-link bus.

-Proper coordination
between ESSs, including
BSSs, SCs, FCs and load.

- Confirms sufficient
conditions for traction

system operation.

-Robust, flexible, smooth
and fast response.

-Minimizes voltage and
current ripple.

-Improves dynamics and
excellent transient response.

-Can handle non-linear
systems and work with

imprecise inputs.

-Needs expert knowledge to
design the controller.

-Generation of fuzzy rules is
a laborious task.

-Needs frequent upgrades of
fuzzy rules.

[173] ANN Control

-To achieve high power
factor, low harmonics of
input current and high

efficiency.
-To obtain a higher battery

life expectancy.

-Obtains peak efficiency,
ripple voltage and total

harmonic distortion (THD)
of 96.2%, 0.5 V and below

5%, respectively.

-Accurate and robust.
-Flexible controllability.

-Improved transient
response.

-Satisfactory operation under
varying loads.

-Suffers from computational
complexity problems.

-Not ideal for fast switching
operations.

-Needs expensive processor
devices.

[179] SM control -To attain current
tracking control.

-High robustness.
-Minimizes 80% of the

transient time during the
startup condition.

-Allows the ESSs to reach a
steady-state

condition promptly.

-Reliable and robust.
-Excellent dynamic response.

-Easy execution.
-Improved stability.

-Switching frequency
fluctuates under voltage and

load variation.
-Frequency variation affects
the design process of input

and output filters.
-Selection of appropriate
parameters is challenging

due to the high
control complexity.

4.5. Modulation Techniques in EV Converters

The modulation technique is vital for EV converters in achieving high efficiency,
low switching losses and THD. Different modulation schemes are employed to control
DC-DC converters in EV applications. The purpose of using the modulation techniques
is to obtain the optimum point toward achieving the target amplitude, frequency and
phase of the current and voltage [182,183]. The most widely used modulation scheme
used in EV applications is pulse-width modulation (PWM). The modulation schemes used
in different DC-DC inverters for EV applications are presented in Table 5. For instance,
Zhang et al. [112] designed the PWM-based QZBC in EV applications to generate three
gate signals in the step-up mode and step-down mode. Hegazy et al. [121] proposed
an MDIBC integrated with TMS320F2808 DSP based on PWM to implement dual-loop
current control in EVs. Shen et al. [136] employed an improved numerical model and fixed
frequency pulse-width modulation (FFPWM) to evaluate the electromagnetic interference
(EMI) performance of EVs. Pahlevaninezhad et al. [151] used a ZVSC and TMX320F28335
eZdSP with six enhanced pulse-width modulation modules to obtain a high-resolution
PWM signal.
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Table 5. Analysis of different modulation methods in EV converters.

Type Converter Authors Modulation Techniques Remarks

Non-isolated converter

CC Pandey and Singh [91] Pulse-width modulation

The authors proposed pulse-width modulation
(PWM) control-based Cuk converter to achieve

harmonic free input current in EVs. The outer loop is
designed by the DC link control while the internal

current control loop is formed using the input
inductor current feedback.

SCBC Zhang et al. [96] Pulse-width modulation
The authors employed PWM schemes in SCBC

converters for EVs to generate the gate signals in the
step-up mode and step-down mode.

CIBC Salehahari and Babaei [184] High-frequency pulse-width
modulation

The authors used the high-frequency PWM method
in a CIBC to obtain the effective switching frequency

as well as produce the desired output voltage and
reduce switching stresses.

QZBC Zhang et al. [112] Pulse-width modulation
The authors designed the QZBC with PWM

generator for EVs to produce three gate signals in the
step-up mode and step-down mode.

MDIBC Hegazy et al. [121] Pulse-width modulation

The authors suggested closed-loop control to develop
an MDIBC based on PWM. Here, the authors used
TMS320F2808 DSP-based real-time digital control
synchronized with PWM to execute the dual-loop

current control.

Isolated converter

PPC Hendra et al. [130] Pulse-width modulation

The authors proposed a microcontroller-based
control algorithm to generate a PWM duty cycle for
an insulated-gate bipolar transistor (IGBT) using the

date driver.

FC Shen et al. [136] Fixed frequency pulse-width
modulation

The authors employed fixed frequency pulse-width
modulation (FFPWM) to assess the electromagnetic

interference (EMI) performance of the FC in EVs
using the improved numerical model.

RC Moradisizkoohi et al. [143] Quasi-resonant pulse-width
modulation

The authors suggested quasi-resonant PWM
(QRPWM) where the switching frequency is higher

than the resonant frequency. The proposed QRPWM
showed better performance with regard to lower

turn-off loss.

ZVSC Pahlevaninezhad et al. [151] Enhanced pulse-width
modulation

The authors developed TMX320F28335 eZdSP with
six EPWM modules not only to generate a

high-resolution PWM signal and high degree of
flexibility but also to limit instability.

MPIC Zhao et al. [155] Modified pulse-width
modulation

The authors utilized controllers and a decoupling
network and three duty cycle lookup tables along

with 100 kHz PWM patterns to adjust the two-phase
shift angle lookup tables.

5. EV Converter Optimization Algorithms

The optimization plays a key role in enhancing the converter efficiency through
the reduction of converter loss and the minimization of ripple currents. Based on the
literature review, optimization of the converter is classified into two groups: derivative
information-based gradient methods and stochastic search-based metaheuristic methods.

5.1. Gradient Algorithms

The gradient-based algorithms are mathematically driven algorithms that are devel-
oped using rigorous mathematical expressions and thus the computational complexity is
increased when variables increase. In [185], a Lagrange optimization function is formulated
to optimize the size of the capacitors while fulfilling the constraints of total energy limit
or total capacitance. The optimization also aims to find the optimal number of switch
sizes to meet the constraints, including total switch volt-ampere (V-A) products or total
switch conductance. In [186], sequential quadratic programming is utilized to reduce the
total component cost of a boost converter while specifying several constraints, including
ripple current, EMI standard, temperature switching frequency, physical configuration
and safe operation procedures. Nevertheless, the main issue of gradient methods is the
design space, which has numerous local minima and there is a chance of becoming trapped
in a local minimum. Hence, gradient methods are unable to achieve global optimization
solutions [187].
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5.2. Metaheuristic Algorithms

The metaheuristic approaches are applied to address multi-objective and derivative-
free problems with a large number of variables. A few studies have reported the use of
optimization techniques in EV converter applications. Among various metaheuristic-based
optimization methods, a genetic algorithm (GA) and particle swarm optimization (PSO) are
extensively used for the design and optimization of the converter in EVs. Nguyen et al. [43]
proposed GA optimization-based three-phase dual active bridge (DAB) bidirectional con-
verters for EVs. The purpose of this method is to maximize the system efficiency by
reducing the converter loss with low output current ripple. The heuristic GA is chosen
due to its simplicity and feasibility. The optimization procedure affects the four basic
parameters, the including leakage inductance (Lk), peak flux density (Bpk), voltage conver-
sion ratio (M) and switching frequency (fs) of the transformers. Hence, the minimization
problem can be written as:

f ( fs, Lk, M) = ∆Ptot → min (15)

where ∆Ptot denotes the total converter loss. The framework of the GA optimization is
shown in Figure 12.
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loss [43].

First, the input voltage (V1), output voltage (V2), output power (Pout), switching
frequency (fs) and peak flux density (Bpk) are assigned. Afterwards, the root mean square
(rms) value of the primary current of the transformer is determined. Then, the fitness func-
tion is evaluated while satisfying the constraints of optimization. If the optimal parameters
are obtained, then the designed parameters are calculated to reduce the converter loss,
otherwise, the fitness function needs to re-evaluate to achieve the desired results.
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An improved design methodology based on a non-dominated sorting GA-II (NSGA-II)-
based DC-DC MPIC is presented to increase the effectiveness of the converter and minimize
the development time [83]. The optimization problem is formulated to determine the opti-
mal switching frequency and the number of phases. The results illustrate the superiority
of the proposed method over the conventional method with regard to inductor weight,
total loss of the converter and input current ripple. The multi-objective function can be
mathematically expressed using the following equations:

minimize


∆Iin(X)

W∑ ind(X)
Ploss(X)

(16)

s.t.



Nph_min ≤ Nph ≤ Nph_max
fsw_min ≤ fsw ≤ fsw_max

∆IinBAT ≤ 7.5%IinBAT
∆Iinsc ≤ 20%Iinsc

W∑ ind ≤ 5 kg
PBCM ≤ 5 kW

(17)

where ∆Iin, W∑ind and Ploss denote the input current ripple, inductor weight and converter
loss, respectively, Nph denotes the number of phases, PBCM is the power of the boundary
condition mode (BCM), fsw represents the switching frequency, ∆IinBAT and ∆IinSC represent
the input current ripple associated with the battery and supercapacitor, respectively.

Prithivi and Sathyapriya [84] designed a fuzzy controller with errors, and change
of error as inputs and duty cycle as output. The proposed fuzzy controller minimizes
the output voltage ripple of an isolated DC-DC converter. The effectiveness of the fuzzy
controller is further enhanced by applying PSO and ant colony optimization (ACO). PSO
and ACO obtain the optimum switching angle through the elimination of the ripple
components. The results show that a closed-loop ACO-based fuzzy controller has lower
output voltage ripple than PSO, at 0.14 V. The objective function of the proposed method is
designed as:

f (d) = Vre f −Vavg (18)

where Vref denotes the reference voltage and Vavg is the average voltage. Liu et al. [188]
proposed an ensemble multi-objective biogeography-based optimization (EM-BBO) ap-
proach to obtain an appropriate charging pattern for lithium-ion batteries. The authors
formulated a multi-objective function to achieve three objectives simultaneously, includ-
ing battery health status, energy conversion efficiency and charging time, while current,
voltage, temperature and SOC were taken as constraints. The comprehensive analysis and
results proved that the proposed optimization algorithm delivered a desirable trade-off
between conversion efficiency and charging speed under different operational settings.
Liu et al. [189] designed a coupled electrothermal–aging model based on the constrained
multi-objective optimization framework to capture the lithium-ion battery dynamics, in-
cluding aging and electrical and thermal characteristics. Two contradictory objectives,
battery average temperature and charging duration, were taken into account subject to
satisfying all constraints, including current, voltage, temperature and SOC. The NSGA-II
approach was utilized to optimize of the multi-stage constant current (MCC) profile as
well as assess the battery energy loss and economic management. The effectiveness of the
charging management was examined using sensitivity analysis and various charging tests.
The reports demonstrated the appropriateness of the proposed charging management with
regard to the minimum economic cost of charging and suitable charging speed. Table 6
shows the summary of optimization algorithms used for EV converters.
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Table 6. Surveyed literature on various metaheuristic optimization techniques for EV converters.

Algorithm Ref. Objective Function Topology Considered Factors Outcomes

Genetic algorithm (GA) [43] -Maximizes the
system efficiency.

-Bidirectional dual
active bridge

(DAB) converter.

-Leakage inductance,
peak flux density,

voltage conversion
ratio and

switching frequency.

-Eliminates the need for
external inductors.

Non-dominated
Sorting Genetic

Algorithm II (NSGA-II)
[83] -Minimizes the losses

in the converter.

-Multi-objective,
DC-DC multiport

converters.

-Voltage and
ripple current.

-Reduces the size,
development time and
input current ripple.

Particle swarm
optimization (PSO) [84] -Switching angle

optimization. -KY boost converter. -Voltage. -Ripple current
is reduced.

PSO [85] -Optimization of
energy consumption.

-One-way
DC-DC converter.

-Fuzzy membership
functions

are optimized.

-Reduces the influence
of fuzzy

control strategy.

6. Issues and Challenges

Although considerable efforts have been made toward the development of a converter
with respect to design, control and optimization, numerous key issues need to be studied
to enhance the accuracy and performance under various conditions. The key issues and
challenges for converters are presented below.

6.1. Converter Design and Performance

The selection of the ideal converter topology is crucial for vehicle performance en-
hancement. The outcome of the vehicle may be unsatisfactory if a suitable design and
topology of the converter are not chosen based on the requirements. A converter may be
bulky due to a large number of passive parameters and switching components. Besides,
the cost of the converter may increase due to the presence of an additional filter. In line
with these, the converter may have several issues that may hamper the effectiveness, such
as high voltage gain, high ripple current, switching loss, voltage stress, hard switching,
inappropriate synchronization, high impedance and complex control techniques. Therefore,
designing an effective converter is a challenge and a lot of factors need to be investigated.

6.2. Conventional Controller Issues

Although a conventional controller like a PI controller has a simple design, easy
execution and provides reasonable performance, it has some weaknesses. For instance,
a PID controller needs precise mathematical modeling which is very sensitive to load
disturbance, changing environmental settings and parameter fluctuation. Besides, a PID
controller delivers poor results for highly non-linear and time-varying systems. In addition,
the PID controller has a slow transient response under a time-delayed system.

6.3. Intelligent Controller Issues

Intelligent controllers such as the fuzzy controller and ANN controller have shown
promising results toward accurate and robust control of EV converters. However, they
have some drawbacks. The fuzzy controller features flexibility, robustness, good transient
response and easy hardware implementation, and is thus highly recommended for EV
converter control. However, the fuzzy controller requires lots of data, human expertise
and the frequent upgrading of rules. An ANN is robust, efficient and does not require
mathematical modeling. Additionally, an ANN works satisfactorily under variable load
conditions and changing parameters of the circuit. However, an ANN requires a huge
amount of quality data for training and a large storage device. SM control presents a
stable, reliable and robust solution. Additionally, SM control has an improved stability
and dynamic response. However, SMC has issues of switching frequency fluctuation and
suitable parameter selection.
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6.4. Optimization Algorithm Issues

Although the inclusion of optimization into EV converters has had considerable
impacts with regard to design, cost and efficiency, it has some negatives concerning
parameter selection, epoch number, data size and dimension settings. A GA has an easy
implementation process and can perform a parallel search into multiple regions but suffers
from slow convergence speed. In contrast, PSO requires fewer parameters to be adjusted
and exhibits simple execution, high efficiency and fast convergence speed. However, PSO
can converge prematurely and has difficulties in defining the initial design parameters.
Hence, the choice of proper optimization technique is crucial to reach satisfactory solutions
in converter control in EVs.

6.5. Formulation of Multi-Objective Function

The formulation of the objective function is important to design robust optimization
in vehicular applications. However, the construction of an objective function, considering
many variables and constraints, is a challenging task. Generally, many parameters need
to be optimized in converters, such as ripple current, voltage, switching loss, number
of components and cost. To achieve these targets simultaneously, the formation of a
multi-objective function is necessary. Nevertheless, it is tricky to obtain two optimal self-
contradictory objectives concurrently without making one worse. For example, there is a
lower possibility that ripple current and number of components will be optimized at the
same time. Thus, the development of a multi-objective function and associated constraints
is yet to be explored.

6.6. Implementation of the Metaheuristic Algorithm

The execution of metaheuristic optimization in controlling the converter of EVs may
deviate due to the highly mathematical computation and many algorithm parameters,
functions and constraints. The training process of optimization is complex and needs a sub-
stantial amount of time. Besides, the performance comparison among various optimization
techniques using a single convergence curve is a tough task. In addition, the integration
of optimization may lead to poor results if a sufficient quality and quantity of data, data
pre-processing, appropriate training algorithms and activation functions are not chosen
accurately. Thus, further attention is required to address the computational complexity of
the metaheuristic algorithm.

6.7. Optimized Controller Design

The efficiency of an intelligent controller depends strongly on input features, network
configuration and hyperparameter adjustment. The efficient and robust performance of the
converter is ensured only when all the hyperparameters are optimized accurately. Several
research works have ignored the membership function and hyperparameter tuning in
fuzzy and ANN controllers, respectively. In the majority of cases, the intelligent controller
is structured by adjusting the hyperparameters based on the trial and error (TE) method,
contributing a substantial loss of time and human energy. Therefore, the appropriate
architecture and hyperparameter settings of intelligent controllers are the key issues to
be researched.

7. Conclusions and Suggestions

This review delivers comprehensive information and analysis of power electronic
converters for EV drivetrains, concentrating on the converter, controller, modulation and
optimization. As the first contribution, this review delivers a detailed insight into various
advanced and viable DC-DC converter topologies in EV drivetrains with regard to their
design aspects, operation, key features, advantages and disadvantages. In the case of non-
isolated converters, CC offers wide-ranging voltage gain, however, it has limited power
conversion efficiency due to the cascaded structures. The SCBC has enhanced conversion
efficiency but has the limitation of high ripple current. The CIBC has a compact design and
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has limited output current but it has the drawback of leakage inductance. Although the
QZBC has extensive voltage gain, it has high voltage stress on capacitance. The MDIBC
has become the preferred choice in vehicular applications in achieving low ripple current
and voltage, high reliability, efficiency and high-power handling ability; nevertheless, it
needs additional components and complex control techniques. On the contrary, among the
isolated converters, the PPC has low conduction loss but has the drawbacks of smaller filters
and high current. The FC can regulate multiple output voltages; nonetheless, it has more
EMI and ripple current. The RC provides better operation and efficiency; however, it has a
complex transformer design and limited capacity to carry magnetizing current. The ZVSC
has low switching loss and EMI, but it has weaknesses in terms of high current ratings
and unsatisfactory fault-tolerant ability. The MPIC has high voltage gain; nonetheless,
it has issues of a larger number of components, ripple current, complex analysis and
high sensitivity.

As the second contribution, this review also explores the various controller techniques
to enhance the performance of EV converters. The control operation, contributions, benefits
and shortcomings are presented explicitly. PI control has easy implementation but has poor
performance in a non-linear, time-varying system. The intelligent controller is accurate,
robust and has improved dynamic and transient response. Nevertheless, it is complex and
requires human expertise. As a third contribution, the role of optimization in EV converters
is investigated. In line with that, this review explores the different PWM techniques
used in EV converters toward achieving desired current and voltage values. As a fourth
contribution, the different metaheuristic algorithms concerning the process, objective
function and constraints are highlighted. As a fifth contribution, the numerous key issues
and challenges are identified related to converter topology, intelligent and optimization
controller performance issues, optimized controller design and the formulation of a multi-
objective function. As the sixth contribution, this review proposes some selective future
research works for the advancement of EV operation, as follows:

• Generally, the converter exhibits high switching loss and power loss in the passive
components. Currently, semiconductor materials including silicon carbide (SiC) and
gallium nitride (GaN) have become increasingly popular due to their ability to handle
high voltage and high current as well as provide high power density with low heat
dissipation. However, they have issues of reliability and cost. Thus, future research
works should be conducted on the appropriate material selection of the converter that
can deliver cost-effective components with a high switching frequency, high reliability
and low thermal loss.

• The topologies of the existing converters face problems such as high ripple current,
low impedance, low voltage and current stress and sensitive duty cycle. Hence, further
exploration is required on electrical design optimization to achieve high frequency
and low converter loss under high-temperature conditions. In line with that, further
investigation of mechanical design optimization of the converter is required to obtain
high reliability, modularity, power density and efficiency.

• The multi-level multi-phase bidirectional converters have drawn attention due to their
low current stress, simple control approach and high efficiency. Nonetheless, they
need high component counts and complex analysis under steady-state and transient
conditions. Besides, the duty cycle is very sensitive under load variation. Thus, it is
recommended to focus on building a modular design framework to enable scalability,
multi-functionality and high fidelity.

• Intelligent control techniques are useful to control the DC-link voltage and load current
as well as achieve bidirectional power management, proper co-ordination of ESSs, fast
tracking, fewer steady-state errors and high efficiency. However, they have drawbacks
in terms of data integrity, long training operations, expensive processing devices
and the need for suitable parameter selection and hyperparameter tuning. Therefore,
further investigation is required to address the computational complexity.
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• Although optimization algorithms are advantageous toward reducing converter loss,
the number of components and cost, their execution in EV converters has been very
limited. To date, only GAs and PSO have made decent progress to optimize the design
and cost of the converter. Hence, it is suggested to utilize the advanced optimization
algorithms in EV converter design.

The abovementioned suggestions could play remarkable roles in developing and
executing advanced converters in EV applications. Moreover, this review can deliver
an explicit idea and information to researchers and automotive engineers on converter
configurations, control and optimization. Overall, this review helps to achieve a pathway
for future sustainable EV expansions.
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