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Abstract: This paper presents an extension of the formulation of wave propagation in transverse
electric (TE) and transverse magnetic (TM) modes for the case of metallic cylindrical waveguides
filled with longitudinally magnetized ferrite. The higher order modes were exploited. We externally
controlled the cut-off frequency through the application of DC magnetic fields. The numerical results
of dispersion diagrams for TE and TM modes were obtained and analyzed. We analyzed a waveguide
antenna filled with partially magnetized ferrite using the mode matching (MM) technique based on
the TE and TM modes. By using modal analysis, our approach considerably reduced the computation
time compared to HFSS. Ferrites are important for various industrial applications, such as circulators,
isolators, antennas and filters.

Keywords: anisotropic materials; antenna; cylindrical waveguides; ferrites; propagation

1. Introduction

Recently, many researchers have been interested in guiding devices that use ferrite
in some frequency range for their potential applications in microwave circuits. However,
there is a lack of research into the dispersion of ferrite cylindrical waveguides. Among the
essential research pertaining to this topic, we can cite the work in [1–12]. Guided modes in
waveguides consisting of anisotropic media [4,13–15] have been studied in the literature.

In this paper, we present an extension of the transverse electric (TE) and transverse
magnetic (TM) modes to cylindrical waveguides filled with lossless longitudinally magne-
tized ferrite (LMF) which takes account of the spatial distribution of the permeability of
the medium that is applied to the transverse fields. We exploited the propagation modes
in this structure. We show how the dispersion diagrams were obtained and we discuss
the effects of anisotropic parameters on dispersion characteristics and cutoff frequencies.
We also show how the numerical results for the TE and TM modes were obtained. These
modes were used in the numerical method applied to the design of our antenna. Our
simulations of a cylindrical metallic waveguide antenna filled with partially magnetized
ferrite using mode matching (MM) [16,17] were in good agreement with those obtained
with HFSS. However, our method was noticeably faster.

Our objective was to analyze the physical discontinuities in a cylindrical metallic
waveguide filled with partially magnetized ferrite using the mode matching technique
based on the TE and TM modes. An antenna formed by this type of waveguide is presented
and analyzed. The magnetization of the ferrite using an external control can be achieved by
enveloping the waveguide with Helmholtz coils connected to a variable voltage generator.
Each voltage corresponds to a constant magnetic field applied to the ferrite longitudinally
which creates the magnetization of this medium. As a result, the magnetic properties of the
ferrite change. The permeability of the ferrite becomes tensorial. Our antenna was tuned
to the desired operating frequency for the ferrite magnetization circuit by adjusting the
voltage applied externally, which in turn affected the variation of the static magnetic field
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applied to the ferrite. The operating frequency range could vary. Our interest in this study
was in the tuning of the operating frequency of the antenna.

This formulation is a useful tool for microwave engineers. This type of material is
extensively applied by information technology industries, particularly in microwaves and
RF devices, such as patch antennas, waveguide antennas, resonators, circulators, insulators,
phase converters and filters.

2. Formulation

For lossless longitudinally magnetized ferrite, as is shown in Figure 1, the Maxwell
equations can be written as:

→
∇×

→
E = −jωµ f

→
H (1)

→
∇×

→
H = jωε f

→
E (2)
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Figure 1. Geometry of cylindrical waveguide filled with longitudinally magnetized ferrite (LMF). 
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Figure 1. Geometry of cylindrical waveguide filled with longitudinally magnetized ferrite (LMF).

At the microwave’s frequencies, the ferrites are characterized by a tensor permeability
that represents their induced anisotropy under a magnetic field. The permeability of the
LMF is tensorial and can be written in a system of cylindrical coordinates, as is given by
D. Polder [8], with

µ f = µ0 µr f = µ0

 µ −jκ 0
jκ µ 0
0 0 µrz

 = µ0

(
µrT 0
0 µrz

)
(3)

where µ, κ, µrz and ε f are real quantities.
For a partial magnetization of ferrite, J. J. Green et al. [5] and E. Schloemann [9] give

the empirical expressions of µ, κ, µrz [11]:

µ = µd + (1− µd)

(
4πM
4πMS

)3/2
(4)

κ =
γ(4πM)

ω
(5)

µrz = µd
(1−( 4πM

4πMS
)

5/2
) (6)

where

µd =
1
3

1 + 2

√
1−

(
γ(4πMS)

ω

)2
 (7)

where ω is the work pulsation, γ is the gyromagnetic constant, 4πMS is the magnetization
at saturation and 4πM is the magnetization which is lower than saturation. When the
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magnetization is equal to zero, κ = 0 and µ = µrz = 1. The ferrite then becomes an
isotropic dielectric.

Let us consider a cylindrical waveguide of radius R completely filled with LMF
without losses, as represented in the Figure 1. The walls of the guide are perfectly electric
conductive. In this study, we rigorously examined the TE and TM modes in a metallic
cylindrical waveguide completely full of longitudinally magnetized ferrite.

2.1. Transverse Electric Modes

By considering the propagation in the Oz direction and manipulating Equations (1)
and (2), we obtain the expressions of the transverse electromagnetic fields according to the
longitudinal fields in the TE modes.

E(h)
r =

−1
K2

c

(
A1

∂Hz

∂r
+ jA2

1
r

∂Hz

∂θ

)
(8)

E(h)
θ =

1
K2

c

(
jA2

∂Hz

∂r
− A1

1
r

∂Hz

∂θ

)
(9)

H(h)
r =

1
K2

c

(
−jkzK2

cµ
∂Hz

∂r
+ Fkz

1
r

∂Ez

∂θ

)
(10)

H(h)
θ =

−1
K2

c

(
Fkz

∂Hz

∂r
+ jkzK2

cµ
1
r

∂Hz

∂θ

)
(11)

with
K2

cµ = k2
0εr f µ− k2

z (12)

F = k2
0εr f κ (13)

K2
c = k4

cµ − F2 (14)

k2
0 = ω2ε0µ0 (15)

A1 =
Fk2

z
ωε0εr f

(16)

A2 =
k4

cµ − F2 + k2
zk2

cµ

ωε0εr f
(17)

From Equation (1), the differential equation for z-component can be obtained as follows

∂2Hz

∂r2 +
1
r

∂Hz

∂r
+

1
r2

∂2Hz

∂θ2 +
(

K(h)
c f

)2
Hz = 0 (18)

with (
K(h)

c f

)2
=

ωµ0µrzK2
c

A2
(19)

The resolution of the differential Equation (18), due to the separation of the two
variables, requires the expression of Hz for the TEmn modes in the metallic cylindrical
waveguide fully filled with LMF. The expression of the longitudinal magnetic field can be
written as follows

H(h)
z = H0sin(nθ)Jn

(
K(h)

c f r
)

ej(ωt−k(h)z z) (20)

Jn is the Bessel function of the first kind of order n (n = 0, 1, 2, 3, . . . ).
Equations (8)–(11) become

E(h)
r =

H0

K2
c

{
−A1K(h)

c f sin(nθ)J′n
(

K(h)
c f r
)
−jA2

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(21)
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E(h)
θ =

H0

K2
c

{
jA2K(h)

c f sin(nθ)J′n
(

K(h)
c f r
)
−A1

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(22)

H(h)
r =

H0

K2
c

{
−jk(h)z K2

cµK(h)
c f sin(nθ)J′n

(
K(h)

c f r
)
+Fk(h)z

n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(23)

H(h)
θ =

H0

K2
c

{
−Fk(h)z K(h)

c f sin(nθ)J′n
(

K(h)
c f r
)
−jk(h)z K2

cµ
n
r

cos(nθ)Jn

(
K(h)

c f r
)}

(24)

J′n is the derivative of the Bessel function of the first kind of order n (n = 0, 1, 2, 3, . . . ).
The boundary conditions give

J′n
(
u′nm

)
= 0 (25)

with
u′nm = K(h)

c f R (26)

In Equation (26), u′nm represents the mth zero (m = 1, 2, 3, . . . ) of the derivative of the
Bessel function J′n of the first kind of order n. The determination of constant H0 is done by
normalizing the power PTE that crosses the cross-section of the guide, which is in our case
a disc of radius R.

PTE =
∫ R

0

∫ 2π

0

(
E(h)

r H∗(h)θ − E(h)
θ H∗(h)r

)
rdrdθ = 1 (27)

* indicates the complex conjugate.
Equation (27) gives

H0 =
K2

c Kc f√
kz

(
A2K2

cµ + A1F
)N(h)

nm (28)

with
N(h)

nm =
1√

σn
2

(
(u′nm)

2 − n2
)1/2

Jn(u′nm)

(29)

σn =

{
2π i f n = 0
π i f n > 0

(30)

From Equation (26), we obtain the propagation equation

k4
z +

(
−2ω2ε0µ0εr f µ + µ

µrz

(
u′nm

R

)2
)

k2
z

+ω2ε0µ0εr f
(
µ2 − κ2)[ω2ε0µ0εr f − 1

µrz

(
u′nm

R

)2
]
= 0 (31)

To find cut-off frequencies, the propagation constant should be equated to zero in
Equation (31). The cutoff frequency in the TE mode is written

f (TE)
c.nm =

c
2π

1
√

εr f µrz

(
u′nm

R

)
(32)

If the magnetization 4πM decreases, µrz increases. Consequently, the cutoff frequency
f (TE)
c.nm decreases. We can externally control the cut-off frequency through the application

of DC magnetic fields. The magnetization of the ferrite using an external control can
be achieved by enveloping the waveguide with Helmholtz coils connected to a variable
voltage generator.
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2.2. Transverse Magnetic (TM) Modes

By manipulating Equations (1) and (2), we can obtain the expressions of the transverse
electromagnetic fields according to the longitudinal fields in the TM modes.

E(e)
r =

kz

K2
c

(
−jK2

cµ
∂Ez

∂r
+ F

1
r

∂Ez

∂θ

)
(33)

E(e)
θ =

−kz

K2
c

(
F

∂Ez

∂r
+ jK2

cµ
1
r

∂Ez

∂θ

)
(34)

H(e)
r =

ωε0εr f

K2
c

(
F

∂Ez

∂r
+ jK2

cµ
1
r

∂Ez

∂θ

)
(35)

H(e)
θ =

ωε0εr f

K2
c

(
−jK2

cµ
∂Ez

∂r
+ F

1
r

∂Ez

∂θ

)
(36)

From Equation (1), the differential equation for the z component can be obtained as
follows

∂2Ez

∂r2 +
1
r

∂Ez

∂r
+

1
r2

∂2Ez

∂θ2 +
(

K(e)
c f

)2
Ez = 0 (37)

with
K(e)

c f =
Kc

Kcµ
(38)

The resolution of the differential Equation (37), due to the separation of the two
variables, requires the expression of Ez for the TMnm modes in the metallic cylindrical
waveguide fully filled with LMF. The expression of the longitudinal electric field can be
written as follows

E(e)
z = E0cos(nθ)Jn

(
K(e)

c f r
)

ej(ωt−k(e)z z) (39)

Equations (33)–(36) become

E(e)
r =

−E0kz

K2
c

{
jK2

cµK(e)
c f cos(nθ)J′n

(
K(e)

c f r
)
+F

n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(40)

E(e)
θ =

E0kz

K2
c

{
−FK(e)

c f cos(nθ)J′n
(

K(e)
c f r
)
+jK(2)

cµ
n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(41)

H(e)
r =

ωε0εr f E0

K2
c

{
FK(e)

c f cos(nθ)J′n
(

K(e)
c f r
)
−jK2

cµ
n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(42)

H(e)
θ =

−ωε0εr f E0

K2
c

{
jK2

cµK(e)
c f cos(nθ)J′n

(
K(e)

c f r
)
+F

n
r

sin(nθ)Jn

(
K(e)

c f r
)}

(43)

The boundary conditions give the following equation

Jn(unm) = 0 (44)

with
unm = K(e)

c f .R (45)

In Equation (45), unm represents the mth zero (m = 1, 2, 3, . . . ) of the Bessel function
Jn of the first kind of order n. The determination of constant E0 is done by normalizing
the power PTM that crosses the cross-section of the guide, which is in our case a disc of
radius R.

PTM =

R∫
0

2π∫
0

(
E(e)

r H∗(e)θ − E(e)
θ H∗(e)r

)
rdrdθ = 1 (46)
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Equation (46) gives

E0 =
1√

ωε0εr f kz

K2
c√

K4
cµ + F2

N(e)
nm (47)

with
N(e)

nm =
1

unm.J′n(unm).
√

σn
2

(48)

Finally, the propagation constant in the TM mode is given by

k4
z +

(
−2ω2ε0µ0εr f µ +

( unm
R
)2
)

k2
z cos−1 θ

+ω2ε0µ0εr f

[
ω2ε0µ0εr f

(
µ2 − κ2)− µ

( unm
R
)2
]
= 0.

(49)

Obviously, the cutoff frequency is written

f (TM)
c.nm =

c
2π

1
√

µre f f εr f
.
(unm

R

)
(50)

with

µre f f =
µ2 − κ2

µ
(51)

µre f f is the effective permeability.
If the magnetization 4πM decreases, µre f f increases. Consequently, the cutoff fre-

quency f (TM)
c.nm in the TE modes decreases. We can externally control the cut-off frequency

through the application of DC magnetic fields.

3. Analysis of Uni-Axial Discontinuities in the Cylindrical Waveguides

In this section, we describe how the use of MM can be extended to characterize
uni-axial discontinuities between metallic cylindrical waveguides filled with the studied
medium (LMF). The discontinuities were considered without losses. This method was
based on the modal development of the transverse electromagnetic fields.

Figure 2 shows a junction between two cylindrical waveguides filled with two different
media with the same cross-sections, where ai and bi are the incident and the reflected waves,
respectively.
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The transverse electric and magnetic fields (ET , HT) in the waveguides can be written
in the modal bases as follows [16,17].

ET =
∞

∑
m=1

Ai
m

(
ai

m + bi
m

)
ei

m (52)

HT =
∞

∑
m=1

Bi
m

(
ai

m − bi
m

)
hi

m (53)

where ET and HT are the transverse electric and magnetic fields (the sub-index T refers to
the components in the transverse plane) and Ai

m and Bi
m are complex coefficients which

are determined by normalizing the power flow down the cylindrical guides (i = I, I I and
m is the index of the mode). ei

m and hi
m represent the mth electric and magnetic modal

eigenfunction in the guide i, respectively.
At the junction, the continuity of the fields makes it possible to write the following

equations:
EI

T = EI I
T (54)

H I
T = H I I

T (55)

By inserting Equations (52) and (53) into Equations (54) and (55), we obtain:

N1

∑
m=1

AI
m

(
aI

m + bI
m

)
eI

m =
N2

∑
p=1

AI I
p

(
aI I

p + bI I
p

)
eI I

p (56)

N1

∑
m=1

BI
m

(
aI

m − bI
m

)
hI

m =
N2

∑
p=1

BI I
p

(
−aI I

p + bI I
p

)
hI I

p (57)

N1 and N2 are the numbers of considered modes in guides 1 and 2, respectively. By
applying Galerkin’s method, Equations (56) and (57) lead to the following systems:

N1

∑
m=1

AI
m

(
aI

m + bI
m

)〈
eI

m

∣∣∣eI I
p

〉
= AI I

p

(
aI I

p + bI I
p

)
(58)

BI
m

(
aI

m − bI
m

)
=

N2

∑
p=1

BI I
p

(
−aI I

p + bI I
p

)〈
hI I

p

∣∣∣hI
m

〉
(59)

The inner product can be defined as:

〈em

∣∣∣ep

〉
=
∫
S

e∗mep dS (60)

Equations (58) and (59) give:

− aI I
p +

N1

∑
m=1

AI
m

AI I
p

aI
m

〈
eI

m

∣∣∣eI I
p

〉
= bI I

p −
N1

∑
m=1

AI
m

AI I
p

bI
m

〈
eI

m

∣∣∣eI I
p

〉
(61)

aI
m +

N2

∑
p=1

BI I
p

BI
m

aI I
p

〈
hI I

p

∣∣∣hI
m

〉
= bI

m +
N2

∑
p=1

BI I
p

BI
m

bI I
p

〈
hI I

p

∣∣∣hI
m

〉
(62)
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which can be written in matrix form:

[
U M1
M2 −U

]


aI
1
.

aI
N1

aI I
1
.

aI I
N2


=

[
U M1
−M2 U

]


bI
1
.

bI
N1

bI I
1
.

bI I
N2


(63)

where U is the identity matrix. M1 and M2 (of dimensions (N1 × N2) and (N2 × N1)
respectively) are matrixes of the following general terms:

M1ij =
BI I

j

BI
i

〈
hI I

j

∣∣∣hI
i

〉
(64)

M2ij =
AI

i
AI I

j

〈
eI

i

∣∣∣eI I
j

〉
(65)

The scattering matrix of the discontinuity is:

S =

[
U M1
−M2 U

]−1[ U M1
M2 −U

]
(66)

of dimensions ((N1 + N2)× (N1 + N2)).
In the numerical calculations we have to invert a complex matrix of dimensions equal

to the sum of the modes taken into account on each side of the discontinuity.
For a structure with multiple uni-axial discontinuities in cascade, the total matrix can

be obtained by separating the chaining of S matrixes of discontinuities with waveguides of
lengths equal to the distances between the discontinuities.

Figure 3 represents a double discontinuity. From the incident and reflected waves, we
can write the following equations( [

bI
1
][

bI
2
] ) = SI

( [
aI

1
][

aI
2
] ) (67)

( [
bI I

1
][

bI I
2
] ) = SI I

( [
aI I

1
][

aI I
2
] ) (68)[

bI
1

]
= SI

11

[
aI

1

]
+ SI

12

[
aI

2

]
(69)[

bI
2

]
= SI

21

[
aI

1

]
+ SI

22

[
aI

2

]
(70)[

bI I
1

]
= SI I

11

[
aI I

1

]
+ SI I

12

[
aI I

2

]
(71)[

bI I
2

]
= SI I

21

[
aI I

1

]
+ SI I

22

[
aI I

2

]
(72)
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There are [
aI

2

]
= D

[
bI I

2

]
(73)[

aI I
2

]
= D

[
bI

2

]
(74)

with

D =

 e−γ1.d 0 0
0 . . . 0
0 0 e−γN .d

 (75)

γi is the propagation constant of the ith mode of the central guide and N is the number
of modes in the same guide.

Using Equations (73) and (74), we get[
bI

1

]
= SI

11

[
aI

1

]
+ SI

12D
[
bI I

2

]
(76)[

bI I
1

]
= SI I

11

[
aI I

1

]
+ SI I

12D
[
bI

2

]
(77)[

bI
2

]
= SI

21

[
aI

1

]
+ SI

22D
[
bI I

2

]
(78)[

bI I
2

]
= SI I

21

[
aI I

1

]
+ SI I

22D
[
bI

2

]
(79)

Equation (79), in using Equation (78), becomes[
bI I

2

]
= SI I

21

[
aI I

1

]
+ SI I

22DSI
21

[
aI

1

]
+ SI I

22DSI
22D

[
bI I

2

]
(80)

We put

E =
[
U − SI I

22DSI
22D

]−1
(81)

U is the identity matrix. As a result[
bI I

2

]
= ESI I

22DSI
21

[
aI

1

]
+ ESI I

21

[
aI I

1

]
(82)

[
bI

1
]

=
[
SI

11 + SI
12DESI I

22DSI
21
][

aI
1
]

+
[
SI

12DESI I
21
][

aI I
1
] (83)
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[
bI I

1
]

= SI
12D

[
U + SI

22DESI I
22D

]
SI

21
[
aI

1
]

+
[
SI I

11 + SI I
12DSI

22DESI I
21
][

aI I
1
]
.

(84)

The matrix S of the double discontinuity is given by

S =

[
SI

11 + SI
12DESI I

22DSI
21 SI

12DESI I
21

SI
12D

[
U + SI

22DESI I
22D

]
SI

21 SI I
11 + SI I

12DSI
22DESI I

21

]
(85)

Thus, the matrix S of several discontinuities in cascade can be determined from
Equation (85) by chaining two matrixes Si to two other matrixes.

This classic formulation allowed us to analyze several microwave devices [18–20].

4. Numerical Results and Discussion
4.1. Propagation Modes

Consider TE mode waves in a metallic cylindrical waveguide of radius R = 13.4 mm,
fully filled with LMF (see Figure 1) with a partial magnetization 4πM. The waveguide
has a resonant frequency of 6.57 GHz for the fundamental mode if it is empty. For the
case of ferrite magnetized longitudinally with M

MS
= 0.8, 4πMS = 750 G and a permittivity

εr f = 11.3 (ferrite TT1-414 from Trans-Tech), the resonant frequency is f TE
c.11 = 3 GHz for the

TE11 mode. When the ferrite is demagnetized, the resonant frequency is f TE
c.11 = 1.96 GHz.

Figure 4 represents calculated curves of the propagation constant for the first three TE
modes in the frequency range 1–8 GHz and for the cases where the ferrite is magnetized
with M

MS
= 0.8 or demagnetized. All modes propagate. The propagation constant decreases

when the magnetization increases.
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Figure 4. Curves of the propagation constant kTE
z for the first three transverse electric (TE) modes

of the cylindrical waveguide completely filled with LMF. _____: case for a demagnetized ferrite.
_._._._._.: case for M

MS
= 0.8.

In Figure 5, the cutoff frequencies of the lowest TE modes are shown as M
MS

increases
from 0 to 0.99. It can be seen that the cutoff frequencies of the TE modes monotonically de-
crease as M

MS
decreases. We can notice the same behavior for the TM modes. The numerical

results show that the cutoff frequencies can be controlled by external magnetization.
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4.2. Ferrite Antenna Design

In this section, we describe how the use of MM can be extended to characterize uni-
axial discontinuities between cylindrical waveguides filled with the studied media. The
discontinuities were considered without losses. This method was based on the modal
development of the transverse electromagnetic fields.

We considered two discontinuities (see Figure 3) constituted by juxtaposing three
cylindrical waveguides with the same dimensions (R = 13.4 mm). The central waveguide
of width d = 5 mm was filled by LMF, as was studied in the previous section. The other
guides were empty.

Figure 6 represents the reflection coefficient as a function of the frequency using our
approach and HFSS. For the modal method, we used eight modes in the whole circuit.
We note that both simulations were in perfect agreement. However, our method was
significantly faster than HFSS (7.12 s vs. 9.43 min) because it is a modal method. Thus, by
using our approach, it is easy to design antenna according to given specifications.
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The magnetization of the ferrite using an external control can be achieved by en-
veloping the waveguide with Helmholtz coils and connecting them to a variable voltage
generator. Each voltage corresponds to a constant magnetic field applied to the ferrite
longitudinally that creates the magnetization of this medium. Our interest in this study
was in the tuning of the operating frequency of the antenna.

Figure 7 represents the results of the simulation of the radiation pattern and the gain
of antenna with HFSS for various values of magnetized ferrite at the resonance frequency.
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For demagnetized ferrite the gain and resonance frequency of this antenna are 8.93 dB and
9.2 GHz, respectively. It is the geometric discontinuity between the empty cylinder and
the free air which radiates. However, the physical discontinuities between the guides and
between the materials (ferrite–air) have an effect on the radiation of the antenna. The gain
of the antenna depends on the electrical and magnetic characteristics of the ferrite medium.
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Figure 7. Radiation pattern and gain of antenna for various values of magnetized ferrite at the resonant frequency.

When the magnetization increases, the gain and the resonant frequency increase. At a
magnetization equaling 0.8 Ms, the gain reaches 9.62 dB and the resonant frequency passes
to 10.1 GHz.

If magnetization M increases, then the cutoff increases due to the decrease in inter-
modal interference. So, the gain increases.

We can externally control the resonant frequency with the tensor permeability, which
is a function of the magnetization of ferrite. The resonant frequency increases with an
increase of the magnetization. The antenna has become multiband.

5. Conclusions

A rigorous TE and TM modes analysis of cylindrical waveguides completely filled with
longitudinally magnetized ferrite was developed in this study. It was demonstrated that the
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electromagnetic characteristics of the waveguide are closely dependent on magnetization.
The curves of the dispersion diagram of the fundamental mode and the first two higher
order modes of the ferrite waveguide were obtained. The cutoff frequencies could be
controlled by external magnetization. These results for the propagation constant can
be used in the design of cylindrical ferrite waveguide antennas. Our results were in
good agreement with the theoretical prediction. Moreover, in this paper, we applied
the mode matching technique to analyze multiple uni-axial discontinuities in metallic
cylindrical waveguides filled with anisotropic materials. The results of the simulations of
the cylindrical waveguides antenna filled with partially magnetized ferrite using the mode
matching technique and those obtained with HFSS were in perfect agreement. However,
our method was noticeably faster. The proposed formulation is a useful tool for microwave
engineers.
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