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Abstract: The power scheduling problem in a smart home (PSPSH) refers to the timely scheduling
operations of smart home appliances under a set of restrictions and a dynamic pricing scheme(s)
produced by a power supplier company (PSC). The primary objectives of PSPSH are: (I) minimizing
the cost of the power consumed by home appliances, which refers to electricity bills, (II) balance
the power consumed during a time horizon, particularly at peak periods, which is known as the
peak-to-average ratio, and (III) maximizing the satisfaction level of users. Several approaches have
been proposed to address PSPSH optimally, including optimization and non-optimization based
approaches. However, the set of restrictions inhibit the approach used to obtain the optimal solutions.
In this paper, a new formulation for smart home battery (SHB) is proposed for PSPSH that reduces the
effect of restrictions in obtaining the optimal/near-optimal solutions. SHB can enhance the scheduling
of smart home appliances by storing power at unsuitable periods and use the stored power at suitable
periods for PSPSH objectives. PSPSH is formulated as a multi-objective optimization problem to
achieve all objectives simultaneously. A robust swarm-based optimization algorithm inspired by
the grey wolf lifestyle called grey wolf optimizer (GWO) is adapted to address PSPSH. GWO has
powerful operations managed by its dynamic parameters that maintain exploration and exploitation
behavior in search space. Seven scenarios of power consumption and dynamic pricing schemes
are considered in the simulation results to evaluate the proposed multi-objective PSPSH using SHB
(BMO-PSPSH) approach. The proposed BMO-PSPSH approach’s performance is compared with that
of other 17 state-of-the-art algorithms using their recommended datasets and four algorithms using
the proposed datasets. The proposed BMO-PSPSH approach exhibits and yields better performance
than the other compared algorithms in almost all scenarios.

Keywords: smart home; power scheduling problem; multi-objective optimization; smart home
battery; grey wolf optimizer
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1. Introduction

Old power grids are encountering several difficulties in reducing the power demand of
users, particularly in peak periods, where they cannot face the increment in power demand
because of the primitive nature of their infrastructures. Accordingly, the old power grids’
stability and safety became not guaranteed. Therefore, the smart grid (SG) has emerged
instead of the old power grid to face its difficulties and meet the users’ requirement of
power [1].

SG upgrades and improves the old power grid’s management, control, and distribu-
tion systems. The SG communication system is playing the primary key to this improve-
ment, where it is considered the backbone of SG. The communication system allows power
supplier companies (PSCs) to transfer power to the users and get their feedback [2].

SG’s primary goals are to make power usage more efficient, diminish users’ demand
for power during peak periods, and optimize the cost of power production [3]. Optimizing
users’ power demand plays the leading role in attaining SG goals and making its power
system more efficient [4,5]. Furthermore, this kind of optimization provides benefits for
users, such as reducing electricity bill (EB) and improving their comfort level. However,
the power demand of users can be optimized by scheduling the operations of appliances in
a smart home or Internet-of-Things at suitable periods in accordance with a dynamic price
scheme(s) (i.e., the electricity prices vary dynamically over time) [6–10].

PSCs generate dynamic pricing schemes on the basis of the cost of power generation
and power demand, where electricity prices are high during peak periods and low during
off-peak periods. These pricing schemes are generated to incentivize users to shift most of
their home appliances operation time from peak periods to off-peak periods [6]. The most
popular dynamic pricing schemes that can be generated by PSCs are real-time price (RTP),
time-of-use price (TOU), critical period price (CPP), and inclining block rate (IBR) [9,11–14].

The problem of scheduling the smart home appliance operation time at suitable
periods in accordance with a dynamic pricing scheme(s) is called the power scheduling
problem in a smart home (PSPSH). The primary objectives of addressing PSPSH are
reducing EB of users, reducing power demand at peak periods by minimizing the ratio
between highest power demand and average power demand (peak-to-average ratio (PAR)),
and improving user comfort (UC) level [12,14–16].

PSPSH can be addressed through a smart home system, known as the home energy
management system (HEMS) [15]. HEMS is mainly comprising hardware and software,
which allows users to efficiently manage their power consumption by controlling and
monitoring smart home appliances. HEMS enables users to set the parameters of their
appliances such as appliances’ allowable periods to be scheduled (operation time period
(OTP)), the appliances’ time required to finish their operation cycle (length of operation
cycle (LOC)), and power needed by the appliances to be operated [12,14–16].

Several studies have proposed different architectures of HEMS and discussed how it
provides benefits in addressing PSPSH and improves the efficiency of the power system of
SGs. Most of these studies formulated PSPSH objective function only to reduce EB [17–21].
In contrast, a few of these studies formulated PSPSH as a multi-objective optimization
problem (MOP) to reduce EB and improve UC level without considering PAR’s effect in
the scheduling processes [15].

Meta-heuristic optimization algorithms are the most popular algorithms adapted to
address optimization problems in different fields [22–39]. A massive number of this kind of
optimization algorithms were adapted to address PSPSH optimally and obtain an optimal
schedule [14]. The meta-heuristic optimization algorithms are widely used in addressing
PSPSH due to their efficiency in exploring search spaces to find an optimal/near-optimal
solution [40]. The most popular algorithms adapted for PSPSH are genetic algorithm
(GA) [15], bacterial foraging optimization algorithm (BFOA) [41], harmony search al-
gorithm (HSA) [42], particle swarm optimization (PSO) [43], and grey wolf optimizer
(GWO) [12,44].
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Additional sources can be considered to improve the appliances’ operation schedules,
such as a smart home battery (SHB). SHB is a kind of electrical storage battery capable of
charging and discharging numerous times on the basis of its settings. SHB is equipped
with a management system to manage its operations [45].

The SHB was modeled using different settings and purposes. The authors of [16,46–49]
have modeled SHB to store power generated by renewable energy sources (RESs). SHB can
be charged when RESs generate power more than what users need and can be discharged
at peak periods or when the RESs are not able to meet users’ power demands. The authors
of [50,51] have modeled an SHB that can be charged, discharged, and floated without
considering any RESs. This SHB is considered as an SA during the charging operations
and as an additional power source during the discharging mode. The authors of [52] have
modeled SHB to store power generated by RESs at periods of high electricity generation
and from PSC during low electricity price periods. The proposed SHB can discharge the
stored power during peak periods and when the grid is unable to meet users’ power
demand. However, these SHB models have several drawbacks, such as users are not able
to know the exact amount of power that will be stored in the SHB ahead of time, and the
SHB cannot discharge all stored amounts of power at the end of the time horizon.

In this paper, PSPSH is formulated as MOP (MO-PSPSH) that considers all PSPSH
objectives, including EB and PAR, and UC level, to achieve them simultaneously. Moreover,
MO-PSPSH approach is formulated alongside smart home battery (SHB) (BMO-PSPSH)
to obtain an optimal achievement for PSPSH objectives. A new formulation for SHB
is considered to reduce the amount of power consumed by smart home appliances at
unsuitable periods that conflict with PSPSH objectives by storing power at suitable periods
and discharging the stored power by appliances at the inappropriate periods. GWO is
adapted to address PSPSH due to its high performance in exploring rugged and deep
search spaces [12]. Besides, GWO efficiently maintains the balance between local and
global optima in finding the optimal solution [12,53]. In the evaluation results, up to 23
types of home appliances are used for seven scenarios. The effect of the SHB is studied
and compared with the approach without considering SHB to show its improvement to
achieve better schedules. For comparative evaluation, the results obtained by GWO is
compared with that of GA using the same datasets to show its performance in improving
the outcomes.

The structure of this paper is organized as follows. Sections 2 and 3 discuss the PSPSH
formulations and the multi-objective approach. In Section 4, the mathematical formulation
of the SHB is provided and illustrated. A complete description of the inspiration and
adaptation of GWO for PSPSH are illustrated and presented in Section 5. Section 6 presents
the experimental results of the proposed approaches and Section 7 concludes the paper.

2. Power Scheduling Problem in Smart Home Formulation

In this section, the formulation of PSPSH is discussed. The section begins with the
formulation of power consumption on the basis of smart home appliances classification.
EB, PAR, and UC parameters are formulated in Sections 2.2–2.4.

2.1. Power Consumption

Generally, any smart home contains two types of home appliances, including shiftable
appliances (SAs) and non-shiftable appliances (NSAs). SAs are operating automatically,
where users can predefine their time parameters, including OTP and LOC. For example,
users can predefine these parameters for the clothes dryer to be operated within a suitable
period. NSAs are operating manually, where users cannot predefine their time parameters.
For example, users cannot set periods to run the TV in advance.

This study’s primary aim is to achieve PSPSH objectives optimally by scheduling SAs
at convenient periods with respecting user satisfaction levels to operate NSAs manually.

We let S and NS be SAs and NSAs vectors, respectively, as shown in Equations (1) and (2).

S = [s1, s2, . . . , sm], (1)
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where s1 denotes the first SA in S, and sm is the last SA in S. m is the total number of SAs.

NS = [ns1, ns2, . . . , nsq], (2)

where ns1 denotes the first NSA in NS, and nsq is the last NSA in NS. q is the total number
of NSAs.

The power consumption of each SA in smart home can be formulated as follows:

PS =


ps1

1 ps1
2 · · · ps1

m
ps2

1 ps2
2 · · · ps2

m
...

... · · ·
...

psn
1 psn

2 · · · psn
m

, (3)

where psj
i is power consumed by si at time slot tj. tj is a time slot in time horizon T which

is presented in Equation (4). n is the total number of time slots in T

T = [t1, t2, . . . , tn], (4)

As discussed previously, users can predefine the time parameters for SA including
OTP and LOC. For OTP, users can define starting time (OTPs) and ending time (OTPe) of
OTP as presented in Equations (5) and (6).

OTPs = [OTPs1, OTPs2, . . . , OTPsm], (5)

OTPe = [OTPe1, OTPe2, . . . , OTPem], (6)

where OTPs1 and OTPe1 denote the starting and ending time of the first appliance period,
respectively, and OTPsm and OTPem is the starting and ending time of the last appliance
period, respectively.

For the second time parameter, LOC of SAs is presented as follows:

LOC = [l1, l2, . . . , lm], (7)

where l1 denotes the LOC of the first SA, and lm is the LOC of the last SA. Furthermore,
starting and ending time of SAs operations are presented in vectors St and Et, respectively,
as shown in Equations (8) and (9). The aforementioned time parameters are illustrated in
Figure 1.

St = [st1, st2, . . . , stm], (8)

Et = [et1, et2, . . . , etm], (9)

where st1 and et1 are the starting and ending operations of s1, respectively, and stm and etm
are the starting and ending operations of sm, respectively.

As discussed previously, users cannot predefine the time parameters for NSAs. There-
fore, the power consumption of NSAs (PNS) is formulated without considering T in the
formulation as presented in Equation (10)

PNS = [pns1, pns2, . . . , pnsq], (10)

where pns1 denotes the power consumption of ns1, and pnsq is the power consumption
of nsq.
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Figure 1. Time parameters illustration.

2.2. Electricity Bill (EB)

The primary factor that motivates users to optimize their power consumption is
reducing EB. EB for SAs can be calculated on the basis of Equation (11). Note that EB for
NSAs cannot be calculated due to the unavailability of their operations time.

EB =
n

∑
j=1

m

∑
i=1

psj
i × pcj, (11)

where pcj denotes electricity price tariff at time slot j. In this study, RTP is used as a dynamic
pricing scheme. A combination of RTP and IBR is considered due to the IBR efficiency
in dispersing power consumption of SAs and maintain power system stability [15]. The
IBR provides two blocks of pricing tariff, including standard and high prices, as shown in
Equations (12) and (13).

pcj =

{
aj if 0 ≤ psj ≤ C
bj if psj > C

, (12)

where aj and bj denote the standard and high prices, respectively, psj is the power con-
sumed by SAs at time slot j, and C is a threshold between aj and bj.

bj = λ× aj, (13)

where λ is a positive number referring to a ratio between aj and bj.

2.3. Peak-to-Average Ratio (PAR)

The ratio of the highest power consumption to the average power consumption in T
referred to PAR. Reducing PAR value is contributing to balancing power consumption and
maintaining the stability of the power system. PAR is formulated as follows:

PAR =
PSmax

PSAvg
, (14)

where

PSAvg =
∑n

j=1 psj

n
,

where PSmax is the highest power consumed by SA during T and PSavg is the average
power consumed during same time horizon.

2.4. User Comfort (UC) Level

Usually, the UC level can be improved by reducing delay time to operate SAs (waiting
time rate (WTR)) [15]. A new parameter has been proposed by the authors of [12] to
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improve UC level by increasing the available power to operate NSAs within C (capacity
power limit rate (CPR)). In this study, the two parameters of UC are considered in the
scheduling processes to reduce the delay time for SAs and increase the available power
for NSAs.

The first UC parameter WTR is formulated as follows:

WTRi =
sti −OTPsi

OTPei −OTPsi − li
, ∀i ∈ S, (15)

The average WTR for all SAs can be calculated using the formula in Equation (16).

WTRavg =
∑m

i=1 (sti −OTPsi)

∑m
i=1 (OTPei −OTPsi − li)

, (16)

For the second UC parameter CPR is formulated as follows:

CPRj =
∑

q
k=1 ONAj

k
q

, (17)

where ONA is the number of NSAs whose operation power exceeds available power at
time slot j and it is formulated as follows:

ONAj
k =

{
0 if PNSk < APj

1 if Otherwise,
, (18)

APj denotes the available power to operate NSAs at a time slot j. APj is calculated on
the basis of power consumed by SAs at any time slot j and C as follows:

APj = C− PSj, (19)

The average CPR for T is formulated as follows:

CPRavg =
∑n

j=1 ∑
q
k=1 ONAj

k

q× n
, (20)

Note that the range of WTRavg and CPRavg values are between 0 and 1. Therefore, the
percentage of UC level can be calculated as follows:

UCp = (1− (
WTRavg + CPRavg

2
))× 100%, (21)

3. Multi-Objective Approach for PSPSH
3.1. Multi-Objective Approach: Overview

Optimization problems involve finding the best solution(s) from all feasible solutions.
The optimization problems can be classified into two classes on the basis of the number of
objective functions, including a single objective optimization problem and MOP [54,55].
The single objective optimization problems can be solved using only one objective function,
whereas MOP needs to optimize a set of two or more objective functions. Furthermore,
these objective functions are usually conflicting with each other. For example, an optimiza-
tion problem has two objective functions A and B; the obtained solution may be suitable for
objective function A and bad for B, and vice versa. Accordingly, finding a suitable solution
for such a problem that satisfies all objective functions is difficult [54,56].

Generally, MOP can be formulated as a maximization and minimization function.
However, these functions can be transferred to each other by negating one of them as
presented in Equation (22)

min F(x)⇔ max−F(x), (22)
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The general formulation of MOPs can be mathematically formulated as follows:

min : F(x) = [F1(x), F2(x), . . . , Fr(x)], (23)

subject to
go(x) ≤ 0(o = 1, 2, . . . , d),

hu(x) = 0(u = 1, 2, . . . , p),

where r is the number of objective functions, and d and p are inequality and equality
constraints, respectively. The MOP is called unconstrained MOP if and only if d and p are
equal to 0.

Two main methods, namely, Pareto optimality and non-Pareto methods (scalarization
methods), have been proposed to solve the MOP [57–59]. The idea of Pareto optimality is
proposed to solve MOPs using non-dominated ranking and selection to move a population
toward the Pareto front. The primary idea is to find a set of solutions in the population that
are Pareto non-dominated by the rest of the solutions in the population. These solutions
are at least as good as the other solutions for all objective function values, and they are
better than the other solutions for at least one objective function value [57,60]. Non-Pareto
methods (scalarization methods) do not explicitly use the concept of Pareto dominance [57].
These methods usually combine the objective function vector of the MOP into a scalar
objective function. The most common scalarization methods are weighted sum and ξ-
constraint methods [57,61]. The weighted sum method is the simplest and most prominent
method, where its formulation has no complexity and is easy to understand. The general
procedure is to assign a convenient weight w > 0 to each objective function Fc(x). The
ξ-constraint method deals with only one objective function and considers the remaining
objective functions as constraints.

The different objective functions have varying characteristics and may have varied
value range; thus, the normalization must be implemented before applying some of the
MOP methods, such as weighted sum method [62]. Several approaches have been pro-
posed for the normalization where the most robust approach is the upper-lower bound
approach [55,63]. In this approach, the minimum value (F0

c ) and the maximum value
(Fmax

c ) of the objective functions should be determined in advance. This approach can be
formulated as follows:

Ftrans
c =

Fc(x)− F0
c

Fmax
c − F0

c
, (24)

Generally, the value range of Ftrans
c is between 0 and 1. Notably, F0

c and Fmax
c should be

determined before starting the normalization approach. However, this approach is incon-
venient with objectives that have unknown F0

c and Fmax
c . Therefore, another approach has

been proposed to tackle such an issue, and this approach is formulated in Equation (25) [12]

Ftrans
c =

Fc(x)
Fc(x) + A

, A ∈ Z+, (25)

3.2. Multi-Objective Approach for PSPSH (MO-PSPSH)

Formulating PSPSH as a single objective (EB reduction) may lead to some issues in
balancing the power demand and improving the UC level due to the full concentration of
the algorithm in reducing only EB while ignoring the other objectives.

The multi-objective approach is proposed for PSPSH (MO-PSPSH) to overcome the
gaps in using the single objective. The proposed MO-PSPSH can optimize all the objectives of
PSPSH, including (i) minimizing EB, (ii) minimizing PAR and balancing the power demand,
and (iii) improving UC level by reducing the values of WTR and CPR simultaneously.

Several formulations for PSPSH as MOP have been done; the authors considered
EB and user discomfort level on the basis of WTR in the formulation of multi-objective
function using the weighted sum method [15,16,41]. Notably, these studies ignore PAR and
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CPR in the formulation of the multi-objective function, which results in their unexpected
behavior in the evaluation process.

In this section, MO-PSPSH is modeled considering all objectives, including EB, PAR,
WTR, and CPR reduction. A non-Pareto method called the weighted sum method is
used for MO-PSPSH due to its simplicity, easy implementation, non-complexity, and wide
utilization by the PSPSH state-of-the-art methods [55,62,64]. The idea of Pareto optimality
is ignored in this study due to its ineffectiveness to optimization problems with more than
three objectives, such as the one of MO-PSPSH [65–67]. MO-PSPSH has four accumulative
parts. The formulation of MO-PSPSH has three main steps, which will be thoroughly
discussed below.

Step 1: Choosing a convenient method to address MO-PSPSH.

The first step of formulating MO-PSPSH is to choose a method to solve the prob-
lem. As mentioned previously, the weighted sum method is the simplest method
because it is easy to implement and has no complexity. Besides, this method is
mostly used by PSPSH state-of-the-art methods. Therefore, this method is chosen
to address the proposed MO-PSPSH. The procedure of the weighted sum method
is to assign a convenient weight w > 0 to each objective function as follows:

F(x) =
r

∑
c=1

wc × Fc(x), (26)

where wc ∈ [0, 1], and ∑r
c=1 wc is unity. In MO-PSPSH, the function has four

accumulative parts, therefore, four values of w including, w1, w2, w3, and w4 are
considered. Note that, w1, w2, w3, and w4 values are assigning on the basis of
the problem and objective importance, where the essential objective should be
awarded the highest weight.

Step 2: Normalize the objective function

The second step of formulating MO-PSPSH is normalize the fitness values of EB,
PAR, WTR, and CPR to equate their value ranges. In PSPSH, the value ranges of
WTR and CPR are between 0 and 1, whereas the value ranges of EB and PAR are
unknown. EB and PAR have unknown values of F0 and Fmax. Therefore, their
fitness values can be normalized using Equation (25), as follows:

EBtrans =
EB

EB + A
A ∈ Z+, (27)

PARtrans =
PAR

PAR + B
B ∈ Z+, (28)

where A and B are two positive numbers.

Step 3: Modeling the MO-PSPSH

After choosing a convenient method for MO-PSPSH and normalizing their fitness
values, modeling MO-PSPSH is conducted in this step. Based on the objective
functions in Equations (11), (14), (16) and (21), PSPSH is modeled in Equation (29)
as a MOP.

min F(x) = w1 × EBtrans + w2 × PARtrans

+w3 ×WTRavg + w4 × CPRavg
, (29)

4. Smart Home Battery (SHB)
4.1. Smart Home Battery (SHB): Overview

The SHB is a kind of electrical storage battery capable of charging and discharging
numerous times in accordance with several constraints. SHB has a built-in battery man-
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agement system that makes it more flexible in managing the charging and discharging
operations [45].

SHB plays an essential role in improving the stability of a power grid during peak
periods and balancing the proportion between power generation and power demand [68].
Moreover, SHB can benefit users by optimizing their power usage and providing a power
backup for use during unexpected failure periods [46,51,52,69–72].

Several studies have proposed and modeled SHB using different terms, such as energy
storage system [16,46,51,52], backup storage system [49,73], energy storage [47], battery
energy storage system [48], smart battery [43,44], and battery [50]. The main purposes
of these models are to improve the stability of the power system and achieve PSPSH
objectives optimally.

The authors of [16,46–49] have modeled SHB to store power generated by RESs. SHB
can only store power and only if the RESs generate more power than what users need. The
stored power in SHB can be used at peak periods or when the RESs are not able to meet
users’ power demands. However, this kind of SHB model has some drawbacks, including
the inability to determine the amount of power that will be stored from RESs because the
amount of power that will be generated by RESs is also unknown. Therefore, the values of
EB, PAR, WTR, and CPR can be known only at the end of the considered time horizon and
not ahead. Accordingly, PSC will not receive accurate feedback from users to anticipate the
amount of power consumption in upcoming periods. In addition, SHB will be unusable if
the RESs do not generate enough power.

The authors of [50,51] have modeled an SHB that can be charged, discharged, and
floated without considering any RES. In the proposed model, SHB is regarded as a SA
during the charging mode and as an additional power source during the discharging mode.
The periods of charging, floating, and discharging modes of the SHB can be defined only by
using the proposed scheduling algorithm. However, a drawback of this proposed model is
that it does not consider a constraint regarding the balance of power between the charged
and discharged amounts in the SHB. For example, the SHB can have a stored amount of
power more than the discharged power, as shown in Figure 2. In this regard, at the end of
the time horizon, some extra power will be charged in the SHB without discharge. Besides,
the proposed model does not consider this extra power in the next time horizon. Therefore,
these deficiencies will lead to an ineffective analysis of the obtained schedule because of
the remaining power that will be wasted.

Figure 2. Example of smart home battery (SHB) drawback.

The authors of [52] have modeled SHB to store power generated by RESs at periods
of high electricity generation and from PSC during low electricity price periods. The
proposed SHB can discharge the stored power during peak periods and when the grid is
unable to meet users’ power demand. This model faces the same issues discussed above.
Accordingly, users cannot know their power curve in a time horizon ahead, and PSCs are
not able to anticipate the amount of power in upcoming periods. In addition, some extra
power will be charged in the SHB without any discharge.

4.2. Smart Home Battery for MO-PSPSH (BMO-PSPSH)

In this section, SHB is modeled to be charged, discharged, and free during the time
horizon T. The proposed model of the SHB considers the charging mode as an SA that can
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be scheduled using the adapted algorithm, while the discharging mode is considered as an
additional power source. In the free mode, the SHB is off. The SHB can be scheduled to
charge at any time slot considering the available amount of power that can be discharged
(i.e., the amount of power charged should not exceed the available amount of power that
can be discharged). Besides, the SHB can be discharged at any time slot considering the
charging mode and the amount of power charged (i.e., the SHB cannot be discharged at
any charged time slot, and the discharged power must not exceed the power charged in
SHB). The SHB is modeled to be fully discharged at the end of the time horizon (i.e., no
power will transfer to the next time horizon) to evaluate each scenario separately. The SHB
is modeled alongside the MO-PSPSH (BMO-PSPSH) to improve its solution(s) and achieve
the objectives optimally. The SHB scheduling algorithm (BSA) is developed in this section
to manage the modes of the SHB and control amounts of charging and discharging power.
The proposed BSA has four main steps, which will be thoroughly discussed below. The
flowchart of BSA is provided in Figure 3.

Figure 3. Flow chart of the proposed SHB scheduling algorithm (BSA).
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Step 1: Initialize the SHB parameters

As discussed previously, the charging operations of SHB will be scheduled as SAs
in the smart home. Several SHB parameters should be initialized, including the
maximum amount of power that can be stored in SHB, known as the capacity of
SHB (CapB), the charging and discharging efficiency, known as the round trip of
SHB efficiency (µB), the number of charging operations (CO) represented as CO =
(co1, co2, . . . , cou), the beginning and ending OTP of each charging operation OTPsc
and OTPec represented as OTPsc = (OTPsc1, OTPsc2, . . . , OTPscu) and OTPec =
(OTPec1, OTPec2, . . . , OTPecu) respectively, and LOC for each charging operation
(LOCc), such that LOCc = (lc1, lc2, . . . , lcu). The CapB and µB are initialized by
users, whereas CO, OTPsc, OTPec, and LOCc are initialized by the proposed BSA.

A constraint of the total number of COs (u) should be considered in this step
as follows:

Ach = n/2 (30)

Ach ≥ u, (31)

where Ach denotes the number of possible time slots for SHB to be charged. Note
that Ach is equal to half of T to keep enough time slots for SHB to be discharged. u
is generated randomly in [1, Ach].

OTPsc and OTPec for each CO are initialized to be the beginning and ending,
respectively, of the available period for SHB to be charged. OTPsc is set to the
beginning of T, and OTPec is set to n− 1 to ensure that SHB not charging at the
last time slot. For LOCc, each lc is set to be one-time slot (the smallest period to
be scheduled).

Algorithm 1 shows the pseudocode for initializing the SHB parameters.

Algorithm 1 Pseudocode of SHB parameters initialization

Parameters initialized by users (CapB, µB)
Parameters initialized by BSA (CO, OTPsc, OTPec, LOCc) with respecting the Ach
Return SHB parameters;

Step 2: Initialize the SHB charging population

Each solution of charging operations is represented as a vector containing the start-
ing time for each charging operation (stc). The population of charging operations
contains an N number of solutions initialized randomly, as shown in Equation (32).

SHB charging population =


stc1

1 stc1
2 · · · stc1

u
stc2

1 stc2
2 · · · stc2

u
...

... · · ·
...

stcN
1 stcN

2 · · · stcN
u

, (32)

Algorithm 2 shows the pseudocode for generating the SHB charging population.

Algorithm 2 Pseudocode for generating the SHB charging population

Create a charging operations population matrix of size (u× N)
for each solution (y) do

for each charging operation (c) do
Initialize the values (stc) randomly with respecting OTPsc, OTPec, and LOCc of c

end for
end for
Return SHB charging population;
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Step 3: Calculate the power consumed by the SHB charging operations

In this step, the power charged in SHB by charging operation c at time slot j (PBcoj
c)

is calculated. PBco can be calculated as follows:

PBcoj
c = µch × Pchj

c, (33)

where Pchj
c is the power consumed by charging operation c at time slot j, which

is generated randomly in [0, C− PSavg] to ensure that it will be within the C or

exceed it in the low margin, and µch is the SHB charging efficiency. Pchj
c should

not exceed the maximum allowable charge CH j at time slot j, as presented in
Equation (34).

0 ≤ Pchj
c ≤ CH j, (34)

where
CH j = CH × h,

where CH is the maximum allowable charge and h is the length of a time slot in
hours. In addition, to ensure that the stored power in SHB will not exceed the
capacity of SHB, a constraint is formulated as follows:

u

∑
c=1

PBcoc ≤ CapB, (35)

u and Pch are generated randomly by the BSA to increase their flexibility and
allow the adapted algorithm to deal with the four objectives of PSPSH. After the
PBco for all COs are calculated, the BSA will send COs to the adapted algorithm to
be scheduled.

Algorithm 3 shows the pseudocode for calculating the power consumed by the
SHB charging operation.

Algorithm 3 Pseudocode for calculating power consumed by the charging operation

for each solution (y) do
for each charging operation (c) do

Calculate the power consumed based on Equations (33)–(35)
end for

end for
Return charged SHB
Return PBco for all COs
Send COs to the adapted algorithm to be scheduled

Step 4: Discharge the SHB

As mentioned previously, the discharging mode of SHB is considered as an addi-
tional source. In other words, discharging operations will not be scheduled by the
adapted algorithm. However, the discharging mode is managed by the BSA to
discharge power using the roulette wheel method, where the charged power will
be discharged on the basis of the sizes of the parts on the wheel assigned for each
time slot with considering the amount of power consumed at that time slots. In the
roulette wheel method, big parts are assigned to high-pricing time slots and small
parts to low-pricing time slots. The reason for assigning the part sizes this way in
the distribution is to reduce the amount of power consumed at high-pricing time
slots due to its effect on the stability of the power system and EBs. The roulette
wheel method is used in this study due to its popularity and its performance in
distributing individuals on the basis of their importance. Therefore, it gives a



Electronics 2021, 10, 447 13 of 35

high chance for BSA to reduce the amount of power consumed at high-pricing
time slots.

The possible time slots for SHB to be discharged is calculated using Equation (36).

Adisj =

{
1 if PSj > 0 and PBcoj = 0 and ∑

j
b=1 PBcob > 0

0 Otherwise
, (36)

where Adis denotes the available time slots for SHB to be discharged, Adisj is equal
to 1 if SHB is able to discharge at time slot j and is 0 otherwise, PBcoj can be 0 if
SHB is not in the charging mode at time slot j, and ∑

j
b=1 PBcob > 0 to ensure that

SHB is not empty at time slot j.

After choosing a time slot to discharge SHB using the roulette wheel method,
BSA will define the amount of power to discharge PBdo on the basis of the power
consumed at that time slot as follows:

PBdoj = µdis × Pdisj, (37)

where Pdisj is the amount of power that will be discharged from SHB at time slot j,
which is generated randomly in [0, PSj], and µdis is the SHB discharging efficiency.

Pdisj will be released from SHB on the basis of Equation (38). BSA will keep
choosing the discharging time slots and update the value of Adis until all of the
power stored in SHB is discharged.

u

∑
c=1

j

∑
b=1

PBcob
c =

u

∑
c=1

j−1

∑
b=1

PBcob
c − Pdisj, (38)

subject to:
u

∑
c=1

j−1

∑
b=1

PBcob
c ≥ Pdisj,

However, if the value of ∑n
j=1 Adisj is equal to 0 and some power is still considered

as stored in SHB, then BSA will update the power of the last CO (i.e., PBcou) to be
equal to 0 and release it from SHB. The BSA will repeat this process until all of the
remaining power in SHB is released

Pdisj should not exceed the maximum allowable discharge DISj at time slot j
as follows:

0 ≤ PBdoj ≤ DISj, (39)

where
DISj = DIS× h,

DIS is the maximum allowable discharge. Note that the capacity of any SHB is
defined according to the amount of power that can be discharged and not the
amount that can be stored. For instance, the capacity of an SHB is 5 kWh, but the
usable power is 4.5 kWh. Therefore, µch of the proposed SHB is set equal to µB,
while the µdis is set equal to 1 [74].

Algorithm 4 shows the pseudocode of the discharging power.
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Algorithm 4 Pseudocode of discharge the SHB

while PBco > 0 do
Determine Adis
if ∑n

j=1 Adisj ≥ 1 then
Choose the discharging time slot j using roulette wheel method
Discharge SHB based on the Equations (37)–(39)

else
Release PBcou from PBco

end if
end while
Return SHB discharged;

Algorithm 5 shows the pseudocode of the four steps of the proposed BSA.

Algorithm 5 Pseudocode of the four steps of the proposed BSA

Step 1: Initialize the SHB parameters
Parameters initialized by users (CapB, µB)
Parameters initialized by BSA (CO, OTPsc, OTPec, LOCc) with respecting the Ach
Step 2: Initialize the SHB charging population
Create a charging operations population matrix of size (u× N)
for each solution (y) do

for each charging operation (c) do
Initialize the values (stc) randomly with respecting OTPsc, OTPec, and LOCc of c

end for
end for
Step 3: Calculate the power consumed by charging operations
for each solution (y) do

for each charging operation (c) do
for each time slot (j) do

Calculate the power consumed based on Equations (33)–(35)
end for

end for
end for
Send COs to the adapted algorithm to be scheduled
Step 4: Discharge the SHB
while PBco > 0 do

Determine Adis
if ∑n

j=1 Adisj ≥ 1 then
Choose the discharging time slot j using roulette wheel method
Discharge the SHB based on the Equations (37)–(39)

else
Release PBcou from PBco

end if
end while
Return empty SHB;

5. Grey Wolf Optimizer for PSPSH

In this section, a swarm-based meta-heuristic optimization algorithm known as the
grey wolf optimizer (GWO) algorithm is illustrated and adapted for MO-PSPSH and BMO-
PSPSH. The GWO is adapted due to its powerful operations managed by its dynamic
parameters to maintain the exploration and exploitation and avoid stagnation in local
optima. Furthermore, GWO has a high ability to explore search spaces on the basis of the
behavior of its solutions that allow it to search more deeply to find a better solution [12].
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5.1. Grey Wolf Optimizer (GWO)

The GWO behavior is inspired mainly by the grey wolves hunting mechanism, and it
was mathematically formulated in 2014 by Mirjalili [53].

Social Hierarchy

The pack of grey wolves has an austere social hierarchy, which is classified into alpha
(α), beta (β), delta (δ), and omega (ω). Wolves belong to the class alpha are considered
as the leader of the grey wolves’ hierarchy due to their domination and power to
manage the pack. The beta wolves are playing the primary role in support the alpha
in leading the pack. Delta wolves are in the third level of the hierarchy, and they in
charge of leading the lowest level in the hierarchy. Omega wolves are considered as
the lowest level in the hierarchy.

In GWO, the solutions are represented as grey wolves in the social hierarchy, where
the best solution is represented as α wolf, β and δ wolves are the second and third
best solutions, respectively, and ω wolves are considered as the rest of the solutions.

Encircling Prey

In addition to this deep social hierarchy, the intelligent behavior of group hunting
is also procedurally modeled. This behavior involves three main phases: chasing,
encircling, and attacking.

The grey wolves can change/update their locations closer to the prey by encircling
the prey mechanism. The encircling behavior of grey wolves is formulated as follows:

−→
D = |−→C ×−→X p(itr)−

−→
X (itr)|, (40)

−→
X (itr + 1) =

−→
X p(itr)−

−→
A ×−→D , (41)

where
−→
C and

−→
A denote coefficient vectors,

−→
X is the grey wolf position vector,

−→
X p is

the prey position vector, and itr is the current iteration.

The coefficient vectors
−→
C and

−→
A are calculated as

−→
A = 2×−→a ×−→r 1 −−→a , (42)

−→
C = 2×−→r 2, (43)

where −→a is linearly decreased from 2 to 0 throughout iterations and −→r 1, −→r 2 are
random vectors in range of 0 and 1. Based on the values of −→a , the value range of

−→
A

is between −2a and 2a.

Search for Prey (Exploration)

The grey wolves searching mechanism for prey can be done on the basis of the wolves’
positions, where the wolves diverge and converge to find the best position to attack
prey. The coefficient vectors

−→
A and

−→
C manage the divergence (exploration) and

convergence (exploitation) of the wolves in GWO. GWO exploit a search space if
|−→A | < 1 and explore a search space if |−→A | > 1.

The changing values in
−→
C is not similar to

−→
A , where

−→
C is changing randomly to

emphasize exploration/exploitation and local optima stagnation avoidance through-
out iterations.

Hunting

As mentioned previously, in GWO, the best three solutions are α, β, and δ wolves,
respectively, and ω wolves are the rest of the solutions.

Owing to the domination and leadership of α wolf on the pack, α usually guides the
hunting. β and δ wolves occasionally can engage in hunting to help α wolf. ω wolves
are usually changing their location according to the three best solutions (α, β, and δ).
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The hunting mechanism on the basis of these wolves (solutions) is formulated as follows:

−→
D α = |−→C 1 ×

−→
X α −

−→
X |, (44)

−→
D β = |−→C 2 ×

−→
X β −

−→
X |, (45)

−→
D δ = |

−→
C 3 ×

−→
X δ −

−→
X |, (46)

−→
X 1 =

−→
X α −

−→
A 1 ×

−→
D α, (47)

−→
X 2 =

−→
X β −

−→
A 2 ×

−→
D β, (48)

−→
X 3 =

−→
X δ −

−→
A 3 ×

−→
D δ, (49)

−→
X (itr + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
, (50)

To change the location of the ω wolves for hunting in accordance with the α, β and δ
wolves, the location of the prey should be estimated by these three wolves.

Grey Wolf Optimizer for PSPSH

GWO is a swarm-based optimization algorithm that emphasizes exploration and
exploitation using the two parameters (A, C). Besides, GWO can optimally explore the
search space using the best three solutions (α, β, δ). Accordingly, GWO is adapted for
MO-PSPSH (MO-PSPSH-GWO) and BMO-PSPSH (BMO-PSPSH-GWO) to find the optimal
schedule and achieve all PSPSH objectives optimally with and without using SHB. Each
solution is evaluated on the basis of the objective function formulated in Equation (29). The
GWO adaptation for the two approaches is illustrated in the sections below.

• GWO adaptation for MO-PSPSH (MO-PSPSH-GWO)
The adaptation of the GWO for MO-PSPSH is discussed in this section. This adaptation
contains five main steps, which are illustrated below.
The flowchart of the proposed MO-PSPSH-GWO is provided in Figure 4.

Step 1: Initialize MO-PSPSH-GWO parameters
The adaptation the MO-PSPSH-GWO is started by initializing the parameters
of PSPSH and GWO. The PSPSH parameters are S, NS, T, PS, PNS, LOC,
OTPs, OTPe, and pc. The GWO parameters are

−→
A ,
−→
C , −→a , −→r1 , −→r2 , the

minimum (lb) and maximum (ub) ranges for the search agent, the maximum
number of iterations (I), and the number of search agents in the pack (N).

Step 2: Initialize MO-PSPSH-GWO population
Each wolf in the pack is presented as a solution of MO-PSPSH-GWO, and
each solution is containing the starting time st for each appliance i, as shown
in Figure 5.
The MO-PSPSH-GWO population is containing of y number of solutions
initialized randomly as shown in Equation (51).

MO-PSPSH-GWO population =


st1

1 st1
2 · · · st1

m
st2

1 st2
2 · · · st2

m
...

... · · ·
...

sty
1 sty

2 · · · sty
m

, (51)
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Figure 4. Flow chart of the proposed multi-objective (MO)-power scheduling problem in a smart
home (PSPSH)-grey wolf optimizer (GWO) method.

Figure 5. Solution representation for MO-PSPSH-GWO [12].

Step 3: Fitness function calculation
The fitness value of each solution is calculated on the basis of Equation (29).
In the MO-PSPSH-GWO method, the best solution and its fitness value are
assigned to Xα and f (Xα),respectively, and the second and third best solutions
and their fitness values are assigned to Xβ, Xδ, and f (Xβ), f (Xδ), respectively.

Step 4: Update the MO-PSPSH-GWO population
The MO-PSPSH-GWO population is updated in the step, where the
Equations (42)–(50) are in charge of this update.
The updating mechanism of MO-PSPSH-GWO is utilized to estimate the
distance between Xω solutions and the Xα solution and then generate a new
solution

−→
X 1 Equations (42)–(44) and (47). The same steps for Xα are repeated

for Xβ and Xδ to generate
−→
X 2 using Equations (42), (43), (45) and (48) and to

generate
−→
X 3 using Equations (42), (43), (46) and (49). In Equation (50), a new

solution X′(itr + 1) is generated based on
−→
X 1,
−→
X 2, and

−→
X 3.



Electronics 2021, 10, 447 18 of 35

Step 5: Check the stop criterion
Steps 3 and 4 of MO-PSPSH-GWO are repeated until the stop criterion is met.
Algorithm 6 presents the pseudocode of the five steps of the proposed MO-
PSPSH-GWO.

Algorithm 6 Pseudocode of the five steps of the proposed MO-PSPSH-GWO

1: Step 1: Initialize MO-PSPSH-GWO parameters;/
2: Initialize all PSPSH parameters (S, NS, T, PS, PNS, OTPs, OTPe, LOC, pc)
3: Initialize all GWO parameters (a, r1, r2

−→
A ,
−→
C , lb, ub, I, N)

4: Step 2: Initialize MO-PSPSH-GWO population
5: Initialize MO-PSPSH-GWO population matrix of size (m× N)
6: Step 3: Social Hierarchy
7: while (itr <= I) do
8: for each solution (y) do
9: Calculate the fitness of each solution

10: f (Xα) = the best fitness value
11: f (Xβ) = the second fitness value
12: f (Xδ) = the third fitness value
13: Xα = the best solution
14: Xβ = the second best solution
15: Xδ = the third best solution
16: end for
17: Step 4: Update MO-PSPSH-GWO population
18: for each solution (y) do
19: for each appliance (i) do
20: Update r1, r2 (Random number in [0, 1])
21: Update the value of A1 (Equation (42))
22: Update the value of C1 (Equation (43))
23: Calculate X1 (Equations (44) and (47))
24: Update r1, r2 (Random number in [0, 1])
25: Update the value of A2 (Equation (42))
26: Update the value of C2 (Equation (43))
27: Calculate X2 (Equations (45) and (48))
28: Update r1, r2 (Random number in [0, 1])
29: Update the value of A3 (Equation (42))
30: Update the value of C3 (Equation (43))
31: Calculate X3 (Equations (46) and (49))
32: Generate a new solution X(itr + 1) (Equation (50))
33: end for
34: end for
35: Step 5: Check the stop criterion
36: if The maximum number of the iteration is not reached then
37: t = t + 1
38: end if
39: end while
40: Return f (Xα) and Xα
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• GWO adaptation for BMO-PSPSH (BMO-PSPSH-GWO)
BMO-PSPSH-GWO has six main steps, which will be thoroughly discussed below.
The flowchart of BMO-PSPSH-GWO is provided in Figure 6.

Step 1: Initialize BMO-PSPSH-GWO parameters
The adaptation of BMO-PSPSH-GWO is started by initializing the parameters
of SHB, PSPSH, and GWO. The SHB parameters are CapB, µB, CO, OTPsc, OTPec,
and LOCc. The PSPSH and GWO are the same as initialized in the first step
of MO-PSPSH-GWO, including S, NS, T, PS, PNS, LOC, OTPs, OTPe, and pc
for PSPSH and I, N,

−→
A ,
−→
C ,−→a ,−→r1 ,−→r2 , lb, and ub for GWO.

Figure 6. Flowchart of the proposed BMO-PSPSH-GWO method.

Step 2: Initialize BMO-PSPSH-GWO population
In this step, BMO-PSPSH-GWO solutions are initialized randomly, where
each solution is presented as two vectors. The first vector contains the starting
time st for SAs and second vector contains the starting time stc for charging
operations, as shown in Figure 7

Figure 7. Solution representation of BMO-PSPSH-GWO.

The BMO-PSPSH-GWO population is presented as a matrix of size (m + u)×
N, in which m is the number of SAs, u is the number of charging operations,
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and N is the number of solutions. Equation (52) shows the presentation of the
BMO-PSPSH-GWO population.

BMO-PSPSH-GWO population =


st1

1 st1
2 · · · st1

m+u
st2

1 st2
2 · · · st2

m+u
...

... · · ·
...

stN
1 stN

2 · · · stN
m+u

 (52)

Step 3: Calculate the power consumed by the charging operations
In this step, the power charged in SHB by each charging operation will be
calculated as discussed in the third step of designing BSA in Section 4.2.

Step 4: Calculate the fitness values
This step is divided into two parts, namely, discharging the SHB and cal-
culating the fitness values of the solution in the population. As discussed
in Section 4.2, the time slots for discharging the SHB are determined using
the roulette wheel method and the amount of power chosen randomly on
the basis of several equations and constraints. In this step, the processes of
discharging the SHB are the same as discussed in Section 4.2. For calculating
the fitness values, the three best fitness values and their solutions are assigned
as f (Xα), f (Xβ), and f (Xδ), and Xα, Xβ, and Xδ, respectively.

Step 5: Update BMO-PSPSH-GWO population
The BMO-PSPSH-GWO population is updated in the step, where the
Equations (42)–(50) are in charge of this update.
The updating mechanism of BMO-PSPSH-GWO is utilized to estimate the
distance between Xω solutions and the Xα solution and then generate a new
solution

−→
X 1 Equations (42)–(44) and 47. The same steps for Xα are repeated

for Xβ and Xδ to generate
−→
X 2 using Equations (42), (43), (45) and (48) and to

generate
−→
X 3 using Equations (42), (43), (46) and (49). In Equation (50), a new

solution X′(itr + 1) is generated on the basis of
−→
X 1,
−→
X 2, and

−→
X 3.

Step 6: Check the stop criterion
Steps 4 and 5 of BMO-PSPSH-GWO are repeated until the stop criterion
(maximum number of iterations) is met. The resulting BMO-PSPSH-GWO
solution is Xα.
Algorithm 7 presents the pseudocode of the six steps of the proposed BMO-
PSPSH-GWO.
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Algorithm 7 Pseudocode of the six steps of the proposed BMO-PSPSH-GWO

1: Step 1: Initialize BMO-PSPSH-GWO parameters
2: Initialize PSPSH parameters(S, NS, T, RS, RNS, OTPs, OTPe, LOC, pc)
3: Initialized SHB parameters (CapB, µB, CO, OTPsc, OTPec, LOCc)
4: Initialize GWO parameters(a, r1, r2

−→
A ,
−→
C , lb, ub, I, N)

5: Step 2: Initialize BMO-PSPSH-GWO population
6: Initialize a BMO-PSPSH-GWO population matrix of size ((m + u)× N)
7: Step 3:Calculate the power consumed by charging operations
8: for each solution (y) do
9: for each charging operation (c) do

10: Calculate the power consumed based on Equations (33)–(35)
11: end for
12: end for
13: Step 4: Calculate the fitness values
14: while (itr <= I) do
15: for each solution (y) do
16: Discharge the SHB of the solution
17: Calculate the fitness of the solution
18: f (Xα) = the best fitness value
19: f (Xβ) = the second best fitness value
20: f (Xδ) = the third best fitness value
21: Xα = the best solution
22: Xβ = the second best solution
23: Xδ = the third best solution
24: end for
25: Step 5: Update BMO-PSPSH-GWO population
26: for each solution (y) do
27: for each appliance (i) do
28: Update r1, r2 (random number in [0, 1])
29: Update the value of A1 (Equation (42))
30: Update the value of C1 (Equation (43))
31: Calculate X1 (Equation (44) and (47))
32: Update r1, r2 (random number in [0, 1])
33: Update the value of A2 (Equation (42))
34: Update the value of C2 (Equation (43))
35: Calculate X2 (Equations (45) and (48))
36: Update r1, r2 (random number in [0, 1])
37: Update the value of A3 (Equation (42))
38: Update the value of C3 (Equation (43))
39: Calculate X3 (Equations (46) and (49))
40: Generate a new solution X(itr + 1) (Equation (50))
41: end for
42: end for
43: Step 6: Check the stop criterion
44: if The maximum number of the iteration is not reached then
45: itr = itr + 1
46: end if
47: end while
48: Return f (Xα) and Xα

6. Experiments and Results

The experiments are designed in this section to evaluate the proposed MO-PSPSH
and BMO-PSPSH methods using the GWO. MO-PSPSH-GWO and BMO-PSPSH-GWO
are evaluated to show their effect in achieving PSPSH objectives. These approaches are
compared to show whether BMO-PSPSH-GWO can obtain a better schedule than MO-
PSPSH-GWO. For comparison study, the proposed approaches are compared with 17
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state-of-the-arts methods using their recommended datasets. Furthermore, the GWO
performance is compared with that of GA and PSO to show its performance in achieving
the PSPSH objectives.

The proposed methods are implemented and executed using MATLAB on a PC with
Intel Core2 Quad CPU, 2.66 GHz processor and 8 GB of memory (RAM).

6.1. Dataset Description

In this study, nine types of SAs are considered for up to 36 operations, where some of
these SAs can operate more than once.

The smallest LOC of the SAs is set to 1 minute, where each minute is considered as a
time slot in T. Accordingly, the T vector in this dataset is presented as T = (t1, t2, t3, . . . , t1440).

Table 1 shows the main characteristics of the SAs, including the LOC and OTP of
each SA.

Table 1. Characteristics of the smart home appliances.

NO. Appliance l OTPs–OTPe Power
(kW) NO. Appliance l OTPs–OTPe Power

(kW)

1 Dishwasher 105 540–780 0.6 19 Dehumidifier 30 1–120 0.05
2 Dishwasher 105 840–1080 0.6 20 Dehumidifier 30 120–240 0.05
3 Dishwasher 105 1200–1440 0.6 21 Dehumidifier 30 240–360 0.05
4 Air Conditioner 30 1–120 1 22 Dehumidifier 30 360–480 0.05
5 Air Conditioner 30 120–240 1 23 Dehumidifier 30 480–600 0.05
6 Air Conditioner 30 240–360 1 24 Dehumidifier 30 600–720 0.05
7 Air Conditioner 30 360–480 1 25 Dehumidifier 30 720–840 0.05
8 Air Conditioner 30 480–600 1 26 Dehumidifier 30 840–960 0.05
9 Air Conditioner 30 600–720 1 27 Dehumidifier 30 960–1080 0.05
10 Air Conditioner 30 720–840 1 28 Dehumidifier 30 1080–1200 0.05
11 Air Conditioner 30 840–960 1 29 Dehumidifier 30 1200–1320 0.05
12 Air Conditioner 30 960–1080 1 30 Dehumidifier 30 1320–1440 0.05
13 Air Conditioner 30 1080–1200 1 31 Electric Water Heater 35 300–420 1.5
14 Air Conditioner 30 1200–1320 1 32 Electric Water Heater 35 1100–1440 1.5
15 Air Conditioner 30 1320–1440 1 33 Coffee Maker 10 300–450 0.8
16 Washing Machine 55 60–300 0.38 34 Coffee Maker 10 1020–1140 0.8
17 Clothes Dryer 60 300–480 0.8 35 Robotic Pool Filter 180 1–540 0.54
18 Refrigerator 1440 1–1440 0.5 36 Robotic Pool Filter 180 900–1440 0.54

As mentioned previously, the RTP scheme is used and combined with the IBR scheme
due to the IBR performance in dispersing the power consumption throughout the time
horizon. RTP is adopted from the Commonwealth Edison Company between the 1st of
June, 2016, and the 7th of June, 2016, for a duration of one week (seven days ⇔ seven
scenarios) [12,75].

The main features of the seven scenarios are shown in Table 2. In this table, the
columns “Scenarios” and “Appliances” are referring to the scenario number and the
appliances’ number in Table 1. For example, number 1 and 36 in the appliances’ column in
Table 2 refers to the first (Dishwasher) and last (Robotic Pool Filter) appliances in Table 1.
Appliances used in scenario #1 are 1, 3, 4, 5, 6, 7, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 33, 35.
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Table 2. Main characteristics of the seven scenarios.

Scenarios Appliances

1 1, 3, 4, 5, 6, 7, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35
2 1, 2, 4, 5, 6, 7, 10, 11, 12, 18, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36
3 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35

4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36

5 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35
6 1, 2, 3, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35

7 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 33, 34, 35, 36

Table 3 shows the NSAs used in this study and their power. Given that all NSAs are
operated manually by users, nobody can predefine their time parameters, including OTPs,
OTPe, and LOC.

Table 3. Non-shiftable appliances (NSAs) used in the simulation.

No. Appliances Power (kW)

1 Light [16] 0.6
2 Attic Fan [76] 0.3
3 Table Fan [76] 0.8
4 Iron [16] 1.5
5 Toaster [76] 1
6 Computer Charger [76] 1.5
7 Cleaner [15] 1.5
8 TV [76] 0.3
9 Hair Dryer [76] 1.2
10 Hand Drill [76] 0.6
11 Water Pump [76] 2.5
12 Blender [76] 0.3
13 Microwave [16] 1.18
14 Electric Vehicle [77] 1

For the GWO parameters, the algorithm run 1000 iterations in each run since the 1000
generations are enough for convergence of algorithms [78]. Table 4 presents the parameter
setting for the GWO.

Table 4. Parameters used in GWO algorithm.

Parameter Value

N 40
I 1000

lb OTPs
ub OTPe − LOC

The same features of Tesla Powerwall 2 are used for the SHB in this study [79]. Table 5
shows the proposed SHB parameters.

Table 5. SHB parameters.

Parameter Value

CapB 13.5 kWh
CHmax 5 kW
DISmax 5kW

µB 90%
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6.2. Experimental Evaluation

In this section, the simulation results are presented to show whether the BMO-PSPSH-
GWO method can obtain a better schedule than considering the MO-PSPSH-GWO method.
The performance of BMO-PSPSH-GWO and MO-PSPSH-GWO on EB, PAR, WTR, and CPR
reduction is evaluated and analyzed.

As discussed in Section 3, using the MO-PSPSH each objective assigned with a weight
that denoting its importance. Therefore, the weight (w1) assigned to EB is the highest, due
to its significance in optimizing PSPSH, where it is the main benefit gaining by users [6]. Ac-
cordingly, w1 is assigned by 0.4, and each of w2, w3, and w4 assigned by 0.2 (Equation (29)).

6.2.1. Effect of The Proposed Approaches on EB

The effect of BMO-PSPSH-GWO and MO-PSPSH-GWO on EB reduction is presented
in this section. The results of BMO-PSPSH-GWO are compared with MO-PSPSH-GWO to
investigate whether the proposed SHB can improve the solution in terms of reducing EB.
EB obtained by these approaches is compared in Table 6. The table shows EB obtained by
the two approaches for the seven scenarios, a comparison between the two approaches in
terms of average and total EB is shown in the table as well.

Table 6. Comparison between MO-PSPSH-GWO and BMO-PSPSH-GWO in terms of electricity bill
(EB) reduction.

Scenarios MO-PSPSH-GWO BMO-PSPSH-GWO

S 1 43.5041 41.9042
S 2 64.5597 59.6252
S 3 66.1138 62.7707
S 4 62.5916 55.9692
S 5 46.2879 43.6999
S 6 52.2998 49.1431
S 7 62.6367 56.4908

Average 56.8562 52.8004
Total 397.993 369.603

Bold values indicate the best values.

BMO-PSPSH-GWO reduces EB better than MO-PSPSH-GWO in all scenarios due to
the performance of SHB in reducing EB by scheduling the charging operations of SHB at
the best time slots based on Equation (29); i.e., schedule several charging operations at low
pricing periods and discharge SHB at high pricing periods.

6.2.2. Effect of The Proposed Approaches on PAR

As shown in the previous section, the proposed BMO-PSPSH-GWO has a high effect
in reducing EB because it stores power at low pricing periods and uses the stored power
at high pricing periods. In this section, the effect of BMO-PSPSH-GWO on PAR value is
presented and compared with PAR value obtained using MO-PSPSH-GWO.

PAR values obtained by the BMO-PSPSH-GWO approach for the seven scenarios are
shown in Table 7. Besides, the table presents PAR obtained by MO-PSPSH-GWO to show
whether MO-PSPSH-GWO or BMO-PSPSH-GWO can reduce PAR values better.
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Table 7. Comparison between MO-PSPSH-GWO, BMO-PSPSH-GWO in terms of peak-to-average
ratio (PAR) reduction.

Scenarios MO-PSPSH-GWO BMO-PSPSH-GWO

S 1 2.6002 2.9418
S 2 2.4451 2.4796
S 3 2.2267 2.5710
S 4 2.2277 2.3167
S 5 2.2310 2.5207
S 6 2.5233 2.5375
S 7 2.0423 2.4931

Average 2.3280 2.5515
Bold values indicate the best values.

Notably, MO-PSPSH-GWO obtained better PAR values than BMO-PSPSH-GWO in all
scenarios due to increasing amount of power consumed by SHB at low pricing period and
increase PSmax value (Equation (14)); therefore, increase PAR values, as shown in Figure 8.
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Figure 8. Power consumption curve for all scenarios using MO-PSPSH-GWO and BMO-PSPSH-GWO.

6.2.3. Effect of The Proposed Approaches on UC Level

As discussed previously, the UC level in this study is evaluated on the basis of WTR
and CPR. UC level can be improved by reducing the values of the two parameters. The
effect of BMO-PSPSH-GWO on UC parameters are presented and compared with MO-
PSPSH-GWO in this section.

Tables 8 and 9 present WTR and CPR values obtained by MO-PSPSH-GWO and
BMO-PSPSH-GWO for the seven days, respectively, to show which approach got a better
schedule in terms of improving UC level.

Tables 8 and 9 show the high performance of BMO-PSPSH-GWO in reducing WTR and
CPR, where it outperforms MO-PSPSH-GWO in most of the scenarios and their average
values. The reduction of WTR is because of BSA’s mechanism that schedules SHB to
discharge power at suitable time slots (e.g., time slots at the beginning of OTP) that allow
SAs to operate at the beginning of OTP using suitable pricing tariffs. For CPR, its values
are reduced because of increasing available power to operate NSAs due to reducing some
power exceeds or near the threshold.
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Table 8. Comparison between MO-PSPSH-GWO and BMO-PSPSH-GWO in terms of waiting time
rate (WTR) reduction.

Scenarios MO-PSPSH-GWO BMO-PSPSH-GWO

S 1 0.0658 0.0645
S 2 0.1030 0.0534
S 3 0.0889 0.0629
S 4 0.1358 0.0787
S 5 0.0872 0.0695
S 6 0.1004 0.0598
S 7 0.1310 0.0771

Average 0.1017 0.0666
Bold values indicate the best values.

Table 9. Comparison between MO-PSPSH-GWO and BMO-PSPSH-GWO in terms of capacity power
limit rate (CPR) reduction.

Scenarios MO-PSPSH-GWO BMO-PSPSH-GWO

S 1 0.3206 0.3216
S 2 0.3528 0.3529
S 3 0.3913 0.3871
S 4 0.5236 0.5062
S 5 0.3924 0.3880
S 6 0.3647 0.3546
S 7 0.4857 0.4590

Average 0.4044 0.3956
Bold values indicate the best values.

The UC level is increased using BMO-PSPSH-GWO by up to 2% compared with
MO-PSPSH-GWO, as shown in Table 10. In addition, the table shows the UC percentage
for the seven scenarios obtained by the two approaches.

Table 10. Comparison between MO-PSPSH-GWO and BMO-PSPSH-GWO in terms of user comfort
(UC) percentage (%).

Scenarios MO-PSPSH-GWO BMO-PSPSH-GWO

S 1 80.67 80.68
S 2 77.20 79.67
S 3 75.98 77.49
S 4 67.02 70.75
S 5 76.01 77.12
S 6 76.74 79.27
S 7 69.16 73.18

Average 74.68 76.88
Bold values indicate the best value in each scenario.

6.2.4. Discussion

The performance of BMO-PSPSH-GWO is evaluated against MO-PSPSH-GWO for
seven scenarios (1 week). The evaluation is designed to show the proposed approach’s
performance in achieving PSPSH objectives. SHB is proposed alongside MO-PSPSH to
improve the schedule and mainly enhance the reduction of EB with considering the other
objectives reduction. In addition, SHB reduces the amount of power consumed by SAs at
unsuitable periods that are conflicting with PSPSH objectives, by storing power at suitable
periods and discharge the stored power at the unsuitable periods. The price scheme used in
this study is the RTP scheme combined with the IBR scheme. This combination is provided
to disperse power consumption throughout the time horizon.

The simulation results show high performance of BMO-PSPSH-GWO, where it out-
performs MO-PSPSH-GWO in reducing EB, WTR, and CPR, whereas MO-PSPSH-GWO
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obtains better result only in reducing the PAR value. However, BMO-PSPSH-GWO does
not obtain a better PAR reduction than MO-PSPSH-GWO due to the increasing amount of
power consumed at low pricing periods and increase the value PSmax (Equation (14)).

Note that the cost of the SHB used in this study is not considered due to the four
objectives (i.e., EB, PAR, WTR, and CPR) that are affected by the SHB, where it seems
hard and impractical to compare its cost with the four objectives values. In addition, the
SHB used in this study has an unlimited life cycle; therefore, it can provide benefits for an
extensive time.

6.3. Comparative Evaluation

Two types of comparisons are conducted in this study, including comparison with
state-of-the-art methods using their datasets, and the most popular metaheuristic op-
timization algorithms were adapted for PSPSH using the proposed SHB and datasets.
The state-of-the-art methods are HSA and BFOA [42], GA, BPSO, and WDO [80], GA
and GWO [81], GOA, CSA, ACO, FA, and MFO [82], and GA and DA [83]. The basic
metaheuristic optimization algorithms are GA, BFOA, HSA, and PSO [14].

6.3.1. Comparison with State-of-the-Art Methods Using Their Datasets

This section compares the proposed method using SHB with 17 state-of-the-art meth-
ods using their recommended datasets. The compared studies used different types of
objective functions, including single objective and MO functions. Therefore, the compared
studies’ objective functions are considered with the proposed SHB (B-PSPSH-GWO) in this
comparison study instead of the BMO-PSPSH approach. The evaluation in this comparison
is analyzed on the basis of the values of EB and PAR. UC level is not conducted in this
comparison because it was used in the studies based on different criteria.

Table 11 summarized the features of the compared studies, including the study,
method used, number of appliances, pricing scheme used.

Table 11. Features of the compared studies. Time-of-use price (TOU)—two seasons.

Study Method Appliances Pricing Scheme Time Slot

[42] HSA, BFOA 13 TOU 1 h
[80] GA, BPSO, WDO 9 RTP 1 h
[81] GA, GWO 12 RTP, CPP 1 h
[82] GOA, CSA, ACO, FA, MFO 6 RTP 1 h
[83] GA, DA 12 RTP 1 h

Table 12 shows the results obtained by the methods in each study and the proposed
B-PSPSH-GWO. The results prove the robust performance of the proposed SHB for PSPSH
in reducing EB, where the proposed B-PSPSH-GWO shows a significant reduction in EB
compared with all other methods. However, as discussed previously, due to the mechanism
of the SHB in using power at low peak periods, the power consumed at these periods
are higher than the others. Therefore, the PAR value is expected to be increased, which
explains the high values of PAR obtained by the proposed B-PSPSH-GWO compared with
the other methods.
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Table 12. Comparison between proposed and the comparative methods.

Study Algorithm EB PAR

HSA 1523.9 2.24
[42] BFOA 1558.8 2.15

(Summer Scenario) HBH 1557.2 2.12
B-PSPSH-GWO 1082.4 2.47

HSA 1155.8 3.26
[42] BFOA 1082.9 3.18

(Winter Scenario) HBH 1143.6 3.5
B-PSPSH-GWO 954.8 3.7

GA 64 2.2
BPSO 42 2

[80] WDO 41.6 1.9
GWDO 37 1.7

B-PSPSH-GWO 30.2 2.28

[81] GA 462.67 3.639
(RTP Scenario) GWO 474.06 3.774

HGWGA 449.35 3.108
B-PSPSH-GWO 426.18 3.95

GA 523.96 3.639
[81] GWO 541.45 3.774

(CPP Scenario) HGWGA 508.35 3.108
B-PSPSH-GWO 474.21 3.95

[82]

GOA 1768.27 7.41
CSA 2147.28 9.47
ACO 2001.16 4.13

FA 2104.23 8.02
MFO 1794.61 8.31

B-PSPSH-GWO 1673.79 8.50

GA 1.683 3.56
[83] DA 1.561 3.76

B-PSPSH-GWO 1.23 3.94
Bold values indicate the best value in each scenario.

6.3.2. Comparison with State-of-the-Art Methods Using the Proposed Datasets

This section mainly compares the performance of the GWO with that of GA, PSO,
HSA, and BFOA using the proposed SHB for PSPSH. The performance of these algorithms
is evaluated on the basis of the PSPSH objectives, including EB, PAR, WTR, and CPR.

The datasets used in this comparison study are presented in Tables 1–3.
Table 13 shows EBs obtained by the GWO, GA, PSO, HSA, and BFOA for seven

scenarios. In addition, the average EB obtained by these algorithms are presented.

Table 13. Comparison between the five algorithms in terms of EB reduction.

Scenarios GWO GA PSO HSA BFOA

S 1 41.90 44.54 42.05 43.72 42.39
S 2 59.62 62.00 59.76 61.46 60.18
S 3 62.77 65.10 63.01 63.92 63.24
S 4 55.96 56.56 56.14 56.44 56.32
S 5 43.69 47.90 43.77 44.96 43.93
S 6 49.14 52.55 49.21 50.86 49.95
S 7 56.49 59.22 56.60 58.11 57.10

Average 52.80 55.41 52.93 54.21 53.30
Bold values indicate the best value in each scenario.
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The GWO proves its high performance in reducing EB, where it achieves the best EB
against the other methods.

PAR values obtained by these algorithms are presented in Table 14. The table shows
the robust performance of GWO in dispersing the power consumed through the time
horizon, where it achieves the lowest overall PAR compared with the other algorithms.

Table 14. Comparison between the five algorithms in terms of PAR reduction.

Scenarios GWO GA PSO HSA BFOA

S 1 2.94 2.96 2.89 2.95 2.94
S 2 2.47 2.57 2.49 2.53 2.50
S 3 2.57 2.92 2.58 2.86 2.61
S 4 2.31 2.33 2.30 2.35 2.33
S 5 2.52 2.73 2.54 2.71 2.59
S 6 2.53 2.70 2.55 2.72 2.65
S 7 2.49 2.65 2.51 2.62 2.54

Average 2.54 2.694 2.55 2.691 2.58
Bold values indicate the best value in each scenario.

WTR and CPR values achieved by the five algorithms for the same scenarios are
compared in Tables 15 and 16. The tables present and prove the robust performance of the
GWO in reducing WTR and CPR values, where it obtains the best WTR in all scenarios
and the best CPR in five scenarios compared with the other algorithms. In addition, GWO
achieves the best overall reduction by obtaining the best average WTR and CPR values.
Accordingly, GWO got the highest improvement for UC level, as shown in Table 17.

This comparison study proves the robust performance of the GWO in addressing
PSPSH, where it outperforms all other compared algorithms in achieving PSPSH objectives,
including EB, PAR, WTR, and CPR.

Table 15. Comparison between the five algorithms in terms of WTR reduction.

Scenarios GWO GA PSO HSA BFOA

S 1 0.064 0.102 0.072 0.100 0.084
S 2 0.053 0.135 0.061 0.112 0.076
S 3 0.062 0.100 0.065 0.083 0.069
S 4 0.078 0.142 0.083 0.122 0.089
S 5 0.069 0.098 0.070 0.081 0.080
S 6 0.059 0.088 0.062 0.085 0.077
S 7 0.077 0.110 0.078 0.095 0.091

Average 0.066 0.110 0.070 0.096 0.080
Bold values indicate the best value in each scenario.

Table 16. Comparison between the five algorithms in terms of CPR reduction.

Scenarios GWO GA PSO HSA BFOA

S 1 0.321 0.340 0.322 0.339 0.328
S 2 0.352 0.361 0.357 0.363 0.357
S 3 0.387 0.401 0.386 0.400 0.390
S 4 0.506 0.519 0.505 0.519 0.510
S 5 0.388 0.411 0.393 0.409 0.399
S 6 0.354 0.370 0.355 0.373 0.361
S 7 0.459 0.469 0.460 0.463 0.463

Average 0.395 0.410 0.396 0.409 0.401
Bold values indicate the best value in each scenario.
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Table 17. Comparison between the five algorithms in terms of UCp improvement.

Scenarios GWO GA PSO HSA BFOA

S 1 80.68 77.90 80.30 78.05 79.4
S 2 79.67 75.20 79.10 76.25 78.35
S 3 77.49 74.95 77.45 75.85 77.05
S 4 70.75 66.95 70.60 67.95 70.05
S 5 77.12 74.55 76.85 75.50 76.05
S 6 79.27 77.10 79.15 77.10 78.10
S 7 73.18 71.05 73.10 72.10 72.30

Average 76.88 73.95 76.65 74.68 75.90
Bold values indicate the best value in each scenario.

7. Conclusions and Future Research

PSPSH refers to a timely schedule of operations of smart home appliances in accor-
dance with a set of restrictions and a dynamic pricing scheme(s). The primary objectives of
PSPSH are minimizing EB, PAR, and user discomfort levels. The RTP is combined with the
IBR scheme in this study to provide different prices on the basis of time changing and the
amount of power consumed. PSPSH is formulated as a MOP (MO-PSPSH) to achieve all
objectives simultaneously. SHB can enhance the scheduling of appliances by storing power
at unsuitable periods and use the stored power at suitable periods for PSPSH objectives.
Therefore, a new formulation for SHB to improve the PSPSH solutions’ quality is provided
in this paper.

GWO is adapted to address MO-PSPSH (MO-PSPSH-GWO) and BMO-PSPSH (BMO-
PSPSH-GWO) approaches due to its powerful operations managed by its dynamic parame-
ters that maintain exploration and exploitation in search space.

Seven scenarios of power consumption and RTP schemes are considered in the sim-
ulation results to evaluate the proposed MO-PSPSH-GWO and BMO-PSPSH-GWO. The
results demonstrated the efficiency of BMO-PSPSH-GWO compared with MO-PSPSH-
GWO, where it obtains better results in minimizing EB, WTR, and CPR, and improving UC
level. However, MO-PSPSH-GWO achieves better PAR values than BMO-PSPSH-GWO. For
comparison evaluation, the proposed BMO-PSPSH-GWO compared with 17 state-of-the-art
algorithms using their recommended datasets and four algorithms using the proposed
datasets. The proposed BMO-PSPSH-GWO exhibits and yields better performance than
the other compared algorithms in almost all scenarios.

Possible future directions can use more scenarios and standard datasets to evaluate
the proposed approaches robustly. In addition, the GWO can be hybridized with another
algorithm to address its defects and exhibits better results for PSPSH.
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Abbreviations

BFOA Bacterial Foraging Optimization Algorithm
BMO-PSPSH Smart Home Battery for MO-PSPSH
BSA SHB Scheduling Algorithm
CPP Critical Period Price
CPR Capacity Power Limit Rate
CO Charging Operations
EB Electricity Bill
GA Genetic Algorithm
GWO Grey Wolf Optimizer
HEMS Home Energy Management System
HSA Harmony Search Algorithm
IBR Inclining Block Rate
LOC Length of Operation Cycle
MO-PSPSH Multi-Objective Approach for PSPSH
MOP Multi-objective Optimization Problem
NSA Non-Shiftable Appliance
OTP Operation Time Period
PAR Peak-to-Average Ratio
PSC Power Supplier Company
PSO Particle Swarm Optimization
PSPSH Power Scheduling Problem in Smart Home
PSPSH-GWO Grey Wolf Optimizer for PSPSH
RES Renewable Energy Source
RTP Real Time Price
SA Shiftable Appliance
SG Smart Grid
SHB Smart Home Battery
TOU Time-Of-Use
UC User Comfort
WTR Waiting Time Rate
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