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Abstract: Fluid pumps serve critical purposes in hydraulic systems so their failure affects produc-
tivity, profitability, safety, etc. The need for proper condition monitoring and health assessment
of these pumps cannot be overemphasized and this has resulted in extensive research studies on
standard techniques for ensuring optimum fault detection and isolation (FDI) results for these pumps.
Interestingly, mechanical vibrational signals reflect operating conditions and by exploring the robust
time–frequency-domain feature extraction techniques, the underlying nonlinear characteristics can
be captured for reliable fault diagnosis/condition assessment. This study is based on the use of
vibrational signals for fault isolation of electromagnetic pumps. From the vibrational signals, Mel
frequency cepstral coefficients (MFCCs), the first-order and the second-order differentials were
extracted and the salient features selected by a rank-based recursive feature elimination (RFE) of
uncorrelated features. The proposed framework was tested and validated on five VSC63A5 elec-
tromagnetic pumps at various fault conditions and isolated/classified using the Gaussian kernel
SVM (SVM-RBF-RFE). Results show that the proposed feature selection approach is computationally
cheaper and significantly improves diagnostics performance. In addition, the proposed framework
yields a comparatively better diagnostics results on electromagnetic pumps in comparison with other
diagnostics methods, hence a more reliable diagnostics tool for electromagnetic pumps.

Keywords: Mel frequency cepstral coefficient; electromagnetic pumps; feature selection; recursive
feature elimination; support vector machine

1. Introduction

The growing demand for increased productivity, maintainability and reliability have
motivated the proliferating research studies on the state-of-the-art condition-based mainte-
nance approach—prognostics and health management (PHM). Consequently, optimized
reliability has shown strong dependence on prediction-based data-driven PHM [1]. These
data-driven PHM approaches have evident comparative advantages against the traditional
model-based methods and are even being more appreciated/patronized for the ease of use,
minimal false alarm rate, computational cost efficiency associated with them.

The growth of artificial intelligence (AI), machine learning (ML) and deep learning
(DL)-based methods have recently motivated the high discrimination against the traditional
statistical model-based approaches for FDI [2]. Theoretically, DL methods are quite popular
for high fault detection accuracy; however, issues of interpretabiity, high dependence on
excessive parameters, overfitting/underfitting issues, computational cost (and complexity)
and the magical defiance from fundamental statistical theory [3] make them practically
unreliable for cost-aware industrial applications. On the other hand, though not as accu-
rate/automated as DL methods, most Bayesian ML methods come with benefits ranging
from relatively minimal false alarm rate, interpretability and computational cost efficiency
on few data. Nevertheless, whether statistical-based, data-driven or hybrid, by monitoring
and accurately identifying key fault parameters in systems (or components) via sensors,
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downtime can be reduced, productivity increased, costs minimized and predicting the
end-of-life (EOL) of these systems (or components) reliably possible [4].

FDI entails condition monitoring of systems, identifying when a fault occurs and rec-
ognizing the type of fault and its location in the systems [5]. The FDI technology presented
herein is based on extracting time–frequency-domain features from the vibrational signals,
a rank-based discriminative feature selection and a classification process. This study pro-
poses the use of vibrational signals for FDI of electromagnetic pumps. These pumps serve
a critical function in hydraulic and/or thermodynamic systems—to supply fuel (or other
fluids) to a desired location at a desired pressure. For this sole purpose, they are usually
operated for as long as required of them; thereby exposing them to diverse failure modes
from sources ranging from unfavorable environmental conditions, fatigue, fluid contami-
nation, mechanical/electrical stress, uncertainty, filter failure/clogging, overuse/underuse,
etc. [6]. Consequently, the need for real-time health monitoring (and assessment) becomes
crucial for accurate diagnosis, reliable prognosis and more profitable decision making.

In the quest for ensuring accurate and cost-efficient vibration-based diagnostics frame-
works, diverse filter-based, embedded and wrapper-based feature selection approaches
are bound for exploration [7–9]; however, every method comes with pros and cons. These
cons can be significantly mitigated by hybrid methods (a combination of two or more
techniques). By providing an avenue where the strength of one complements the weakness
of the other; indirectly, only optimal (highly discriminant) features can be selected for use
by a reliable ML-based classifier. These factors, in addition to current computational cost
concerns, have motivated our study. To validate the proposed model’s diagnostics perfor-
mance, we tested the model on our testbed which consists of five VSC63A5 electromagnetic
pumps produced by Korea Control Limited. While expanding the contributions of our
previous study [10], this paper presents the results for intelligent fault detection of the five
VSC63A5 electromagnetic pumps at different operating conditions.

2. Motivation, Related Works and Major Contributions

Recently, vibration monitoring has become a highly reliable condition monitoring
paradigm for fluid pumps (and most systems) [11]; consequently, pump manufacturers
are recently integrating on-board vibration (and temperature) sensors into their products;
however, interpreting and drawing accurate conclusions from the complex big data has
been one of the setbacks facing optimized fluid pump FDI and prognostics [6]. As a result
that raw vibrational signals are non-stationary with background noise, extracting salient
features from these signals remains an on-going challenge for accurately understanding the
underlying dynamics of targeted systems. Statistical time-domain, frequency-domain and
the more robust time–frequency-domain feature extraction techniques all provide reliable
avenues for accurate condition monitoring. However, each technique has its unique pros
and cons when representing system dynamics; hence, the need for comprehensive feature
extraction and reliable feature selection methods for more accurate system diagnostics and
prognostics [3]. A typical study proposed by Pablo et al. [12] presented the effectiveness
of statistical time-domain features for multi-fault (11 faults) diagnosis of an electric motor
at three gearbox-controlled speeds and loading variations. After extracting 30 statistical
features, three feature ranking procedures—ReliefF, Chi-squared and Information Gain
tests—were respectively used for selecting the most discriminative features for fault clas-
sification using the SVM and the Feed Forward Pattern Recognition Network (FFPN),
respectively. The results do not only show the superiority in classification performance
of the SVM, but it also shows the salience of the highest-ranking features-mean, CPT5,
kurtosis, skewness, etc. for vibration-based diagnosis; nevertheless, against the limitations
of the statistical time-domain features to capture spectral information, the time–frequency-
domain signal processing techniques for feature extraction becomes necessary.

Inspired by the effectiveness of extracting time–frequency-domain features from acous-
tic, microseismic and vibrational signals, Mel frequency cepstral coefficients (MFCCs), the
1st-order differential (Delta) and the 2nd-order differential (Delta-Delta) coefficients have
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shown effective capabilities for many diagnostics problems [13–16]. For fault diagnosis
of bearings and fans, Zhang et al. [13] linearly fused zero-crossing rate (ZCR), MFCCs
and Wavelet Packet Decomposition Energy features from acoustic signals from each com-
ponent and classified each fault/operating condition using the SVM classifier. Results
showed higher accuracy than a single MFCC approach. The authors of [14] took a more
comprehensive approach by combining (using a vector quantization algorithm) MFCCs
with vibrational mode decomposition (VMD) features for detecting common valve clear-
ance fault of diesel engines under different noisy conditions. Classification results using
the KNN classifier at variations of diagnostics procedures showed the influence of VMD
and the vector quantization for improved diagnostics performance. For fault detection in
bearings, Jiang et al. [15] took a more solitary approach by extracting MFCCs and Delta
features after a filtering process based on spectral kurtosis. The filtering process was made
to extract the non-Gaussian characteristics of the vibration signals from which, these MFCC
and Delta features were extracted, and classified using a convolutional neural network,
the diagnostics results showed a 98.76% accuracy against seven other existing methods.
On a different note, the authors of [16] proposed the use of MFCCs for monitoring the
Dongguashan Copper Mine, China using the microseismic events recorded between 13
December 2017 and 17 January 2018. These were classified using a Gaussian Mixture
Model-Hidden Markov Model (GMM-HMM) classification model with a 92.46% accuracy.
These motivated the use of MFCCs, Delta and Delta-Delta features for our study.

The support vector machines (SVM)’s robustness for fault diagnosis in railway sys-
tems [17], bearing diagnosis [13], fault detection in inverter drives [18], etc. is quite
remarkable and with its kernel-compatible architecture, has even better diagnostic ca-
pabilities; however, for optimum performance, feature selection has become inevitable.
Although filter-based methods like the Pearson’s correlation, linear discriminant analysis,
Chi-squared, etc. as preprocessing techniques help eliminate redundant features by a
correlation assessment of features, they cannot be solely relied upon for optimum classifier
performance. In contrast, wrapper methods perform optimally since they consider the
classifier’s performance and aim to retain features that yield the best result. The recursive
feature selection for SVM (SVM-RFE) is a reliable and efficient wrapper algorithm whose
early success for cancer classification [19] opened doors for many problems [13,17,18]. The
RFE uses the classifier’s performance as the fitness criteria to score the various subsets of
features by ranking the squared weights of each feature; however, unlike the SVM-RFE
which computes the feature weights based on a known mapping function, the SVM-RBF
has been a “black box” owing to its architecture (due to the nonlinear RBF kernel) and
this makes it almost impossible to compute the feature weight vector since the mapping
function is unknown. However, based on the superior performance of the SVM-RBF
against other SVM kernels on the same input feature set, we were motivated to employ the
SVM-RBF-RFE for electromagnetic pump fault diagnosis.

Against the limitations of our earlier sub-optimal approach in [10] whose performance
relies significantly on the locally linear embedding (LLE) algorithm and (its parameters),
after continued research studies, this study widens the scope by integrating an extra crit-
ical failure mode- unspecified power supply into the experiment to ensure that a more
reliable and comprehensive diagnostics framework is achieved. In addition, because our
past work followed a somewhat suboptimal approach—the use of the 2-dimensional LLE-
reduced MFCCs as the input to the SVM* classifier—the efficiency of the past approach
would rely immensely on the LLE algorithm and (its parameters) and this has further
motivated us to exploring higher-order features with discriminative spectral information,
selecting discriminant features by a hybrid feature selection process (correlation and recur-
sive feature elimination (RFE) algorithm), and exploring (and comparing) the proposed
SVM-RBF-RFE classification model with other popular diagnostics models. In [20], the
authors compared several diagnostics tools including the SVM and provided some intuitive
paradigms towards making choices amongst the methods and this has also motivated
our study. Although the results therein favored the RF against the others, the deduction
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remains questionable considering that (1) the features used for the comparison may be
insufficient/inadequate, (2) the study lacks a reliable parameterization paradigm for the
classifiers which may result to over-fitting and/or under-fitting issues and (3) the impact of
discriminative feature selection was not considered. Consequently, this paper significantly
presents the following key contributions:

• Proposal of a cost-efficient MFCC-based FDI technology for electromagnetic pumps
based on highly discriminant features.

• Implementation of a rank-based feature selection based on Pearson’s correlation
and asymptotic significance (recursive feature elimination of irrelevant features) for
discriminative feature selection.

• Improvement of the earlier proposed MFCC-LLE-SVM* fault detection method for
improved FDI.

3. Theoretical Background

In this section. the theoretical background of continuous temperature monitoring, time–
frequency-domain feature extraction and the SVM-RBF-RFE for fault isolation are discussed.

3.1. Comprehensive Feature Extraction

Feature extraction remains an essential procedure required for accurate and reliable
condition assessment of systems from its vibrational (or any other physical sensor-extracted)
signals. In the following sub-sections, continuous temperature monitoring and time–
frequency-domain feature extraction for condition monitoring are discussed.

3.1.1. Continuous Temperature Monitoring

In most control systems, temperature sensors provide reliable and valuable infor-
mation for continuously monitoring the thermal conditions of the systems. Often, such
monitoring is needed for both the system and the environment in which it functions.
For electromagnetic devices, increased amperage (caused by excessive voltage, overload,
unlubricated components, etc.) usually causes the induction coil heat up (increased temper-
ature). By installing temperature sensors such as infrared thermometers, thermocouples,
resistance temperature detectors (RTDs), temperature transducers, thermistors, etc. on
these pumps, detection of defined conditions are possible to prevent system damage [21].

Although temperature monitoring serves to provide good visual monitoring as tem-
perature varies across operating conditions, the use of temperature data for diagnostics, is
quite unreliable since several faults (or operating conditions) could have the same/similar
thermal condition; hence, are inefficient for fault detection as we aim to achieve in this study.

3.1.2. Time–Frequency-Domain Feature Extraction

Against the limitations of statistical time-domain features to capture characteristic
frequencies in vibrational signals, frequency-domain feature extraction was widely being
used to provide vital spectral information for identifying and monitoring the various
constituent frequencies of a vibrational signal [22]; however, they lack transient infor-
mation in the data and frequency information can only be extracted over a complete
signal duration [23]. Consequently, to mitigate the drawbacks of these homogeneous
techniques, time–frequency-domain feature extraction methods come in handy and with
better effectiveness.

Vibrational signals are non-stationary in nature and contain low energy level signals
in the presence of dominant noise. This makes it an uphill task to identify and isolate
such low energy level fault signals; however, time–frequency-domain signal processing
techniques have strong capabilities in decomposing vibrational signals into several energy
levels [24–26] and this makes it possible for them to identify and isolate fault signals at
various levels. The short-time Fourier transform (STFT), wavelet transform (WT) and the
empirical mode decomposition (EMD) are some of the popular techniques for time–frequency-
domain feature extraction; however, due to their limitations (STFT is limited by the choice of
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window function [24], the EMD has a high sensitivity to noise [25] and WT is unreliable for
long-range dependencies [26]), the use of MFCCs and their derivatives as reliable features
for diagnostics (and prognostics) problems have recently attracted global attention because
of their remarkably significant immunity to noise and robustness in extracting underlying
nonlinear characteristics from stationary and non-stationary signals [14–16].

Figure 1 shows the schematic procedure for extracting MFCCs from a signal; however,
the stages summarized below provide the stages for their extraction.

Figure 1. Mel frequency cepstral coefficient (MFCC), Delta and Delta-Delta feature
extraction processes.

Stage 1: The pre-emphasis, framing and windowing step provides the solution to
capturing the spectral information across the non-stationary signals. Since the splitting is
done is short frames, each frame is assumed to be stationary. After splitting the vibrational
signal into short time frames (preferably between 20–40 milliseconds), compute the fast
Fourier transform (FFT) of each of the frames using Equation (1).

−→
S (K) =

1
N

N−1

∑
i=0

−→
A (t)h(i)e−j( 2πik

N ), 0 ≤ i ≤ N (1)

where
−→
A (t) and

−→
S (k) are the input time-domain signal and the frequency-domain output

of the signal, respectively and k is the length of the FFT. N is the number of frames of
the signal and h(i) is the Hamming window whose value depends on a normalization
factor (β).

Stage 2: The frequencies are converted from Hz scale to Mel scale by a process
called Mel Warping—square

−→
S (k), obtain the energy spectrum and use Mel band filters

(m = 1, 2, . . . , M) spaced uniformly on the Mel scale shown in Equation (2) to filter.

f (m) =

(
N
Fs

)
B−1

[
B( fl) + m

B( fu)− B( fl)

M + 1

]
(2)

where Fs is the sampling frequency, fu and fl are the upper and lower frequencies, respectively,
M is the number of Mel filters and B( f ) and B−1 are the Mel scale and its inverse, respectively.

Stage 3: The log energy of each filter bank is computed using Equation (3)

−→
S (m) = ln

(
N−1

∑
m=0
|−→S (k)|2Hm(k)

)
, 0 ≤ m ≤ M (3)

where Hm is the transfer function of the m-th filter.
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Stage 4: Lastly, to obtain the Mel cepstral coefficients, the logarithmic Mel spectrum is
converted back to the time-domain by taking the discrete cosine transform (DCT) of the
spectrum using Equation (4)

c(n) =
M−1

∑
m=0

−→
S (m) cos πθ(m + 0.5)

Θ
(4)

where θ is the number of frames, and Θ is the number of MFCCs extracted from nth frame
of the signal (0 ≤ θ ≤ Θ).

In practice, the lower order MFCCs (usually 2nd–13th MFCCs) contain more discrimi-
native spectral information from the signal; however, to further extract more discriminative
features, the n-order difference cepstral coefficients are computed using Equation (5) in
addition to the MFCCs to generate a 12(n + 1)-dimensional vector where the first-order dif-
ferential (n = 1) cepstral coefficients constitute of the Delta features while the second-order
differential (n = 2) cepstral coefficients constitute the Delta− Delta features.

di(n) =
∑N

n=1 n(ci+n − ci−n)

2 ∑N
n=1 n2

(5)

where di(n) is a delta coefficient, from frame i computed in terms of hte static coefficients
ci+n to ci−n. Basically, at N = 2, the acceleration coefficients (Delta− Delta) are returned
whereas at n = 1, the velocity coefficients (Delta) are returned.

3.2. SVM-RBF-RFE Algorithm for Fault Isolation

Since 1998 [19], the SVM have been found resourceful for many classification problems;
hence, its popularity/dominance for systems diagnostics. Being a binary classification
algorithm by birth, its potentials for multi-class problems has over the years, been being
harnessed and employed for several fault detection/classification problems.

When provided with labeled inputs, this ML technology creates a maximum-margin
hyperplane that creates a separation between data points in the same class/label while
creating a maximum distance between the classes to the hyperplane(s). This is achieved by
a mapping function φ.

For a pair of corresponding vectors in the input space and feature space (Xi and Zi, respec-
tively),

Zi = φ(Xi) (6)

Given a linearly separable set of multi-class data {(x1, y1), (x2, y2), ..., (xn, yn)}, where
xn ∈ Rm and yn ∈ {−1, 1}, a hard margin SVM that separates the data is computed using
Equations (7) and (8), respectively:

wTxi + b ≥ 1 for yi = 1 (7)

wTxi + b ≤ −1 for yi = −1 (8)

where wTxi is the weighted training examples, b is the bias, ξi (0 < ξi ≤ 1) is a softening
constraint and yi is the label.

On the other hand, if the data are not linearly separable as is in this case study, a soft
margin SVM which transforms the space of the data to a higher order is quite effective
and this is achieved by introducing a softening constraint ξi (0 < ξi ≤ 1). Consequently,
Equations (7) and (8) are updated as Equations (9) and (10), respectively:

wTxi + b ≥ 1− ξi for yi = 1 (9)

wTxi + b ≤ −1− ξi for yi = −1 (10)

Minimizing the ‖w‖ increases the distance between the hyperplane; however, its
success depends on a regularization parameter, C which controls the relative weight-
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ing between ensuring a minimal margin and maximum separation. Consequently, the
aim becomes

min
‖w‖2

2
+ C

N

∑
i=1

ξi (11)

Employing the Lagrange function in Equation (12) gives the desired output:

L(w, b, α, ξi) =
‖w‖2

2 + C ∑N
i=1 ξi −∑N

i=1 αi · {yi · [(w, xi) + b]− 1} (12)

where αi is the Lagrange coefficient.
By constraining αi : αi 6= 0(0 < αi ≤ C), the Lagrangian would be bounded so that the

optimal hyperplane achieved with the weight vector and the hyperplane function shown
in Equations (13) and (14), respectively.

w =
N

∑
i=1

αi · yi · Zi (13)

f (Z) = b +
N

∑
i=1

αi · yi · [Zi · Z] (14)

where [Zi · Z] is the inner product of the two vectors in the input feature space.
Unless with a linear kernel SVM, the weight vector w can be computed directly

according to Equation (13) since the mapping function is known. Consequently, employ-
ing the RFE algorithm which considers all input feature weights and eliminates features
with least squared weight w2 via a backward elimination process, the least ranking fea-
tures can be eliminated while the features with the most squared weights are considered
most discriminant.

On the other hand, when a nonlinear kernel (like the RBF kernel as defined in
Equation (15) is employed, the computing the weights becomes a black box since the
mapping function is unknown.

K
(
Xi, X

)
= exp

(
−
∣∣Xi − X

∣∣2
2σ2

)
(15)

where σ is the standard deviation and X is the mean of Xi(i = 1, 2, ..., N)
Some studies have tried solving this problem [24] by expanding the nonlinear RBF

kernel into its Maclaurin series, and then computing the weight vector w from the series
according to the contribution made to classification hyperplane by each feature; however,
the high level of assumptions on which its effectiveness depends. High computational
costs associated with this approach makes it non-feasible for near real-time industrial
applications. In practice, features selected by the SVM-RFE would perform just as well for
the SVM-RBF-RFE classifier with lesser false alarm rate.

Subsequently, the classifier can be constructed using the optimal hyperplane, input
data samples and corresponding parameters using the RBF function in Equation (16):

f (x) = sign

(
b +

N

∑
i=1

αi · yi · K
(
Xi, X

))
(16)

4. Proposed FDI Model

This study aims at developing a robust diagnostic model for FDI of electromag-
netic pumps under various running conditions. Figure 2 shows the proposed diagnos-
tics method.

To ensure a comprehensive feature extraction, in addition to MFCC, Delta and Delta-
Delta features are also extracted followed by a correlation test using Pearson’s correlation
(ρ), followed by a rank-based selection of uncorrelated features based on their asymptotic
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significance using the SVM-RFE. As shown in Figure 2, the Pearson’s correlation (ρ) test
assesses correlation amongst features from which, one amongst highly correlated features is
selected while the others are discarded/eliminated. This simple but effective statistical test
which was developed by Karl Pearson in 1911 [27] is a measure for quantifying the linear
dependence between two variables X and Y and has a range of −1 (negative correlation)
and +1 (positive correlation. This is obtained using Equation (17).

ρX,Y =
cov(X, Y)

σXσY
(17)

where σX and σY are the standard deviations of X and Y, respectively while cov(X, Y) is
the covariance.

Figure 2. Proposed fault detection and isolation (FDI) model.

In an unsupervised manner, each feature’s correlation between the other features are si-
multaneously computed using Equation (17). Negatively correlated (uncorrelated) features
are retained while features with a correlation value greater than (or equal to) a threshold
value of 0.9 are eliminated. This is to ensure that only the highly correlated features are
eliminated. Apart from dimensionality reduction, this pre-processing step easily eliminates
the chances of classifier confusion—a situation whereby non-discriminant/redundant
features are used as inputs for a classifier.

Next, using the uncorrelated feature set as input, the SVM-RFE is used to select
the most important features (high-ranking features) while the least-ranking features are
eliminated. When the SVM accepts the input features, it assigns weights to them. These
weights then constitute the criteria for feature importance. The RFE’s goal is to recursively
assess these features based on their respective weights. In other words, the SVM is internally
wrapped by the RFE for highly discriminant feature selection.

Features extracted from a portion of vibration signals are finally used to train the SVM-
RBF classifier while the remaining data files are used for testing. Upon achieving optimum
training by tuning the C parameter and selecting the appropriate RBF gamma (γ) parameter,
model performance evaluation is done using standard classification performance metrics:
precision, sensitivity, F1-score, false positive rate and test accuracy [26].
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5. Experimental Analysis

This section presents the experimental validation of the proposed FDI methodology
on five VSC63A5 electromagnetic pumps running under the conditions summarized in
Table 1.

All experiments were carried out at room temperature at the Defense Reliability
Laboratory, Kumoh National Institute of Technology (KIT), Republic of Korea.

Table 1. Pump working conditions.

Pump Label Input Power Working Fluid Composition Failure Mode Class Label

VSC-1-CNT 220 V, 60 Hz 4 L Diesel, 5 g Paper Ash Contamination Fluid 0
VSC-2-VISC 220 V, 60 Hz 3 L Diesel, 3 L SAE40 Engine Oil Highly Viscous Fluid 1

VSC-3-CLOG 220 V, 60 Hz 4 L Diesel, 1 g Paper Ash, 0.2 L Paraffin Solution, 100 g Pectin Powder Clogged Suction Filter 2
VSC-4-NORM 220 V, 60 Hz 10 L Clean Diesel Normal 3
VSC-5-AMP 300 V, 40 Hz 10 L Clean Diesel Unspecified power supply 4

5.1. Experimental Setup

Our test-bed shown in Figure 3 consists of five VSC63A5 electromagnetic pumps with
a standard rating of (220 V, 60 Hz) at various operating conditions. To simulate these fault
conditions, paper ash (after being burnt) was sieved with an 88 microns sieve. Then, 5 g of
sand fractions were mixed with 4 L of diesel and the mixture used as the working fluid
for VSC-1-CNT. Equal volumes of SAE40 engine oil and diesel were mixed to simulate a
relatively highly viscous fluid for VSC-2-VISC while 1 g of the gravel fraction from the
paper ash was measured and mixed with 100 g of pectin powder and 0.2 L of paraffin
solution and prepared for use by VSC-3-CLOG. The mixture was stirred continuously by
an overhead stirrer (OSA-10 made by LK LABKOREA) to ensure a Brownian motion of the
contaminants (and minor precipitates) in the working fluid. After the experiment, these
particles and precipitates clogged the suction filter in VSC-3-CLOG. For VSC-4-NORM and
VSC-5-AMP, clean diesel fuel was prepared for each of the pumps.

Figure 3. Photo of experimental setup.

Apart from VSC-5-AMP, which was powered by a PCR 500LA variable AC power
supply to simulate an unspecified input power condition, the other pumps were powered
by a 220 V, 60 Hz automatic voltage regulator (AVR). In addition, the suction filter was
removed in all the pumps except VSC-3-CLOG to avoid filter clogging and ensure a free
run of the respective fluids through the pumps. The pumps were operated under the
recorded conditions for 10 days (8 h per day) while being monitored. These recorded
working conditions were chosen due to recent findings on these conditions being the most
probable failure modes these pumps (and solenoid valves) are prone to [6].
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Through a NI 9234 module, the vibrational signals were stored via high sensitivity
accelerometers attached vertically under each pump’s rotor casing as illustrated in Figure 3
(Right). In addition, the real-time temperature data of the pumps were stored for visual
monitoring via a NI 9212 module through a two-wire thermocouple attached as also shown
in Figure 3 (Right).

Both modules were connected to an NI CompactDAQ 9178 and through a LabVIEW
interface, the signals were sampled at 1 KHz and saved in a .csv file format.

5.2. Experimental Results

At the end of the experiment, the following were observed: A contamination in the
pressure chamber of VSC-1-CNT, an observable stress-induced vibration by VSC-2-VISC, a
clogged suction filter in VSC-3-CLOG and a coil burn-out in VSC-5-AMP. Apart from VSC-
4-NORM which operated as healthily as expected, VSC-1-CNT was observed to heat more
than the other pumps (as seen from Figure 4b). This was also accompanied by a reduction
in pump pressure due to cavitation. VSC-2-VISC also showed a significant reduction in
pressure (accompanied by rumbling sounds) resulting from the pump’s effort to pump a
more viscous/heavier fluid. VSC-3-CLOG, whose suction filter was clogged, showed an
increase in vibration (with rumbling sound) with a reasonable amount of cavitation and
reduced output pressure while VSC-5-AMP showed a reduced output pressure and an
increased vibration with a crackling sound owing to increased amperage and overload on
the solenoid/electromagnetic coil.

For each operating condition, 100 min of vibrational data were collected in 10 data
files and labeled as shown in Table 1. Figure 4a shows a view of the raw vibration signals
of the pumps while Figure 4b shows their varying continuous temperature monitoring
results (used for visual monitoring only) for the first few minutes of operation.

(a)

(b)

Figure 4. (a) Raw vibrational signals and (b) continuous temperature monitoring results for (1)
VSC-1-CNT: Contaminated Fluid, (2) VSC-2-VISC: Heavy Fluid, (3) VSC-3-CLOG: Filter Clogging,
(4) VSC-4-NORM: Normal/Healthy Condition and (5) VSC-5-AMP: Unspecified Power Supply.
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5.3. Comprehensive Feature Extraction and Selection

From each pump’s vibrational signals, I2 MFCC, 12 Delta and 12 Delta-Delta fea-
tures (2nd to 13th MFCCs, Deltas, and Delta-Deltas) were extracted respectively while
the rest were discarded because the higher DCT coefficients reflect fast changes in the
filter bank energies and as verified in [13,14], these fast changes affect classification per-
formance. Subsequently, a 36-dimensional feature vector was produced and prepared for
feature selection.

The extracted features were checked for a high positive correlation (one feature
amongst a set of features with a correlation above 90% is selected while the rest are
dropped). After the correlation test, 34 uncorrelated features were obtained while 3rd
and 4th Delta features were dropped due to their high correlation with 2nd Delta. Next,
the 34 uncorrelated features were used to train an SVM-RFE model to obtain the 20 most
discriminant features. Figures A1–A3 (Appendix A) present the correlation plots between
the features from start to the end of the feature selection process. As shown in Figure A3,
the 20 high-ranking features have very high discriminance (low correlation) amongst them.
Figure 5 shows the ranking performance of the 34 uncorrelated features.

Figure 5. SVM-recursive feature elimination (RFE) ranking performance of the 34 uncorrelated features.

As shown, the features with the most squared weights are assigned a rank of value 1
while the features with least squared wights rank between 0 and 1.

5.4. Fault Isolation by the SVM-RBF-RFE

First, the 20 high-rank features from the training data set were used to train the SVM-
RBF model. To achieve this, about 70% of the whole data files are used for training while
the remainder (about 30% of the data files) were used for testing.

Importantly, the choice of SVM parameters greatly affects its classification capability.
On a more practical sense, the RBF kernel, generally has more isolation capabilities for
multi-class problems. As a result, its practical use depends hugely on the combination
of the C and γ parameters and determines the robustness of the approach against other
methods. Large C and γ parameters lead to over-fitting and prolong time for training
while the reverse is the case for small C and γ values; therefore, choosing an optimal
combination of these parameters in the most non-exhaustive manner becomes neces-
sary for cost-efficient industrial applications. This problem can be mitigated by a grid
search for an optimal combination amongst an exponential range of parameters (like C,
γ ∈ {100, 101, 102}) [28]. This is because these set of parameter combinations has proven
records for reducing over-fitting. Subsequently, a grid search on 10 SVM-RBF models
consisting of C, γ ∈ {100, 101, 102} combinations was done over a 10-fold cross-validation
respectively, with the SVM-RBF[C = 10, γ = 1] returning the most accurate classification
report (99.46% test accuracy).
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To further verify the claim that features selected by the SVM-RFE would perform
just as well for the SVM-RBF-RFE classifier and present a visual classification result, a
standard locally linear embedding (LLE) (NN = 15) algorithm [10] was employed for
dimensionality reduction of the 20 high ranking features to a 3-dimensional feature set
for visualization in 3D space. The selected features are first normalized (between 0 and 1)
and the first three local embeddings (LLE 1, LLE 2 and LLE 3) of the features are obtained
linearly. Figure 6 shows the isolation results in 3D where the colors light blue, dark blue,
green, yellow and red represent VC-1-CNT, VSC-2-VISC, VSC-3-CLOG, VSC-4-NORM
and VSC-5-AMP, respectively. Figure 7 shows the isolation plot (in 2D) of the SVM-RFE
and SVM-RBF-RFE classifiers with identical parameters (C = 10, γ = 1), respectively. The
horizontal and vertical axes represent the first and second local embeddings (LLE 1 and
LLE 2), respectively while the color assignment for the pumps are retained as in Figure 6.

Figure 6. 3D-view of the locally linear embedding (LLE)-transformed features showing high discriminance (NN = 15).

Figure 7. Fault isolation results of high-ranking features with (Left) showing classification perfor-
mance of SVM-RFE and (Right) showing SVM-RBF with RFE classification results.

As shown, the transformed features are separable (due to high discriminance of the
selected features) while the SVM-RBF-RFE classifier shows a better isolation performance
on the LLE-transformed features (NN = 15). This provides reliable intuition on the better
isolation performance of the SVM-RBF-RFE against the conventional alternative.
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5.5. Performance Evaluation and Comparison

The analysis herein aims at addressing the aforementioned challenges in [10,20]
by exploring the efficiency of the SVM-RFE on deeper spectral features. This shall not
only ensure that optimal FDI performance is achieved using the salient features at lesser
computational costs, but the strenuous manual parameter tuning stage associated with
other methods can be avoided by employing the grid search technique over a range of
SVM parameters.

To assess the performance of the proposed FDI technology, standard classifier per-
formance evaluation criteria were employed for performance evaluation of the proposed
model alongside computational costs associated with its implementation. All analyses
were done using Python 3.7 on a desktop computer with the specifications: AMD Ryzen
7 (manufactured in Taiwan), 2700 Eight-core 3.20 GHz processor and 16 GB RAM. It is
important to note that computation costs (speed) depend hugely on the computer con-
figuration whereby a high-speed, large memory computer configuration returns a faster
implementation process and vice versa.

First, Table 2 shows the classification results of the SVM-RBF[C = 10, γ = 1] on the test
data while Figure 8 shows the confusion matrix and receiver operating characteristic (ROC)
curve of the model’s performance.

Table 2. Proposed model classification results.

Pump Label Precision Recall F1-Score

VSC-1-CNT 0.95 0.98 0.97
VSC-2-VISC 1.00 1.00 1.00

VSC-3-CLOG 0.98 0.95 0.96
VSC-4-NORM 1.00 1.00 1.00
VSC-5-AMP 1.00 1.00 1.00

vspace-12pt As shown in Figure 8a, the model returns zero (0) false positives (FP) and
false negatives (FN) for VSC-2-VISC (Class 1), VSC-4-NORM (Class 3) and VSC-5-AMP
(Class 4). In contrast, it appears VSC-1-CNT (Class 0) and VSC-3-CLOG (Class 2) returned
the highest FP and FN, respectively with four (4) wrongly classified samples. Invariably,
VSC-1-CNT returned a FN equal to the FP of VSC-3-CLOG each with two (2) wrongly
classified samples. This is further reflected in Figure 8b which shows the lower area under
the curve (AUC). As much as the model was able to all the classes (Pumps) accurately,
while VSC-1-CNT and VSC-3-CLOG appear to have smaller AUCs (shown in blue and
red colors, respectively); nevertheless, we further compared the proposed model with ten
(10) standard classification algorithms, namely: SVM-RFE, quadratic discriminant analysis
(QDA), AdaBoost classifier (ABC), gradient boosting classifier (GBC), naive Bayes classifier
(NBC), K-nearest neighbor (KNN), support vector machines (SVM), multi-layer perceptron
(MLP), neural network, random forest (RF), decision tree (DT) and the traditional logistic
regression (LR).
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(a)

(b)

Figure 8. SVM-RBF with RFE performance results showing (a) confusion matrix and (b) ROC curve.

Figure 9 shows the comparison in FDI performance of the classifiers where the blue
dotted lines with squared intersects represent their respective test accuracies while the red
dotted lines with round intersects represent their respective training accuracies. The purple
dotted lines with triangle intersects represent their respective training times (in percentage
of the total training time of the whole classifier).

Figure 9. SVM-RBF-RFE isolation performance comparison with other classifiers.

As shown, the SVM-RBF-RFE outperformed these other models based on test accuracy;
however, when considering the computation cost, although not the most accurate (a test
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accuracy of 99.46%), the KNN and NBC were the fastest (with a train time of 0.02% each)
while in contrast, the GBC and RF are the most computationally expensive (even though
they both rank amongst the most accurate). Nevertheless, with a train time of 0.04%
and the most accurate with the least false alarm rate, the SVM-RBF-RFE model is quite
computationally cost-efficient.

5.6. Cost Analysis of the Proposed FDI Method

As proposed in this study, the major contribution of this experimental study is to
verify the computational cost-efficiency of the proposed FDI method. Already, some argue
the cost-inefficiency of the SVM as a FDI tool [20]; however, as this study shows, the SVM
functions quite optimally in a very computationally friendly manner when provided with
the right inputs—highly discriminant features—and with the right architecture, not only
will a minimal false alarm rate be achieved, its use for near-real-time applications can
be relied upon. This subsection compares the SVM-RBF-RFE’s efficiency with several
scenarios to assess its cost-efficiency in real situations.

Using the same SBM-RBF model with the same parameters, we compared the model’s
performance on the following cases which correspond to the number of feature whose
correlation map is shown in Figures A1–A3, respectively:

• Scenario1: The use of 20 highest-ranking features.
• Scenario2: The use of all 34 uncorrelated features.
• Scenario3: The use of all 36 extracted features.

Figure 10 presents computational cost (expressed in training time) and accuracy
comparison for the three scenarios.

Figure 10. Computational cost (training time) and accuracy comparison of the SVM-RBF-RFE in
different feature set scenarios.

As shown, an inverse relationship is seen between the test accuracy and computational
cost with Scenario1 returning the most accurate FDI performance (test accuracy of 99.46%)
at the lowest computational cost (train time of 0.03 s) with the least, but highly discriminant
number of features. This is in sharp contrast to Scenario 2 and Scenario 3 which returned
a lesser and the least test accuracy with a higher and the highest computational costs,
respectively. Although the decline in accuracy is shown between Scenario 1 and the other
scenarios, the impact of highly correlated features (Scenario 3) does not affect the accuracy
as much (only a difference by 0.01% is observed) because they are just a few (Delta 3
and Delta 4). However, the difference in computational costs of Scenario 2 and Scenario
3, in comparison with Scenario 1 shows the advantage of salient/discriminative feature
selection for reduced computational costs. This validates the impact of highly discriminant
features for improved cost advantage and diagnostics accuracy—the major contributions
of this study.
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6. Conclusions

As an extended version of our previous study, this paper presents a cost–efficient
and reliable vibration–based fault detection and isolation (FDI) technology for VSC63A5
electromagnetic pumps based on SVM-RBF-RFE and discriminative features. By extracting
Mel frequency cepstral coefficients (MFCCs) and their n–order differentials, highly reliable
feature extraction was achieved; however, each feature has its uniqueness and weakness for
fault isolation. Selecting discriminant features via a hybrid feature selection process (corre-
lation and recursive feature elimination (RFE) algorithm) was proposed. Subsequently, a
rank-based feature selection based on recursive feature elimination of uncorrelated features
was implemented for salient feature extraction.

With these features, a Gaussian kernel support vector machine was employed for
isolation. In comparison with other classifiers, results show that the proposed feature
selection approach computationally cheaper and significantly improves diagnostics per-
formance. The accuracy and cost efficiency of the proposed FDI methodology was further
assessed in three different scenarios which consists of various feature-sets. Results show
that the proposed FDI technology is not only computationally efficient but also yields
highly accurate FDI results with minimal false alarm rate.

The proposed scheme can be enhanced to account for other failure modes which may
form the scope of building a prognostics scheme for the pumps. Since the faults were
artificially designed (against the natural fault behavior in real life situations), real-time
applications may be limited so future research studies would be aimed at investigating
possible solutions for real-time applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Ada-boost Classifier
AI Artificial Intelligence
AVR Automatic Voltage Regulator
DAQ Data Acquisition
DCT Discrete Cosine Transform
DL Deep Learning
DT Decision Tree
EMD Empirical Mode Decomposition
EOL End-of-life
FDI Fault Detection and Isolation
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FFPN Feed Forward Pattern Recognition Network
FFT fast Fourier Transform
GBC Gradient Boosting classifier
GMM-HMM Gaussian Mixture Model-Hidden Markov Model
NI National Instrument
NN Nearest Neighbor
KNN K-Nearest Neighbor
LLE Locally Linear Embedding
LR Logistic Regression
MFCC Mel Frequency Cepstral Coefficient
ML Machine Learning
MLP Multi-Layer Perceptron
NBC Naive Bayes Classifier
PHM Prognostics and health management
QDA Quadratic discriminant analysis
RBF Radial Basis Function
RF Random Forest
RFE recursive feature elimination
RTD Resistance Temperature Detector
SVM support vector machine
SVM-RBF Gaussian kernel SVM
SVM-RBF-RFE Gaussian kernel SVM with RFE
SVM-RFE SVM with RFE
STFT short-time Fourier transform
VMD vibrational mode decomposition
WT Wavelet Transform
ZCR Zero-crossing rate

Appendix A. Feature Selection Results

This document presents feature selection results from the initial 36–dimesnional
feature set (12 MFCCs, 12 Delta coefficients, and 12 Delta-Delta coefficients) to the optimal
20–dimensional feature set. The aim is to show the discriminance of the selected features
in comparison with the full feature set using correlation plots. As shown in Figure A1, the
Delta 3 and Delta 4 coefficients are highly correlated with the Delta 2 coefficient (with a
p-value of 0.72 respectively).

Following the first feature selection step– a correlation test with a threshold of 0.7,
the 3rd and 4th Delta coefficients were eliminated leaving the 34–dimensional feature set
whose correlation plot is shown in Figure A2. This filter-based approach ensures that as
much as possible, the full input variables characteristics are well assessed from a statistical
viewpoint thereby ensuring that the inter-relationships/dependence of the input variables
are well assessed/compared.

• The cost of employing the RFE algorithm on the full feature set is reduced,
• Features for prognostics could be easily detected. The highly correlated features

which although are irrelevant for the proposed diagnostics scheme, can be highly
reliable for prognostics purposes, and

• The overall computational cost reduced.



Electronics 2021, 10, 439 18 of 20

Figure A1. Correlation matrix of all the 36–dimensional feature vector.

Figure A2. Correlation matrix of the 34–dimensional feature vector obtained by the filter–based feature selection process
(Pearson’s correlation test).



Electronics 2021, 10, 439 19 of 20

Lastly, Figure A3 presents the correlation plot of the 20 highest ranking features and
as shown, all the selected features are very uncorrelated with a maximum p–value of 0.59
existing between the MFCC 2 and MFCC 3.

By following multiple feature assessment viewpoints (statistical and RFE–based), h
salient features can be selected based on discriminance levels/ranking which minimizes
the curse of dimensionality and classifier confusion, thereby minimizing computational
costs. This is the bedrock and motivation for this study.

Figure A3. Correlation matrix of the 20–dimensional highest–ranking feature vector obtained by the SVM-RFE algorithm.
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