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Abstract: Android’s openness has made it a favorite for consumers and developers alike, driving
strong app consumption growth. Meanwhile, its popularity also attracts attackers’ attention. Android
malware is continually raising issues for the user’s privacy and security. Hence, it is of great practical
value to develop a scientific and versatile system for Android malware detection. This paper presents a
hierarchical approach to design a malware detection system for Android. It extracts four authorization-
sensitive features: basic blocks, permissions, Application Programming Interfaces (APIs), and key
functions, and layer-by-layer detects malware based on the similar module and the proposed deep
learning model Convolutional Neural Network and eXtreme Gradient Boosting (CNNXGB). This
detection approach focuses not only on classification but also on the details of the similarities between
malware software. We serialize the key function in light of the sequence of API calls and pick up
a similar module that captures the global semantics of malware. We propose a new method to
convert the basic block into a multichannel picture and use Convolutional Neural Network (CNN)
to learn features. We extract permissions and API calls based on their called frequency and train the
classification model by XGBoost. A dynamic similar module feature library is created based on the
extracted features to assess the sample’s behavior. The model is trained by utilizing 11,327 Android
samples collected from Github, Google Play, Fdroid, and VirusShare. Promising experimental results
demonstrate a higher accuracy of the proposed approach and its potential to detect Android malware
attacks and reduce Android users’ security risks.

Keywords: information security; feature extraction; Android malware detection; similar module;
deep learning

1. Introduction

With the popularity of mobile Internet, smartphones have been integrated into every-
one’s life. According to the China Internet Information Center statistics, mobile Internet
users’ proportion in China’s total Internet users increased year by year from 2016 to 2019 [1].
By June 2019, the number of mobile Internet users in China reached 847 million, the pro-
portion of mobile Internet users in China has gained 99.1%. This shows that access to
the Internet through smartphones has become the primary way for Internet users. Smart-
phones store more and more personal privacy information; consequently, more and more
attackers develop mobile malware to attack smartphones, bringing substantial security
risks to mobile users.

By February 2020, the iOS operating system’s global market has exceeded 20%, while
that of Android has surpassed 74%. The two mobile operating systems occupy almost
all mobile markets [2]. Due to the closeness of the iOS platform and the strict review
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process when the application is released, there are very few attacks against the iOS platform.
Compared with iOS, Android is an open-source mobile operating system. There is no unified
APP store. Users can download the installation package from the third-party APP store or
manually install the program, enabling users to control their mobile phones more flexibly.
However, this flexibility of Android also makes the Android platform more vulnerable
to malware attacks. Mobile malware refers to infectious and destructive mobile phone
programs, including malicious fee deduction, privacy theft, remote control, malicious
communication, tariff consumption, system damage, fraud and rogue behavior, etc. [3].

There are various methods to detect malware, e.g., dynamic behavior methods [4]
monitor a program’s behavior when running. It is difficult to achieve real-time dynamic
behavior monitoring and analysis on mobile phones. Static behavior methods [5] are to
extract the malware’s static characteristics, which is not effective in detecting that malware
that uses obfuscation, encryption, or polymorphism techniques. A hybrid analysis [6] is
a technology that combines dynamic and static methods to analyze unknown programs.
Although the hybrid method has the advantages that dynamic and static methods do not,
it generally needs to consume more system resources and spend more time analyzing pro-
grams. With the rapid development of deep learning in recent years, many researchers [7,8]
began to use it for malware detection. Although deep learning technology has a significant
effect on malware detection due to its incomprehensibility, the deep learning model’s per-
formance in different environments is quite different because of the massive dependence
on data sets and extracted features. These works were just focused on the detection or
classification of malware. They did not consider the details of the similarities between
malware software.

Correspondingly, there are two types of features: static analysis features and dynamic
analysis features. Static analysis features can be extracted from the application, scanned,
such as header scan, tail scan, and integrity check, to obtain information. Static analysis
features include requested permissions [9–12], Application Programming Interface (API)
calls [13–16] , and basic blocks [17], usually acquired by disassembling the program and
analyzing an AndroidManifest file [18]. Dynamic analysis features contain system function,
network feature, API, and so on, which can be gained by running a program to be detected
and monitoring its execution in a controlled environment, such as on a virtual machine
or physical device. For instance, papers [19,20] have mainly focused on features at native
level API calls. Hou et al. [21] extracted the Linux system API invoked by the application
through dynamic analysis. Most of the recent works only pay close attention to a single
feature or two features.

We found the following problems from the above-mentioned literature to the best of
our knowledge and proposed our solution to overcome these issues. Firstly, an application
contains many functions, including system functions and user functions customized by
the developer. However, the primary way of an Android application interacting with the
system is through the system functions, but the number of times each system function
is called is different. Therefore, after research and analysis, we find non-key functions
(user functions and functions that are just called one time) account for more than key
functions are called twice and more. If all functions are processed, non-key functions will
consume a vast amount of system resources. This paper then extracts the key functions
and digitizes them through the sequence of API calls, which improves the application’s
analysis performance and reflects the original function of the program. Secondly, instead of
extracting and analyzing the whole program directly, we take a basic block as a research
unit, which is a set of instructions that cannot be branched into or out of, and it represents
the overall characteristics of an application. Thirdly, there are always some drawbacks to
using a simple feature; we develop hierarchically extract authorization-sensitive features to
identify the most significant features that can be effective in distinguishing between benign
and malicious applications. As the malicious software has gradually become diverse and
complex due to the rapid increase of its development, the traditional malware detection
methods, i.e., static, dynamic, and hybrid method appear inefficient for tackling such
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harmful programs. Therefore, we focused on the similarities of malware software and
proposed a hierarchical approach that combines machine learning technology with deep
learning to deal with the unpredictable malware’s variety. The hierarchical approach
extracts authorization-sensitive features that can be effective in distinguishing between
malicious and benign applications. According to the extracted different features, we adopt
the hierarchical classification method for Android malware detection. The significant
contributions of this paper include the following aspects:

1. Instead of extracting and analyzing all Android static and dynamic features sepa-
rately, we hierarchically extracted four authorization-sensitive features: basic blocks,
permissions, API calls, and key functions.

2. We extract basic block features based on the proposed multichannel transforming
method. Mapping Table and Finding Adjacent Free Pixels method are put forward to
deal with pixel conflict. Except for macro features, we extract permissions and API
calls to build a feature library. We also pay close attention to key functions called by
the application. A key function call graph is generated to research the key function
call relationship.

3. The novelty of our proposed hierarchical malware detection approach is as follows:
firstly, for the system functions, we use traditional techniques to hash key function and
calculate the similarity of a similar module to test; secondly, taking into account the
permissions and API calls, eXtreme Gradient Boosting (XGBoost) is used to classify;
thirdly, for the given basic block features, CNN classifier is used for detection; finally,
CNNXGB model that integrates XGBoost and CNN models is built to improve the
classification accuracy.

4. Apart from the novelty, another contribution is the collection of Android samples
(67,577) between 2014 and 2020 to initialize a similar module feature library for our
experiments. Secondly, we adopt 11,327 Android samples to train the deep learning
model. Then we conduct an extensive evaluation of our dataset to compare the
detection results with widely used detection methods.

The rest of this paper is organized as follows. Section 2 reviews the related work
concerning this paper. Section 3 presents the proposed method, including feature extraction
and malware detection methods. Section 4 describes the experimental setup, results, and
evaluation. Finally, we conclude the paper and outline the main directions for future
research in Section 5.

2. Related Work

This section elaborates the different literature reviews, which are essential to acknowl-
edge the malware detection methods for Android applications.

2.1. Malware Detection Methods

Scholars at home and abroad conducted various detection schemes in the face of the
increasingly severe Android malware trend. The detection methods of mobile malware
mainly include the signature, dynamic analysis, static analysis, and deep learning. The
malware detection methods based on signature focus on signature codes [22–24], such as
semantics [25], threat behavior sequence [26], similarity [27–31], etc. Many manufacturers
widely use these methods, which have a great advantage in detection efficiency, but they
depend entirely on the signature database’s size. In addition, mobile devices’ storage
and computing capacity are limited, which further limits the application of the detection
method based on signature in mobile devices.

Dynamic analysis methods [22,23] monitor a program’s network behaviors, process
calls, and interprocess communication to analyze whether the program has harmful be-
haviors. These methods can effectively detect malicious programs with encrypted code.
However, the Android system’s fragmentation is severe, and each mobile phone manu-
facturer has added a customized part to the Android system. Static behavior methods
are to extract the features that represent the program’s behavior without executing the
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program, and then detecting the malware according to the data. The common static features
include API calls, bytecode, permission data, Dalvik, etc. [32,33]. Nevertheless, static be-
havior methods cannot detect some malicious programs that are executed by downloading
malicious code from a regular program.

Recently, machine learning has shown state-of-the-art performance for malware detec-
tion. This approach is based on learning the characteristics of the malware. This detection
process can be generally split into two steps: feature extraction and classification. In the
first step, kinds of features are extracted from samples including malware and benign,
to represent the program, and then a classifier is trained to automatically recognize the
malware. Li et al. [34] used the API calls and permissions in danger level as features and
then used Deep Belief Network (DBN) model to train. The training accuracy on the data
set Drebin was 90%. Luo et al., directly transformed APK (Android application package)
files into images and then extracted image textures with the DBN model as a part of the
features, API calls, permissions, and activities as another part of the features. The training
accuracy on the Drebin dataset was 95.6% [35]. The machine learning method is dependent
on data sets and extracted features.

2.2. Supportive Features for Malware Detection

There are several features for detecting malicious applications on Android. Generally,
they mainly revolve around permissions requested, API calls, and system calls extracted
with static analysis or dynamic analysis techniques. There are other features for malware
detection, such as native layer code, the whole application, Dalvik, etc.

Permission is a security mechanism proposed by Google for component access be-
tween applications and the restriction of some security-sensitive items within applications.
Android is a permission-separated operating system, whose permissions are easy to ex-
tract [36], so permission features have become the most widely used Android malware
detection features. However, there are some problems: (1) Android system has a large
number of permissions; if we use all of the permissions it will consume substantial com-
puting resources, (2) abuse of permission may cause a high positive false rate, and (3)
some programs may bypass permission checking using special skills which makes the
permission-based method invalid.

API is a call interface left by the operating system to the application, making the
operating system execute the application commands (actions). API called by an application
program is the embodiment of its behavior. Therefore, some researchers [15] propose to
detect malware by finding features with API calling in the system, but (1) the number of
APIs is relatively large, and if all of them are used, it is easy to cause excessive resource
consumption, (2) Android applications tend to integrate third-party libraries, which also
call many APIs, and (3) no consideration is given to the difference in the frequency of using
API by malicious and regular programs.

The function interfaces provided to applications by the framework layer of Java are
called Android system functions. System functions provide useful functions to applications
such as window, network, string, and other related operations. Therefore, analyzing the
system functions can obtain accurate information about the applicants’ behaviors. Li and
Qiao [37] proposed a method based on simhash to detect function reuse from high-volume
code. The similar code blocks are extracted and determine whether the applications are
similarly based on the calling relationship between function codes. Ruttenberg et al. [38]
proposed an identifying shared components method to find malware code functional
relationships. These methods focus on code reuse, and the complexity of code similarity
determination is high, which will result in less efficiency and unable to adapt to the rapid
growth of malware.

The detection methods based on permission, API, and system functions usually focus
on the program’s locality. Some researchers also use transforming malicious programs
into images and then combining them with deep learning to detect malware. Qiao and
Jiang [39] proposed a multichannel visualization method for malware detection with deep
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learning in Windows. Three 256× 256 matrices were extracted from the original Windows
malicious program like the three channels of RGB image, which were combined to generate
an RGB image. LeNet5 trained the image to obtain the detection model. Nataraj [40] and
Xue [41] put forward to convert the whole application into the image, and then input the
image as a feature to the CNN network. CNN requires that the size of input images are the
same, so how to change the different sizes of applications into the same size images is a
difficult problem. Nataraj [40] solved that problem by separately outputting the different
sizes of programs into various sizes of images for training, which is difficult to be applied
to the CNN network. Xue [41] used functions can obtain accurate information about the
applicants’ behaviors. Qiao [37] proposed a method based on simhash to map applications
to the same size images. Still, it could not effectively solve the problem of pixel point burst
under the same coordinate by the simple summation, which would lose some original
information. Luo [35] converted the whole program as a binary stream into an image
without ignoring the non-program code files, such as pictures, audios, videos, etc., which
would cause relatively large irrelevant noise in the generated picture. We found few
related studies about the Android malware detection method with a hierarchical approach,
such as [42] proposed a two-level hierarchical denoise network method utilizing LSTM. It
detects the malware by decompiling the Android files. However, this hierarchical approach
is not flexible due to only two-level structures that can encounter accuracy issues with
different features. Our proposed hierarchical approach has different levels, which facilitate
the various features to detect Android malware. As mentioned earlier, these pieces of
literature encouraged us to propose a novel method for Android malware detection.

3. Proposed Method

This section presents the overall workflow of our approach. Figure 1 illustrates the
system architecture of the hierarchical approach for Android malware detection using
authorization-sensitive features. It consists of five significant steps: Data Collection, De-
compilation, Feature Extraction, Classification Algorithms, and Malware Detection Model.
The outline of our proposed method is following as:

1. Data Collection: We collected 67,577 Android samples (.apk) between 2014 and 2020
to initialize a similar module feature dataset which contains the benign and mali-
cious applications.

2. Decompilation: To analyze the Android application, we transferred the unreadable
program code to a readable file, for which we unzipped the Android application, got
its .Dex file, which decompiled a .Dex file into a smali file.

3. Feature Extraction: First of all, we extract binary code stream features, basic block
by using RGBA (multichannel picture) method; next, extract local features, permis-
sions, and API calls; and then extract system functions to get key function call graph.
Moreover, we built a similar module feature library.

4. Classification Algorithms: Based on the extracted features, we use the hierarchical
classification method. On account of the key functions, we use the sequence of API
calls to serialize them, calculate the similarity of a similar module. In contrast, for the
permissions and API calls, the XGBoost classifier is used to classify. Similarly, for the
extracted basic block features, the CNN classifier is utilized for classification.

5. Malware Detection Model: When an anonymous sample comes for detection, we
check the similarity, if there is a record in the similar module database before or not. If
there is, then it is malicious, and it will be added to a similar module feature library,
which is dynamically expanded. Otherwise, we use a combinatory deep learning
model CNNXGB, with specific conditions, if the probability p > 0.5, then the program
is malicious or else benign. If it is malicious, it will be added to a similar module
feature library.

We provided a detailed process of feature extraction and malware detection models in
this section for the broad-range explanation of these steps. However, the other steps will
be elaborated on the experimental section.
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Figure 1. System Architecture of the Android malware detection using hierarchical authorization-
sensitive features.

3.1. Feature Extraction

In this paper, we extracted four different types of features. The comprehensive process
of these feature extraction is given below.

3.1.1. Basic Block Features

The application’s binary code stream harbors important information for malware
detection. We take the basic block as a research unit to process the whole application to
a multichannel 1024× 1024 PNG picture. That is taking images as the characteristics of
the program. As mentioned earlier [39–41], there are still the following problems with
converting the whole application into a picture representation:

• How to change the different sizes of applications into the same size pictures?
• How to effectively solve the problem of pixels burst under the same coordinate?
• How to reduce the irrelevant noise of the generated picture?

This subsection proposes its novel solution for the problems mentioned above. We
map each basic block to a 1024× 1024 pixels picture of 1,048,576 pixels (about 1 million),
enough to hold most of the basic blocks for the first question. This method can keep the
same size of all the pictures. For the second question, we add A channel based on the RGB
method to deal with conflict. The value of A channel can be acquired by the Mapping
Table and Finding Adjacent Free Pixels method. For the third question, the standard
approach is to open the program in the form of a binary stream, read the program data
in 8-bit as a unit [40]. Assuming that a program’s size is S bytes, then a program can
finally be represented by an S dimensional vector. The composition of a program includes
not only code but also many resource files used by the program, such as pictures, audio,
etc. Therefore, the generated picture contains a lot of noise. Our method is to unpack the
Android applications, discard all resource files such as pictures, audio, and videos used in
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the program, and only keep the files storing the program code. The detailed processes will
be presented in the following paragraph.

A program is composed of some algorithms which contain many conditional judg-
ments in the specific implementation, and different results of conditional decisions will
lead to executing different code branches. Therefore, we use conditional judgments as a
division point; a program is divided into many basic blocks. Figure 2 shows many basic
blocks separated by a program and the relationship among them.

Figure 2. Basic blocks and the relationship among them.

After extracting all the basic block instructions, a sequence is mapped into a 44-bit
binary sequence using the simhash method [43]. This binary sequence is divided into 10,
10, 8, 8, and 8 binary sequences, from the most significant to the least significant. The
values and meanings of each sub-sequence are shown in Table 1.

Table 1. Map table of the 44-bit binary sequence.

No. Index Range Length Name Meaning

1 34–43 10 x Coordinate x
2 24–33 10 y Coordinate y
3 16–23 8 R R Channel
4 8–15 8 G G Channel
5 0–7 8 B B Channel

The picture is composed of pixels. This paper takes the upper left corner of the picture
as the coordinate system’s origin, stretches to the right as the x-axis, drawn down as the
y-axis, respectively. The whole picture is divided into grids with unit 1 as the length. Each
grid represents a pixel. The default initialization color value of the pixel is (0, 0, 0, 255).

Mapping conflicts comprise of two different types: the same colors’ mapping conflicts
and the different colors’ mapping conflicts under the same coordinate. For these two
conflicts, this study offered two different solutions. For the first conflict, if the basic block’s
mapping coordinates are the same and the color is the same, then the value of channel A
with the range of [0, 255] is used to represent the frequency of conflict. The paper defines
the mapping table between the value of channel A and the conflict frequency, which is
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shown as Table 2. For example, we suppose that a basic block after conversion is mapped
to (245, 418), and RGB color is (50, 56, 168). For the first mapping, its default value of
channel A is 255, so its corresponding RGBA color is (50, 56, 168, 255). If the pixel point has
1500 conflicts, the corresponding value of channel A is 150, taking into account in Table 2,
so its RGBA color is (50, 56, 168, 150), as shown in Figure 3.

Table 2. The mapping table between conflict frequency and channel A.

No. The Conflict Frequency The Value of Channel A

1 <10 0
2 [10, 20) 1
3 [20, 30) 2
4 [30, 40) 3
· · · · · · · · ·
254 [2530, 2540) 253
255 ≥2540 254

x

y

(245, 418) (50, 56, 168, 255)

(a)

x

y

(245, 418) (50, 56, 168, 150)

(b)

Figure 3. Pixel points after first mapping and 1500 mappings of the basic block. (a) Pixel point after
the basic block’s 1st mapping; (b) Pixel point after the basic block’s 1500th mapping.

For the second conflict, the paper proposes a new algorithm, which is the Finding
Adjacent Free Pixels method, then the conflicting pixels will be placed in the free pixels
searched. That is, if the coordinate of the conflicting pixel is (x, y), then take (x, y) as circle,
define the coordinate of (x, y) with a radius of r as (x− i, y− r), (x− i, y + r), (x− r, y + j)
and (x + r, y + j), and i ∈ [−r, r], j ∈ [1− r, r− 1]. The importance of the pixels with the
same radius is regarded as equivalent. Search for free pixels from the top left corner in
turn and end when the free pixel is found, then the free pixel is used as the filling point.
Each Android application will eventually become a 1024× 1024 RGBA image by Finding
Adjacent Free Pixels. Those images that represent the features of the application will be
stored in the Android feature library. The pixel where the radius r is 1 (r = 1) shows in
Figure 4, the orange pixel in the center is the conflict pixel, while the free pixels used to fill
are blue.
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Figure 4. A pixel point with a Radius = 1.

Discarding the mapping or fusing the mapping value with the existing pixel points
will lose the original and current information. The pixel space of a 1024× 1024 picture is
about 1 million. For most programs, the space is sufficient, and there must be some empty
unfilled pixels. The problem of image size inconsistency and mapping conflict is solved
through Finding Adjacent Free Pixels. At the same time, the original information of the
application program is effectively preserved. The malicious and benign sample image
features of Android are shown in Figures 5 and 6, respectively.

Figure 5. Examples of image features for mobile malicious sample.

Figure 6. Examples of image features for mobile normal sample.

3.1.2. Permission and API Calls Features

Except for the basic block features, we also focus on each system function called in the
basic blocks, as Figure 7; wherein the red boxes represent the basic block, the underlines
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indicate the functions called. However, calling different functions requires the system’s
permission, and access to operating system functionality and system resources need API
calls used by the android application. Therefore, the permissions and API calls represent
the local feature of an application.

Figure 7. Basic block and system function called in the smali file.

Permission Extracting: If an application wants to use a system function in the An-
droid operating system, it needs to apply to the system for the corresponding permission.
Therefore, permissions are an essential characteristic of application behavior. With the
continuous development of the Android system, it provides more and more permissions.
By analyzing the source code of Android 4.0 to 10.0, the number of native permissions in
each version of the Android system is shown in Figure 8. It shows that the latest Android
10.0 version has more than 500 permissions. If all permissions are extracted as features, the
feature dimension will increase dramatically. We select 22 necessary permissions [36] as
research objects. The names and corresponding meanings of each permission are shown in
Table 3. The vector corresponding to the permission feature is FP = (x1, x2, · · · , x22), and
FPi corresponds to the ith component in Table 3. By traversing all permissions requested
by the application program, if the requested permission is the ith component in Table 3, set
xi to 1, otherwise to 0.
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Figure 8. The number of permissions between Android 4.0 and 10.0.
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Table 3. The 22 selected permissions and their corresponding behavior.

No. Permission Name Meaning

1 ACCESS_WIFI_STATE Access to WIFI Status
2 READ_LOGS Read Log
3 CAMERA Using Mobile Camera
4 READ_PHONE_STATE Read Phone Status
5 CHANGE_NETWORK_STATE Switch Network Status
6 READ_SMS Read Messages
7 CHANGE_WIFI_STATE Switch WIFI Status
8 RECEIVE_BOOT_COMPLETED Detecting Power-up Completion Events
9 DISABLE_KEYGUARD Allow Keypad Lock to be Disabled
10 RESTART_PACKAGES Allow Other Applications to be Closed
11 GET_TASKS Get the Current Task List
12 SEND_SMS Send a Message
13 INSTALL_PACKAGES Install the Application
14 SET_WALLPAPER Set Wallpaper
15 READ_CALL_LOG Read Phone Logs
16 SYSTEM_ALERT_WINDOW Send System Warning Window
17 READ_CONTACTS Read Contacts
18 WRITE_APN_SETTINGS Modify APN Settings
19 READ_EXTERNAL_STORAGE Read Storage
20 WRITE_CONTACTS Modify Contact
21 READ_HISTORY_BOOKMARKS Read Browser History and Bookmarks
22 WRITE_SETTINGS Modify System Settings

API Calls Extracting: Although permission features can reflect programs’ behavior to
a certain extent, because of the universality of permissions, and some applications apply
for particular permission but not necessarily use it at runtime, it is not reliable to detect
malicious programs only with permissions. A program that wants to interact with the
system must invoke the the system’s API interface, so the system API gathered in the
program is also a reflection of program behavior. The frequency of some system API calls
by Android is different in malicious programs and benign programs [15]. Therefore, we
propose API Calls Frequency Difference method to make statistics on the system API calls
of benign and malicious programs in the sample set. The detailed steps are as follows:

1. Read the smali file, extract the code between “.method” and “.endmethod” to obtain
the function body, which reflects the structural information among API calls.

2. Extract the APIs, which is called by the Android system.
3. Travel the entire application, and repeat steps 1 and 2.
4. Count the times that the benign applications in the dataset call each API, and calculate

each API’s frequency in the benign applications.
5. Count the times that the malware calls each API and calculate each API’s frequency

in the malware.
6. Compare the frequency with which the same API appears in a benign and mali-

cious application.

Based on the proposed API Calls Frequency Difference method, we extract the top
40 system APIs with the enormous difference in the call frequency; the results are shown
in Table 4. In counting the system API call frequency, this paper excludes the third-party
library integrated by the application program to prevent the system API’s statistical results.
The vector corresponding to the API features is recorded as FA = (x1, x2, · · · , x40), then
the number of calls to the ith API in the application is counted and set xi to this value.
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Table 4. Application Programming Interface (API) call frequency difference table for Android normal and malicious
samples.

API Name Difference Ratio API Name Difference Ratio

System.currentTimeMillis 91.10% Resources.getSystem 5.00%
android.os.Parcel.obtain 75.30% currentAnimationTimeMillis 4.90%

java.util.Collections.emptyList 63.70% java.lang.Thread.interrupted 4.40%
Looper.getMainLooper 54.20% android.os.Trace.endSection 4.30%

java.lang.Thread.currentThread 39.40% java.util.TimeZone.getDefault 4.30%
getContextTypeLoader 33.30% java.nio.ByteOrder.nativeOrder 4.10%

SystemClock.elapsedRealtime 28.80% Charset.defaultCharset 4.10%
java.util.Locale.getDefault 20.10% FocusFinder.getInstance 3.40%

android.os.Looper.myLooper 19.40% newSingleThreadExecutor 3.20%
java.lang.System.nanoTime 17.00% android.os.Binder.getCallingUid 2.90%
SystemClock.uptimeMillis 15.70% android.os.Process.myUid 2.80%

java.util.Collections.emptyMap 15.30% getLongPressTimeout 2.80%
java.util.Calendar.getInstance 11.90% android.os.Message.obtain 2.40%
java.util.UUID.randomUUID 10.90% android.os.Process.myTid 2.00%
java.util.Collections.emptySet 8.00% java.lang.Math.random 1.90%

android.os.Process.myPid 7.10% getDefaultUncaughtExceptionHandler 1.90%
VelocityTracker.obtain 6.70% LinkMovementMethod.getInstance 1.80%

getExternalStorageState 6.10% CookieManager.getInstance 1.80%
java.lang.Runtime.getRuntime 6.00% SmsManager.getDefault 1.70%
getExternalStorageDirectory 5.60% ViewConfiguration.getTapTimeout 1.70%

3.1.3. Key Function Call Graph (KFCG)

Some fundamental terms and definitions are used for the description of the key
function call graph, which can be defined as:

• User function: the functions defined by the developer, called user functions;
• Key function: the user function called by two or more system functions, called

key function;
• Non-key function: the user function or functions called one-time by a system is called

non-key function;
• Key function call graph (KFCG): a function call graph composed of key functions is

called a key function call graph.

An application contains many functions, but the primary way that an Android applica-
tion interacts with the system is through the system functions. After research and analysis,
we find that all system function call times are different, and non-key functions account for
more than key functions. If all functions are processed, non-key functions will consume a
tremendous amount of system resources. This paper then extracts the key functions and
digitizes them through the sequence of API calls, which improves the application’s analysis
performance and reflects the original function of the program.

The detailed steps for how we construct the key function call graph are as follows:

1. Traverse through the function body, find each called function in order, and store it
in a key-value pair. The key is the globally unique identifier of the function, and the
value is a list, 1 indicating that the function is the key function, and 0 indicating that
the function is the non-key function.

2. Process all smali files using step 1 to get function call graphs (FCG).
3. Use an adjacency matrix to represent the function call graph, in which 1 means

that there is a calling relationship between two functions while 0 means there is no
calling relationship.

4. Remove the non-key functions from the FCG to get KFCG, and then obtain key
function call table.
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How do we transform FCG to KFCG? Function call graph (FCG) is used to represent
the calling relationship between function blocks. Let KFCG = (V, E), where V and E
represent the vertices and edges of the graph KFCG, respectively. KFCG is a directed
acyclic graph, and it should not contain self-loop and recursive functions. If a function FA
calls the function FB, then the number of hops between these two functions is called the
distance from FA to FB, written as DISTANCE(FA, FB). For ∀u, v ∈ V, DISTANCE(u, v)
satisfies:

1. DISTANCE(u, v) is initialized to 0;
2. if there are multiple paths from u to v, choose the shortest route;
3. if u calls v directly then DISTANCE(u, v) = 1;
4. generally, DISTANCE(u, v) equals the number of non-key function between u and v

plus 1.

For example, all functions of the application and the called relationships of each
function are shown in Table 5 (uppercase letters indicate key functions, lowercase characters
indicate non-key functions, and fancy letters represent system call functions). For the
function A, it is a key function, and four functions (the non-key function a, the key function
B, and the system call function S1 and S2) are called successively in its function body.
According to Table 5, we can initialize the function call graph, as shown in Figure 9, and
then remove the non-key functions one by one updating the call distance between functions.
For non-key function a, since A calls a and a calls C, the hop value A to C should be updated
to 2 after removing a; A calls B directly, the hop value of A to B is less than the one of A
to a to B. Therefore, the hop value of A to B is not updated, as in Figure 10a. For non-key
function b, since B calls b and b calls C, the hop value B to C should be updated to 2 after
removing b. The resulting key function call graph (KFCG) is shown in Figure 10b. Then we
can get key function call table, as shown in Table 6.

Table 5. The list of the functions in application and the called relationship by each function.

Function Name Called Function

A A, B, S1, S2
a B, C
B B, S3
b C
C S4, S5

Table 6. Key function call table.

A B C

A 0 1 2
B 0 0 2
C 0 0 0

A

BC

b

a
1

11

1 1

1

Figure 9. Function call graph of application.
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A

BC

b

1

1
1

2

(a)

A

BC

1
2

2

(b)

Figure 10. Key function call graph, (a) remove non-key function a; (b) remove non-key function b.

3.2. Malware Detection Approach

In the previous Section 4, we extracted different features from Android applications.
In this subsection, we use those features to detect malware. For key function, we consider
the details of the similarities between malware. Suppose a similar module cannot make
sure whether an unknown sample is a malware. In that case, we adopt other features.
Considering the permissions and API calls, XGBoost is used to classify, and for the given
basic block features, the CNN classifier is used to detect malware. Simultaneously, the
CNNXGB model is built to improve the classification accuracy.

3.2.1. Similar Module Detection

In contrast to [37,38], our method is based on the Android system function call
sequence and can be effectively used to extract similar modules between malware. A
similar module can be used to determine whether the two Android applications are
identical. For instance, for the sample α to be detected, we first extract a known malicious
sample β from the similar module feature library, then calculate their similarity. If the two
values are identical, it can be judged that the sample α is a malicious program; otherwise, it
is a non-malicious program.

When selecting a sample β, it will take too long to traverse the malicious sample
database one by one. This paper uses an inverted index to choose a comparison subset
from the malicious sample database to solve this problem. Then the samples in the subset
are all the samples to be compared with sample α. Following is the generation method of
the comparison subset. Set the kth application in the sample library as APPk, gain the all
function’s Hash value Fk

1 , Fk
2 , · · · , FN(k)

k included by APPk, N(k) represents the number of
function included by APPk. There may be the same function among multiple applications.
By reversing this mapping, we can get the mapping relationship between the function and
the application.

We use the hash values of the sequences of API calls as the function’s flag. Suppose
there is a function f in the application and the sequences of API calls of the function f
are F1, F2, · · · , Fn. In that case, we connect these sequences with a colon (:), then get a
string “F1 : F2 : F3 : · · · : Fn”, next take the MD5 value of the string as the unique flag
of the function f, finally get the similar module graph (SMG), as Equation (1), and the
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corresponding matrix is the similar module (SM). When we extract all of the SMs of the
collected samples, we build a similar module feature library.

SMG =



C11 C12 · · · C1i · · · C1m
C21 C22 · · · C2i · · · C2m

...
...

...
...

...
...

Ci1 Ci2 · · · Cii · · · Cim
...

...
...

...
...

...
Cm1 Cm2 · · · Cmi · · · Cmm


(1)

where, Cij denotes the distance from Fi to Fj.
In order to compare two similar modules, it is necessary to unify their dimensions,

which contains two steps. First, we extract the same function from the two similar modules
to form a common similar module matrix. Then we can acquire the similarity value, as
Equation (2), which lies between 0 and 1, and the larger the value is, the more similar
the two.

SIM(α, β) =
∑i,j fd(C

ij
α , Cij

β )

∑i,j fs(C
ij
α , Cij

β )
(2)

where

fd(C
ij
α , Cij

β ) =


0 when Cij

α = 0 or Cij
β = 0

1 when Cij
α = Cij

β 6= 0
min(Cij

α ,Cij
β )

max(Cij
α ,Cij

β )
other

(3)

and

fs(C
ij
α , Cij

β ) =

{
0 when Cij

α = 0 and Cij
β = 0

1 other
(4)

3.2.2. Detection with CNNXGB

Due to the limited number of samples in a similar module feature database, some
malicious samples are not similar to any modules in a similar module database. This section
builds a deep learning model CNNXGB based on XGBoost and CNN by extracting the
permission, frequency of API calls, and basic blocks of the Android application program.

We can acquire permission features, frequency of API features, and RGBA picture
features transformed by basic blocks from the above processing. Then the paper proposes a
new CNNXGB detection algorithm to improve the detection accuracy. The CNN algorithm
can realize end-to-end learning, and the middle features can be obtained by automatic
learning. The XGBoost algorithm is a combination of a series of classification regression
trees; its advantages are uneasy about overfitting, fast training, and strong interpretabil-
ity [44]. CNNXGB detection algorithm combines the goodness of CNN and XGBoost. Half
of the model is a linear stack of CNN convolutional layer to process RGBA image features,
and another part is the XGBoost model that deals with permission and API features. The
flow chart of the CNNXGB detection model is shown in Figure 11.
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Figure 11. Convolutional Neural Network and eXtreme Gradient Boosting (CNNXGB) classification
model.

In the multi-classification problem, CNN will output several probability values to
the predicted target in the fully connected layer, indicating the probability that the target
belongs to each category. In this study, the classification of Android malicious programs is
a two-fold classification problem. CNN will output the probability values of normal and
malicious programs, respectively, and the prediction results of XGBoost are similar to those
of CNN. Suppose CNN and XGBoost respectively obtain the probability that the program
to be detected is malicious as p1 and p2, and their weights are w1 and w2. In that case, the
probability that the program is detected as malicious as follows:

P = w1 p1 + w2 p2 (5)

when P ≥ 0.5, the program to be detected is malicious; otherwise, it is a normal program.
In this paper, CNN only deals with one feature; however, XGBoost handles two features:
permission and API. Thus, the weight of CNN detection result w1 is set to 1/3, and the
weight of XGBoost detection result w2 is set to 2/3.

4. Experimental Results and Analysis

In this paper, two sets of experiments are conducted to evaluate our proposed malware
detection approach’s performance. Firstly, the detection performance using extracted
authorization-sensitive features separately. Secondly, we developed a hierarchical Android
malware detection system by comparisons with other often-used classification methods.

4.1. Data Collection and De-Compilation

First, we collected 67,577 Android samples between 2014 and 2020, as shown in
Table 7, of which the number of the normal samples is 17,564, and the number of the
malicious samples is 50,013. An initial database of similar modules for Android malware
detection is created based on a sequence of API calls from these raw samples. Second,
we download the experimental data, including 6116 malicious samples and 5211 normal
samples, mainly from Github, Google Play, Fdroid, and VirusShare [45]. The SHA256 list
of samples can be obtained from Archive [46].

Table 7. Collected Android program samples.

No. Samples Type Note Collected Time

1 11,364 Benign [47] 2014–2017
2 10,461 Malware [47] 2014–2017
3 16,619 Malware [47] 2017–2018
4 988 Benign [32] 2017–2018
5 5,212 Benign New 2018–2020
6 22,933 Malware New 2018–2020
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Before extracting the features of the Android application, we need to decompile the
application dataset. On the one hand, to get the similar module based on the sequence of
API calls, we use Apktool to decompile to get a recognizable smali assembly code. On the
other hand, it is necessary to decompile the Android application with Androguard [48] to
obtain its Dalvik code. The preprocessing steps are shown in Figure 12.

1. Prepare the Hash value list of all samples;
2. input the Hash list into the scheduler;
3. the scheduler queries the sample storage path in the data management system ac-

cording to the hash value of each application;
4. after the data management system returns the application path, the scheduler groups

the applications and starts multiple processes for processing;
5. when the scheduler obtains the processing results of multiple processes, the results

are stored in the Android feature library.

Figure 12. Multi-process data pre-processing process based on scheduler.

Each process with one program simultaneously; thus, multiple processes can efficiently
and quickly handle large data quantities. In each processing, the study uses Anroguard to
get the basic information of the application and uses LibScout to analyze the program’s
third-party Java library [43,49]. As a result that the third-party library is not the program’s
implementation code, to eliminate its interference, our method records the third-party
package’s name. In the subsequent analysis, the third-party library code will be excluded
based on the package name. The tools and extracted information used by each process to
manage Android applications is illustrated in Table 8.

Table 8. The extracted information of Android applications.

No. Tool’s Name Extracted Information

1 Androguard Activities, Receivers, the name of Native, Services,
Permissions, Providers, Method List

2 LibScout The name of third-party library, Versions, the list
of Package name

3 The Paper Multichannel picture

4.2. Experiment Setup

Different types of machine learning classifiers [11,50,51] such as support vector
machine (SVM), decision trees(DT), random forest (RF), and deep learning
classifiers [14,40,41,52] are used to produce models that can be used to detect mobile
malware. SVM draws on a hyperplane to separate two classes with maximal margin,
widely used in malware classification. DT learns decision rules from the given features
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to build a rule-based model. There are also some DT variants, i.e., C4.5, ID3, C5.0, and
CART. The depth of the tree may bring an overfitting problem. RF is an integrated learning
product, where many decision trees are integrated into a forest and combined used to
predict the outcome. It will also overfit on some noisy classification or regression problems.
XGBoost is a blended learning algorithm that combines weak classifiers to form a robust
classifier [44]. The basic idea is to train a weak classifier from the training set using initial
weights and update the weights based on its learning error rate. The weights of sample
points with high learning error rates are given more attention in the subsequent weak
classifiers. It is repeated to produce a robust classifier model consisting of several simple
weak classifiers. XGBoost is not easily overfitted and can be fast trained. CNN is a feed-
forward neural network consisting of four layers: convolutional layer, pooling layer, fully
connected layer, and output layer. When the input data undergo multiple convolutional
and pooling layers, the obtained salient features are passed through the full connected
layer for advanced inference. Finally, using mathematical statistics methods, output the
corresponding results [53]. It has excellent performance for extensive image processing
and has been applied to various fields in recent years, such as face recognition, medical
diagnosis, voice recognition, malware detection, etc.

The configuration of the experiment running environment and the main packages
adopted in this study are presented in Table 9. We use 30% of the dataset samples as a test
dataset, 70% as a training dataset. To assess the accuracy of our algorithm, some metrics
such as true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
are introduced. DT, RF, SVM [54–56] are chosen as classifiers to compare with our model.

Table 9. Information on the experimental environment.

No. Name Version

1 Operating System Ubuntu 18.04.4 LTS x64
2 System Information Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz
3 TensorFlow 2.1.0
4 Python 3.7.5 x64
5 Keras 2.3.1
6 Sklearn Sklearn 0.22.2.post1
7 XGBoost Xgboost 1.0.2

For the CNN algorithm, the convolutional layer parameters sets are given in Table 10,
and ReLU is utilized as the activation function.

Table 10. Details of the parameters used in CNN.

Layers Filter Size Convolution Kernel Size Pooling Size DropOut

First layer 32 3 × 3 2 × 2 0.25
Second layer 64 3 × 3 2 × 2 0.25
Third layer 128 3 × 3 2 × 2 0.25

For the XGBoost algorithm, the parameter sets are given in Table 11. The first dense
of the fully connected layer is 512, and the activation function uses ReLU. The output
dimension of the second dense of the fully connected layers is 2, the activation function
uses softmax, and DropOut sets 0.5.
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Table 11. Parameters for XGBoost.

No. Parameters Values

1 Model Type Gbtree
2 Objective Function Binary:logistic
3 Node Splitting Threshold 0.2
4 Maximum Depth of Tree 6
5 Minimum Number of Samples on Leaves 2
6 L1 Regular Term 0
7 L2 Regular Term 0
8 Random Sampling Rate 0.7
9 Ratio of the Creation Tree from all Columns 0.9

10 Learning Rate 0.01

4.3. Features Analysis

In this subsection, two experiments are set to evaluate the detection performance
based on the extracted authorization-sensitive features:
(1) We evaluated the detection rates based on KFCG.
(2) We compared the detection performance using the extracted features.

4.3.1. Detection Results Based on KFCG

Samples are categorized using the NANO antivirus engine, and if a category contains
more than 450 malicious samples, it will be used to experiment. The threshold for similarity
is set to 0.7. The detection results using the sequence of API calls are shown in Table 12.
To verify the classification results, we select six commercial antivirus softwares, F-Secure,
BitDefender, AhnLab-V3, TrendMicro, Kaspersky, and Avast, to analyze the classification
results. If the antivirus engine from this family detects the more samples belonging to the
family, the more influential the similar module extraction method is proposed. Therefore,
the larger the ratio R (as Equation (6)) in Table 13, the better the detection rate of the similar
module extraction method proposed, that is to say, the higher the classification accuracy of
similar modules and the classification accuracy is over 91% on average.

R =
the number o f similar samples detected f rom the f amily

total number o f f amily samples
× 100% (6)

Table 12. Detection rates of the similar module (SM).

No. Family Samples Detection Results Detection Rates

1 Trojan.Android.FakeInst 2858 2354 82.37%
2 Trojan.Android.Agent 2502 1733 69.26%
3 Trojan.Android.Domob 1102 1081 98.09%
4 Trojan.Android.Opfake 1077 1004 93.22%
5 Trojan.Android.Dowgin 1118 1094 97.85%
6 Trojan.Android.WqMobile 925 923 99.78%
7 Riskware.Android.MobWin 533 531 99.62%
8 Trojan.Android.Airpush 471 433 91.93%
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Table 13. Proportion of similar samples extracted that belong to the same family based on similar module detection.

Family
Anti-Virus Software

F-Secure BitDefender AhnLab-V3 TrendMicro Kaspersky Avast

Trojan.Android.FakeInst 100% 100% 100% 99.8% 100% 100%
Trojan.Android.Agent 100% 100% 100% 100% 100% 100%

Trojan.Android.Domob 98.7% 98.9% 99.1% 84.9% 92.3% *
Trojan.Android.Opfake 100% 100% 100% * 100% 100%
Trojan.Android.Dowgin 99.8% 99.5% 99.3% * 99.2% 95.5%

Trojan.Android.WqMobile 99.6% 99.6% 99.6% 86.0% 98.7% 96.2%
Riskware.Android.MobWin 98.1% 97.7% 97.9% 93.1% 92.3% *

Trojan.Android.Airpush 96% 96.2% 89.2% * 94.4% *
∗ indicates the number of detected malware are less than 20 which are not taken into consideration.

4.3.2. Detection Performance Evaluation Using Extracted Features

We evaluate the performance of the selected permissions and the API calls by using
XGBoost. We use CNN to assess the performance of extracted basic block features. The
classification results are as shown in Table 14. We found that the hierarchical authorization-
sensitive features (permissions, API calls, basic blocks) achieved better classification accu-
racy than the features used separately.

Table 14. Detection performance comparisons between hierarchical features and isolated features.

Features Precision Recall ACC AUC F1

Permissions 0.9568 0.9387 0.9444 0.9448 0.9477
API Calls 0.9640 0.9207 0.9390 0.9404 0.9419

Basic blocks 0.8742 0.9782 0.9123 0.9066 0.9233
Hierarchical Features (CNNXGB) 0.9767 0.9752 0.9741 0.9740 0.9759

4.4. Classifiers Analysis

The paper chooses DT, RF, SVM [54–56] as classifiers to compare with CNNXGB. The
results of the experiments are shown in Figure 13. From the figure, we can see that the
recall rate of SVM is significantly higher than that of other methods. Still, the precision,
accuracy, and AUC of SVM are substantially lower than those of different methods. DT has
the best effect on precision, and the recall rate is the same as CNNXGB. Still, it is weaker
than CNNXGB in accuracy and AUC, and RF is weaker than CNNXGB in all indexes.
Therefore, through experimental analysis, we can prove that the CNNXGB model proposed
in this paper is the best. The results show that the classification accuracy of the CNNXGB
model increases to 98%.
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Figure 13. Detection result comparison of CNNXGB and other classifiers.

5. Conclusions

In order to detect Android malware efficiently and effectively, we build a hierarchical
Android malware detection system using authorization-sensitive features. We transform
basic blocks that represent binary code into a multichannel picture, in which A channel
is utilized to deal with mapping conflict. On behalf of the application’s local features, we
extract 22 permissions and 40 API calls selected by API Calls Frequency Difference method.
Key functions reflect the primary interaction relationship between the application and
the Android system. According to the sequence of API calls, we order key functions to
deal with the key function call graph (KFCG). We present a hierarchical Android malware
detection framework based on the extracted features, which introduces similar module
feature detection and a deep learning model. In the first layer, we propose to select a
comparison subset from the similar module feature library using an inverted index, and
it can avoid using too long time to traverse the library one by one. In the second layer,
CNNXGB integrates XGBoost and CNN to improve the detection accuracy. Simultaneously,
according to the detection results, we update the similar module feature library of Android
malware to realize the database’s dynamic self-growth. Then we conduct an extensive
evaluation of our dataset to compare the detection results, which demonstrate that our
proposed approach is practical. The classification accuracy is over 91% on average through
the similarity comparison of similar modules, and it has been increased to 98% by the
CNNXGB model.

In the future, we plan to extend our work to the following aspects: (1) increase the
diversity of Android sample features such as native layer code features to improve the
model detection ability, (2) research the decompiling technology of the Android program to
enhance the decompiling ability, (3) optimize the deep learning model integrated XGBoost
and CNN to reduce the training time.
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