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Abstract: The use of non-local self-similarity prior between image blocks can improve image re-
construction performance significantly. We propose a compressive sensing image reconstruction
algorithm that combines bilateral total variation and nonlocal low-rank regularization to overcome
over-smoothing and degradation of edge information which result from the prior reconstructed
image. The proposed algorithm makes use of the preservation of image edge information by bi-
lateral total variation operator to enhance the edge details of the reconstructed image. In addition,
we use weighted nuclear norm regularization as a low-rank constraint for similar blocks of the
image. To solve this convex optimization problem, the Alternating Direction Method of Multipliers
(ADMM) is employed to optimize and iterate the algorithm model effectively. Experimental results
show that the proposed algorithm can obtain better image reconstruction quality than conventional
algorithms with using total variation regularization or considering the nonlocal structure of the
image only. At 10% sampling rate, the peak signal-to-noise ratio gain is up to 2.39 dB in noiseless
measurements compared with Nonlocal Low-rank Regularization (NLR-CS). Reconstructed image
comparison shows that the proposed algorithm retains more high frequency components. In noisy
measurements, the proposed algorithm is robust to noise and the reconstructed image retains more
detail information.

Keywords: compressive sensing; computational imaging; bilateral total variation; weighted nuclear norm;
nonlocal self-similarity

1. Introduction

Compressive sensing (CS) [1–3] is a burgeoning signal acquisition and reconstruc-
tion method that breaks through the frequency limit of the Nyquist–Shannon sampling
theorem. CS theory points out that the perfect reconstruction of an original signal can
be realized by using a small number of random measurements if the signal is sparse or
can be sparsely expressed in a certain transform domain, such as Discrete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT). The measurements are generated
by a random Gaussian matrix or partial Fourier matrix in the way of sampling and data
compressing at the same time. CS has the advantages of low sampling rate and high
acquisition efficiency, which has been widely used in various fields including 3 D imag-
ing [4], video acquisition [5], image encryption transmission [6], optical microscopy [7],
target tracking [8], digital holography [9] and multimode fiber [10,11]. The accurate and
high-quality reconstruction of signal is the core of the research of CS. In the process of
image reconstruction, the prior information of image plays an important role. How to
fully explore the prior information of image as much as possible and construct effective
constraint becomes the key of image reconstruction. The most commonly used image prior
is sparse prior, that is, building a sparse model based on sparse representation in a trans-
form domain to obtain the optimal solution. The classical reconstruction algorithms mainly
include greedy algorithms and convex optimization algorithms. The greedy algorithms
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based on the l0 norm minimization model include Orthogonal Match Pursuit (OMP) [12],
Subspace Pursuit (SP) [13], Compressed Sampling Match Pursuit (CoSaMP) [14], etc;
The convex optimization algorithms based on the l1 norm minimization model include Ba-
sis Pursuit (BP) [15], Iterative Shrinkage Threshold (IST) [16], Gradient Projection (GP) [17],
Total Variation (TV) [18], etc.

Among them, the total variation algorithm uses the sparse gradient prior as a con-
straint to reconstruct the image, which can remove the noise and retain the detail informa-
tion of the image better. However, some problems such as staircase effect still exist in the
total variation algorithm. Many variants are proposed and applied to CS reconstruction
gradually, such as fractional-order total variation [19], reweighted total variation [20] and
bilateral total variation [21], etc. These reconstruction algorithms using the image sparse
prior have achieved good image reconstruction performance. Recently, image restoration
models based on nonlocal self-similarity prior have received extensive attention. With the
application of nonlocal self-similarity prior [22–24] in image denoising, many researchers
applied it to CS to realize image reconstruction. Zhang et al. [25] introduced nonlocal mean
filter as a regularization term into the total variation model and used the correlation of
noise between image blocks to set weights for filtering, which achieves excellent constraint
and reconstruction results. Egiazarian et al. [26] presented an algorithm for joint filtering
in block matching and sparse three-dimensional transformation domain, which is based
on the nonlocal self-similarity among image blocks. Through the collaborative Wiener
filtering of similar blocks in the wavelet transform domain, excellent denoising effect and
reconstruction performance are achieved. Dong et al. [27] further explored the relationship
between structured sparsity and nonlocal self-similarity of images; They presented a nonlo-
cal low-rank regularized image reconstruction algorithm, which takes full advantage of the
low-rank features of similar image blocks, removes redundant information and artifacts
effectively in images and achieves excellent image restoration results by combining sparse
encoding of images.

At present, reconstruction algorithms utilize the non-local self-similarity of image
by adopting a block matching strategy to get similar image blocks. Since there are some
duplicate structures in the image and the disturb of noise, the optimization model based on
low-rank instead of sparsity constraint will inevitably remove these duplicate structures,
and result in the problems of over-smoothing and edge information degradation of the
reconstructed image [19]. In this paper, we add the bilateral total variation constraint
as a global information prior to the reconstruction model based on nonlocal low-rank to
propose an optimized scheme. The bilateral total variation operator is used to enhance
the texture details of the reconstructed image. The low-rank minimization problem of
the original image is usually non-convex and difficult to solve. The Weighted Nuclear
Norm (WNN) [28] is employed to approximate the image low-rank in our model. In the
stage of solving the optimization problem, the Alternating Direction Method of Multipliers
(ADMM) [29] is used to iterate the model effectively.

The remainder of this paper is organized as follows: In Section 2, we introduce our
reconstruction model combining bilateral total variation and weighted nuclear norm low-
rank regularization. In Section 3, the process of using ADMM to recover compressed
images is described. In Section 4, we evaluate the performance of the proposed algorithm
and other mainstream CS algorithms. In Section 5, we give a conclusion.

2. Reconstruction Algorithm Combining Bilateral Total Variation and Nonlocal
Low-Rank Regularization

According to CS theory, given a one-dimensional discrete vector signal x ∈ RN×1 with
length N, the measured value y ∈ RM×1 can be obtained by M random projection:

y = Φx, (1)

where Φ ∈ RM×N(M� N) is the sampling matrix. Since M � N, Equation (1) is an
underdetermined equation and has no unique solution, it is impossible to reconstruct the
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original signal x directly with the measured value y. However, when the measurement
matrix Φ satisfies the restricted isometry property (RIP) [1,2], which means the length
of measured value y collected by the measurement matrix Φ must be longer than the
sparsity of the signal x, CS theory can guarantee the accurate reconstruction of sparse (or
compressible) signal x.

According to the sparse prior of signal x, the traditional optimization algorithm can
be written in the following unconstrained form:

x = argmin
x

1
2
‖y−Φx‖2

2 + λ‖x‖p, (2)

where ‖y−Φx‖2
2 is the fidelity term of reconstruction, ‖x‖p(0 ≤ p ≤ 1) is the sparse regu-

larization term of signal, and λ is the properly selected regularization parameter.

2.1. The Bilateral Total Variation Model

For an image x, its total variation model is defined as:

‖x‖TV = ‖Dx‖1

= ‖Dhx‖1 + ‖Dvx‖1,
(3)

where D = [Dh, Dv], Dh and Dv represent the gradient difference operators in the hori-
zontal and vertical directions respectively, Dhxi,j = xi+1,j − xi,j, Dvxi,j = xi,j+1 − xi,j, (i, j)
corresponds to the pixel position in the image x. The gradient of the image can be used
as the reconstruction constraint to retain the detail information of the image. However,
restoring the image with only the traditional total variation constraint has staircase effect
in the smooth region. The local details of image are easy to be lost since the penalty of
gradient is uniform. Therefore, the reweighted total variation method [20] is proposed,
which applies a certain weight to the gradient to avoid local over-smoothing and staircase
effect. The reweighted total variation model is defined as:

‖x‖RTV = w‖Dx‖1, (4)

where wk+1 = 1/
(∥∥∥Dxk

∥∥∥
1
+ ε
)

, ε is a small positive constant, weight w is iteratively
updated by image x.

The bilateral filtering [30] is a non-linear filtering method, which combines the spatial
proximity and pixel value similarity of the image. Considering both spatial information
and gray level similarity, it can achieve edge preserving and noise reduction. We introduce
bilateral filtering into the total variation model. The bilateral total variation model is
defined as:

‖x‖BTV =
p

∑
l=−p

p

∑
t=−p

α|l|+|t|
∥∥∥x− Sl

hSt
vx
∥∥∥

1
, (5)

where Sl
h represents that the image is shifted l pixel horizontally, St

v represents that the

image is shifted t pixels vertically,
∥∥∥x− Sl

hSt
vx
∥∥∥

1
represents the difference of image x at

each pixel scale. Weight α(0 < α ≤ 1) is used to control the spatial attenuation of the
regularization term, and p(p ≥ 1) is the window size of the filter kernel.

The bilateral total variation model is essentially an extension of the traditional total
variation model. When the weight α = 1, set l = 1, t = 0 or l = 0, t = 1, define
Qh = I− Sh, Qv = I− Sv, I is the unit matrix, then the bilateral total variation model is
transformed into:

‖x‖BTV = ‖Qhx‖1 + ‖Qvx‖1, (6)

it can be seen that the above expression is consistent with Equation (3) of the total
variation model.
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For the reweighted bilateral total variation model, it can be expressed in the
following form:

‖x‖RBTV =
p

∑
l=−p

p

∑
t=−p

α|l|+|t|wb

∥∥∥x− Sl
hSt

vx
∥∥∥

1
, (7)

here we set the weight wk+1
b = 1/

(∥∥∥xk − Sl
hSt

vxk
∥∥∥

1
+ ε
)

.

2.2. The Weighted Nuclear Norm Low-Rank Model

The image restoration model based on image nonlocal self-similarity prior consists of
two parts: one is the block matching strategy used to characterize the image self-similarity,
the other is the low-rank approximation used to characterize the sparsity constraint.
The block matching strategy refers to block grouping of similar blocks for an image x.
For a n × n block xi at position i in the image, m similar image blocks are searched based
on Euclidean distance in the search window (e.g., 20 × 20), i.e., Gi =

{
ij

∥∥∥xi − xij

∥∥∥ < T
}

,
(0 ≤ j ≤ m− 1), where T is a predefined threshold, and Gi denotes the collection of posi-
tions corresponding to those similar blocks. After block grouping, we obtain a data matrix
Xi =

[
xi0 , xi1 , . . . , xim−1

]
, where each column of Xi denotes a block similar to xi (including

xi itself).
Due to the similar structure of these image blocks, the matrix Xi composed by them

has the property of low-rank. There is also noise pollution in the actual image x, so the
similar block matrix can be modeled as: Xi = Li + Ni, where Li and Ni represent low-
rank matrix and Gaussian noise matrix respectively. Then, the low-rank matrix Li can be
recovered by solving the following optimization problems:

Li = argmin
Li

∑
i

{
‖Rix− Li‖2

2 + µrank(Li)
}

, (8)

where Rix =
[
Ri0 x, Ri1x, . . . , Rim−1x

]
is a similar block matrix composed of each image

block after block matching, i.e., Xi. The solution of Equation (8) is a rank minimization
problem, which is non-convex and difficult to solve. In this paper, the Weighted Nuclear
Norm (WNN) [28] is used to replace the rank of matrix. For a matrix X, its weighted
nuclear norm is defined as:

‖X‖w,∗ = ∑
j

∣∣wjσj(X)
∣∣, (9)

where σj(X) corresponds to the j-th singular value in X, w = [w1, w2, . . . , wn], wj ≥ 0
is the weight assigned to the corresponding σj(X). As we all know, the larger singular
value in X, the more important characteristic component in matrix. So the larger singular
value should give a smaller shrinkage in weight distribution. Here, we set the weight
wj = 1/

(
σj(X) + ε

)
, and ε is a small positive constant.

In this way, the optimization problem of replacing the rank of matrix with weighted
nuclear norm is transformed into:

Li = argmin
Li

∑
i

{
‖Rix− Li‖2

2 + µ‖Li‖w,∗

}
(10)

2.3. The Joint Model

We add the proposed bilateral total variation constraint as a global information prior
to the reconstruction based on the weighted nuclear norm low-rank model, and get the
following joint model:

x = argmin
x

1
2‖y−Φx‖2

2 + λ1 ∑
i

{
‖Rix− Li‖2

2 + µ‖Li‖w,∗

}
+λ2

p
∑

l=−p

p
∑

t=−p
α|l|+|t|wb

∥∥∥x− Sl
hSt

vx
∥∥∥

1

(11)
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The joint reconstruction model seems to be relatively complicated. In order to facilitate

the calculation, we simplify the bilateral total variation term, replace
p
∑

l=−p

p
∑

t=−p
α|l|+|t| by β,

and define Qx = x− Sl
hSt

vx, Equation (11) can be abbreviated as:

x = argmin
x

1
2
‖y−Φx‖2

2 + λ1∑
i

{
‖Rix− Li‖2

2 + µ‖Li‖w,∗

}
+ λ2βwb‖Qx‖1 (12)

3. Compressed Image Reconstruction Process

The ADMM [29] can be used to solve the optimization problem of Equation (12) to
recover image x. First, auxiliary variables are introduced for replacement:

x = argmin
x

1
2‖y−Φx‖2

2 + λ1∑
i

{
‖Riu− Li‖2

2 + µ‖Li‖w,∗

}
+ λ2βwb‖z‖1

s.t. x = u, Qx = z,
(13)

using the augmented Lagrangian function, Equation (13) is transformed into an uncon-
strained form:

L(x, Li, u, z) = argmin
x

1
2‖y−Φx‖2

2 + λ1∑
i

{
‖Riu− Li‖2

2 + µ‖Li‖w,∗

}
+ λ2βwb‖z‖1

+ η1
2 ‖u− x + a‖2

2 +
η2
2 ‖z−Qx + b‖2

2,
(14)

where η1 and η2 are penalty parameters, and a and b are Lagrange multipliers.
Then the multiplier iteration is adopted as follows: ak+1 = ak −

(
xk+1 − uk+1

)
bk+1 = bk −

(
Qxk+1 − zk+1

) , (15)

where k is the number of iterations. According to the ADMM, the original problem can be
divided into the following four sub-problems to solve.

3.1. Solving the Sub-Problem of Li

Having fixed x, u, z, the optimization problem of Li is as follows:

Lk+1
i = argmin

Li
λ1∑

i

{∥∥∥Riuk − Li

∥∥∥2

2
+ µ‖Li‖w,∗

}
, (16)

this optimization problem of the weighted nuclear norm is generally solved by singular
value threshold (SVT) [31] operation:

Lk+1
i = USw,τ(Σ)VT , (17)

where UΣVT is the singular value decomposition of Xi, and Sw,τ(Σ) is the threshold
operator to perform threshold operation on each element in the diagonal matrix Σ:

Sw,τ(Σ) = max
(

Σ− τdiag
(

wk
j

)
, 0
)

, (18)

here τ = µ/2λ1, and wj is the weight, as described in Section 2.2, we set

wk
j = 1/

(
σj

(
Lk

i

)
+ ε
)

, and the singular value of Lk
i is sorted in descending order, so the

weight is increasing. In order to reduce the amount of computation, we relocate similar
blocks every T iterations rather than searching similar blocks in every iteration.
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3.2. Solving the Sub-Problem of u

Having fixed x, Li, z, the optimization problem of u is as follows:

uk+1 = argmin
u

λ1∑
i

{∥∥∥Riu− Lk
i

∥∥∥2

2

}
+

η1

2

∥∥∥u− xk + ak
∥∥∥2

2
(19)

Equation (19) has a closed-form solution:

uk+1 =

(
λ1∑

i
RT

i Ri + η1I

)−1(
λ1∑

i
RT

i Lk
i + η1

(
xk − ak

))
, (20)

where ∑
i

RT
i Ri is the diagonal matrix, each term in it corresponds to the image pixel position,

and its value is the number of overlapping image blocks covering the pixel position. ∑
i

RT
i Lk

i

is the average value result of blocks, that is, average the similar blocks collected by each
image block.

3.3. Solving the Sub-Problem of z

Having fixed x, Li, u, the optimization problem of z is as follows:

zk+1 = argmin
z

λ2βwb‖z‖1 +
η2

2

∥∥∥z−Qxk + bk
∥∥∥2

2
(21)

Equation (21) can be solved according to soft threshold shrinkage [32]:

zk+1 = soft
(

Qxk − bk, λ2βwb/η2

)
(22)

The soft threshold shrinkage operator soft(x, t) = sgn(x) ·max(|x| − t, 0). The gradi-
ent weight wb is updated according to the following form:

wk+1
b = 1/

(∥∥∥Qxk
∥∥∥

1
+ ε
)

, (23)

where ε is a small positive constant, and the weight wb is updated according to the gradient
at the pixel point in the k-th iteration of image.

3.4. Solving the Sub-Problem of x

Having fixed Li, u, z, the optimization problem of x is as follows:

xk+1 = argmin
x

1
2
‖y−Φx‖2

2 +
η1

2

∥∥∥uk − x + ak
∥∥∥2

2
+

η2

2

∥∥∥zk −Qx + bk
∥∥∥2

2
(24)

Equation (24) has a closed-form solution:

xk+1 =
(

ΦTΦ + η1I + η2QTQ
)−1(

ΦTy + η1

(
uk + ak

)
+ η2QT

(
zk + bk

))
(25)

Since the inverse of matrix in Equation (25) is large, it is not easy to solve directly.
Here, we use the conjugate gradient algorithm [33] to deal with this problem.

After solving each sub-problem, the multipliers are updated according to Equation (15).
The whole process of image reconstruction is summarized in Algorithm 1. A description of
the relevant symbols is given in Appendix A.
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Algorithm 1: The proposed CS reconstruction algorithm

Input: The measurements y and sampling matrix Φ
Initialization:

The traditional CS algorithm (DCT, DWT, etc.) is used to estimate the initial image x1;
Set parameters λ1, λ2, α, p, η1, η2, K, T;
Set the nuclear norm weight wj = [1, 1, . . . , 1]T ;
Set the gradient weight wb = 1;

Outer loop: for k = 1, 2, . . . , K do
Using the similar block matching strategy to search and group the similar blocks in the

image to get the similar block matrix Xi;
Set L1

i = Xi;
Inner loop: for each block in Lk

i do

Update weight: wk
j = 1/

(
σj

(
Lk

i

)
+ ε
)

;

Calculate Lk+1
i according to Equation (17);

End for
Calculate uk+1 according to Equation (20);
Calculate zk+1 according to Equation (22), update the gradient weight wk+1

b according to
Equation (23);

Calculate xk+1 according to Equation (25);
Update Lagrange multipliers ak+1, bk+1 according to Equation (15);
if mod(k, T) = 0, relocate the similar blocks position and update similar blocks grouping;

End for
Output: The final reconstructed image x̂ = xK .

4. Experiments

We compare the proposed algorithm with several mainstream CS algorithms, includ-
ing TVAL3 [32], TVNLR [25], BM3D-CS [26] and NLR-CS [27]. The comparison algorithms
are all based on the total variation constraint ([25,32]) or non-local redundant structure
of the image ([26,27]). These algorithms are obtained through the website of the relevant
authors. All experimental results are obtained by running Matlab R2016b on a personal
computer equipped with an Intel®Core™i5 processor and 8 GB memory running the Win-
dows 10 operating system. We choose eight standard images and two resolution charts
from the USC-SIPI image database to test the performance of our algorithm. All the test
images are 256 × 256 gray-scale images, as shown in Figure 1. In order to evaluate the
reconstruction performance objectively, we choose peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) as evaluation indexes. PSNR and SSIM are calculated
as follows:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[x(i, j)− y(i, j)]2, (26)

PSNR = 10lg
2552

MSE
, (27)

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) . (28)

In the above formulas, MSE is the mean square error, x is the reference image, y is the
reconstructed image, and their size is M × N. The larger the PSNR value, the closer y and
x are, which means the better the evaluation result of image quality is. µx, µy are the mean
value of x and y, σx, σy are the standard deviation of x and y, respectively, and σxy is the
covariance between two images. C1 and C2 are small positive constants. The value of SSIM
is between 0 and 1, and the larger the value, the better the image quality.

In order to make full use of the nonlocal self-similarity features in images as much as
possible, it is necessary to select an appropriate block matching strategy. First of all, we give
the PSNR results and the reconstruction time of the Monarch image reconstructed by the
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proposed algorithm. In Figure 2a, we set different image block sizes (n2) and search window
sizes (s2). It can be seen that with the increase of image block size, the reconstruction time of
the proposed algorithm is significantly shortened. With the increase of the search window
size, the reconstruction time of the image will increase linearly. In general, the PSNR of the
image does not change significantly. In Figure 2b, we set different number of similar blocks
(m). It can also be seen that when the number of similar blocks is similar, the improvement
of PSNR of image reconstructed by the proposed algorithm is relatively consistent with
the increase of reconstruction time. However, when the number of selected similar blocks
increases to a certain amount (m = 45), the changes of the two are completely opposite.
Moreover, when too many similar blocks are selected (m = 54), the reconstruction time of
the image will increase dramatically.

Figure 1. Standard test images used in experiments. From left to right, first row: Barbara, Boats, Cameraman, Foreman,
House; second row: Peppers, Monarch, Parrots, Testpat1, Testpat2.

Figure 2. The PSNR (dB) and reconstruction time(s) of the Monarch image with different (a) block sizes (n2) and search
window size (s2), (b) number of similar blocks (m) reconstructed by the proposed algorithm.

4.1. Parameters Selection

Since our proposed algorithm combines bilateral total variation, it is necessary to
select appropriate spatial attenuation term α and filter window size p. Figure 3 shows
the PSNR results and reconstruction time of the Monarch image reconstructed by the
proposed algorithm with corresponding bilateral parameters. With the increase of spatial
attenuation term α, the PSNR of the image gradually increases, reaching the peak at
α = 0.7, and then decreases slightly, but decreases sharply when α = 1. When the filter
window size p = 2 and p = 3, the reconstruction results of the algorithm is approximately
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the same, but the final decline of the latter is faster. When p = 1, the overall PSNR
results are worse than the former two. In addition, we compared the corresponding
reconstruction time. It can be found that the main factor affecting the reconstruction time
of the algorithm is the filter window size p. The change of spatial attenuation term α makes
the reconstruction time fluctuate slightly, but the change is not significant. When p = 1
and p = 2, their reconstruction times are close to each other, and the latter is slightly longer.
When p = 3, the reconstruction time seems to be much longer. A larger filter window size
p obviously increases the reconstruction time of the algorithm.

Figure 3. The PSNR (dB) and reconstruction time(s) of the Monarch image with different spatial
attenuation term α and filter window size p reconstructed by the proposed algorithm.

In the experiment, the sampling matrix Φ is a partial Fourier matrix. In the block
matching strategy, based on the previous discussion, we select an image block with the
size of n2 = 6× 6 and the number of similar blocks is m = 45 for trade-off between PSNR
and reconstruction time. In order to reduce the computational complexity, we extract an
image block every 5 pixels along the horizontal and vertical directions, and the search
window size of block matching is s2 = 20× 20. Lagrange multipliers a and b are initially
set to null matrix, K = 100, T = 4, i.e., the total number of iterations is 100, and the similar
block positions are relocated every 4 iterations. The initial image is estimated by the
same standard DCT algorithm as NLR-CS. The regularization parameters λ1, λ2 are set
separately according to different sampling rates. According to the analysis results of
Figure 3, we choose to set the spatial attenuation weight α of bilateral total variation term
to 0.7, and the filter window size p = 2. The penalty parameter used in ADMM iteration
η1 = η2 = 0.01. We first present the experimental results for noiseless CS measurements
and then report the results using noisy CS measurements.

4.2. Noiseless CS Measurements

Table 1 shows the PSNR and SSIM of the proposed algorithm and comparison algo-
rithms at different sampling rates (5%, 10%, 15%, 20%, 25%) respectively. It can be seen
from Table 1 that at a lower sampling rate, the total variation model based on the sparse
gradient prior, including TVAL3 and TVNLR, is worse than other algorithms. In contrast,
BM3D-CS and NLR-CS can extract the nonlocal self-similarity prior information of the
image, so even if the sampling rate is very low, the PSNR reconstructed by these algorithms
are also great. The proposed algorithm, owing to the joint total variation and nonlocal
rank minimization, achieves better reconstruction performance than NLR-CS. For example,
at 10% sampling rate, different test images in Table 1 can have different PSNR gain of
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1.86 dB, 1.38 dB, 1.44 dB, 2.08 dB, 2.06 dB, 1.96 dB, 1.48 dB, 1.22 dB, 2.17 dB and 2.39 dB
respectively. For a more intuitive comparison, we selected the Cameraman and Peppers
images to draw the corresponding PSNR curves. The results are shown in Figure 4. It can
be seen that our proposed algorithm achieves better PSNR at each sampling rate. When re-
constructing Testpat1 image, we find that the PSNR result of BM3D-CS is better than that
of NLR-CS and the proposed algorithm. We speculate that the initial image estimated by
the standard DCT algorithm affects the performance of the proposed algorithm. It also
can be seen that at a lower sampling rate, the SSIM of TVAL3 and TVNLR are relatively
lower, while those of nonlocal self-similarity algorithms are relatively higher. Among them,
the SSIM of the proposed algorithm is closer to 1, which indicates that the reconstructed
image quality is better.

Figure 4. The PSNR (dB) curves of the (a) Cameraman and (b) Peppers images reconstructed at different sampling rates
reconstructed by different algorithms.

In order to compare the reconstructed image quality subjectively, Figure 5 shows the
results of reconstruction of five test images (Boats, Cameraman, House, Peppers, Testpat2)
by the proposed algorithm and comparison algorithms at 10% sampling rate. There are a lot
of nonlocal similar redundant structures in these images, so we choose them for comparison.
The above comparison results show that at a lower sampling rate, the details of TVAL3
and TVNLR are seriously lost. For the House image, the texture of the house becomes
very blurred, and the bricks and tiles on the eaves of the house cannot be distinguished.
The image reconstructed by BM3D-CS with nonlocal similar structure is better, but there are
still some artifacts, and the details are also blurred. NLR-CS and the proposed algorithm
look clearer visually. Because the proposed algorithm adds bilateral total variation as a
constraint to the nonlocal low-rank sparse model, compared with NLR-CS, it plays an
important role in maintaining edge texture. Compared with the bricks and tiles details in
the middle area on the right side of the image, we can see that the texture of the proposed
algorithm is richer, while the NLR-CS is too smooth. Similarly, for the Boats image, we can
see from the local detail image that the result of NLR-CS reconstruction is too smooth
resulting in a serious loss of rope details, while the details of the proposed algorithm
look better.
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Table 1. The PSNR (dB, left) and SSIM (right) of test images at different sampling rates reconstructed by the proposed
algorithm and comparison algorithms. The best performance algorithm is shown in bold.

Image Method
Sampling Rates

0.05 0.1 0.15 0.2 0.25

Barbara

TVAL3 19.95|0.549 21.97|0.658 23.98|0.743 24.79|0.776 25.36|0.812
TVNLR 21.88|0.549 22.56|0.663 24.07|0.750 25.36|0.826 27.54|0.883

BM3D-CS 23.41|0.621 24.31|0.739 27.52|0.821 30.94|0.904 33.64|0.935
NLR-CS 25.99|0.801 27.34|0.811 30.69|0.905 33.85|0.947 37.87|0.973

Proposed 28.16|0.836 29.20|0.863 32.93|0.936 36.45|0.966 39.57|0.979

Boats

TVAL3 22.06|0.655 23.36|0.660 25.37|0.762 27.03|0.799 28.91|0.838
TVNLR 24.31|0.660 25.15|0.673 26.90|0.769 28.07|0.806 29.60|0.838

BM3D-CS 25.04|0.669 27.52|0.795 29.89|0.826 32.88|0.909 34.93|0.943
NLR-CS 27.18|0.813 28.64|0.815 31.83|0.903 35.13|0.946 38.63|0.970

Proposed 29.64|0.845 30.02|0.853 34.35|0.935 37.87|0.965 40.47|0.978

Cameraman

TVAL3 15.73|0.508 19.61|0.584 21.63|0.666 22.68|0.739 24.85|0.813
TVNLR 17.23|0.537 21.26|0.645 22.40|0.687 24.98|0.771 27.24|0.829

BM3D-CS 22.67|0.656 24.56|0.742 26.36|0.790 29.12|0.879 32.04|0.908
NLR-CS 25.35|0.785 26.72|0.792 29.72|0.870 32.92|0.923 36.60|0.954

Proposed 27.72|0.812 28.16|0.820 31.42|0.895 35.15|0.942 38.71|0.964

Foreman

TVAL3 15.17|0.770 17.64|0.854 20.86|0.874 22.84|0.890 24.03|0.905
TVNLR 16.75|0.785 18.85|0.867 22.49|0.881 25.75|0.904 27.79|0.918

BM3D-CS 29.17|0.813 31.41|0.869 34.71|0.896 35.82|0.915 37.71|0.929
NLR-CS 32.49|0.877 33.61|0.898 37.27|0.927 39.68|0.957 41.34|0.970

Proposed 34.65|0.909 35.69|0.919 39.35|0.954 41.95|0.972 43.02|0.981

House

TVAL3 16.44|0.599 21.91|0.734 22.51|0.775 26.21|0.808 27.43|0.826
TVNLR 20.34|0.627 24.54|0.762 25.12|0.776 28.14|0.808 29.67|0.831

BM3D-CS 27.31|0.726 29.57|0.796 33.13|0.874 35.12|0.903 37.83|0.916
NLR-CS 31.27|0.840 32.71|0.857 36.30|0.914 39.22|0.952 40.64|0.960

Proposed 33.81|0.867 34.77|0.877 38.23|0.937 40.58|0.962 42.47|0.974

Peppers

TVAL3 19.41|0.576 20.81|0.684 23.58|0.763 26.54|0.808 27.38|0.833
TVNLR 19.95|0.585 21.13|0.690 24.54|0.770 27.67|0.805 28.89|0.838

BM3D-CS 25.17|0.701 26.07|0.771 28.57|0.836 29.55|0.863 30.32|0.882
NLR-CS 25.63|0.743 26.86|0.776 29.33|0.852 31.57|0.877 32.80|0.895

Proposed 27.34|0.798 28.82|0.818 31.49|0.871 33.51|0.901 35.24|0.923

Monarch

TVAL3 17.59|0.535 19.36|0.675 24.91|0.787 26.77|0.827 27.65|0.859
TVNLR 18.59|0.543 22.02|0.695 25.57|0.786 27.71|0.844 29.39|0.882

BM3D-CS 22.89|0.701 25.39|0.806 27.10|0.855 30.59|0.905 33.96|0.956
NLR-CS 24.92|0.807 26.48|0.846 28.61|0.896 32.47|0.945 37.10|0.972

Proposed 26.45|0.843 27.96|0.875 30.82|0.928 35.18|0.964 39.43|0.980

Parrots

TVAL3 21.57|0.713 22.69|0.736 25.39|0.785 26.93|0.849 27.84|0.893
TVNLR 22.22|0.714 24.74|0.721 26.48|0.785 27.95|0.854 28.12|0.894

BM3D-CS 25.95|0.769 27.81|0.842 30.94|0.877 32.14|0.899 33.43|0.919
NLR-CS 29.05|0.852 30.88|0.865 33.60|0.919 37.13|0.951 40.21|0.969

Proposed 31.29|0.875 32.10|0.887 36.45|0.941 39.50|0.964 41.43|0.974

Testpat1

TVAL3 7.90|0.486 12.07|0.583 14.85|0.667 17.23|0.736 20.55|0.805
TVNLR 10.23|0.524 14.06|0.617 17.01|0.749 19.31|0.796 22.34|0.836

BM3D-CS 17.69|0.739 21.33|0.784 23.54|0.854 25.50|0.901 27.01|0.936
NLR-CS 13.68|0.534 16.45|0.674 18.76|0.770 21.67|0.822 23.83|0.852

Proposed 15.41|0.647 18.62|0.758 20.70|0.816 24.65|0.875 26.55|0.910

Testpat2

TVAL3 7.17|0.468 12.40|0.664 13.55|0.686 17.96|0.776 19.32|0.795
TVNLR 10.26|0.504 14.74|0.694 16.52|0.724 20.92|0.805 24.81|0.838

BM3D-CS 16.62|0.633 18.77|0.772 23.98|0.814 26.11|0.858 28.99|0.892
NLR-CS 18.78|0.767 21.64|0.803 24.64|0.831 27.78|0.909 30.49|0.916

Proposed 22.64|0.813 24.03|0.839 26.88|0.868 30.95|0.928 33.03|0.956
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Figure 5. Comparison of reconstruction results of five test images with (a) TVAL3, (b) TVNLR, (c) BM3D-CS, (d) NLR-CS,
(e) Proposed algorithm at 10% sampling rate. The lower right or left corner of the image is the selected local detail image.

In order to compare the texture details of the reconstructed image more intuitively,
we use DCT to separate the high and low frequency components of the test images.
Figure 6 shows the comparison of high frequency details of the reconstructed Cameraman
and Peppers images. It can be seen from Figure 6 that there are many artifacts in the
image restored by BM3D-CS, resulting in a large number of artifacts interfering with high
frequency components and serious loss of details. The high frequency details of TVAL3
and TVNLR are obviously less. Compared with NLR-CS, the proposed algorithm can
reconstruct the high frequency profile more clearly and more details of the texture can be
found. Figure 7 shows the relative errors and SSIM results of high frequency components
of the Cameraman image restored by different algorithms at different sampling rates (5%,
10%, 15%, 20%, 25%). In Figure 7a, the relative errors of TVAL3, TVNLR and BM3D-CS are
relatively large at a low sampling rate, but with the increase of sampling rates, the relative
errors will decrease greatly. The relative errors of NLR-CS are very low at the beginning.
With the increase of sampling rates, the amplitude of NLR-CS decreases slightly, but it is
always in the leading position. The downward trend of our proposed algorithm is similar
to that of NLR-CS, and its relative errors are lower. The SSIM curve in Figure 7b seems to
be consistent, but the result of the proposed algorithm is always optimal. It is worth noting
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that both in Figure 7a,b it can be seen that the recovery results of BM3D-CS are relatively
poor. Obviously, as shown in Figure 6, the high frequency details of the algorithm are
seriously damaged due to the interference of artifacts. The comparison of the above results
shows that the proposed algorithm can retain more details of high frequency components
of the restored image.

Figure 6. Comparison of high frequency details of the Cameraman(top) and Peppers(bottom) images with (a) TVAL3,
(b) TVNLR, (c) BM3D-CS, (d) NLR-CS, (e) Proposed algorithm at 10% sampling rate.

Figure 7. The (a) relative error(dB) and (b) SSIM of high frequency components of the Cameraman image at different
sampling rates reconstructed by different algorithms.

4.3. Noisy CS Measurements

We also test the robustness of the proposed algorithm to noisy measurements,
by adding Gaussian noise to CS measurements, and the variation of standard deviation of
noise will produce a signal-to-noise ratio (SNR) between 10 dB and 30 dB. In order to com-
pare the results reasonably, we choose a 20% sampling rate to evaluate algorithms. Table 2
shows the PSNR results of test images reconstructed by different comparison algorithms
under different SNR conditions. As can be seen from Table 2, it is different from noiseless
CS measurements. In noisy CS measurements, the anti-noise performance of the algorithm
based on total variation model is obviously inferior to that based on nonlocal self-similarity
prior. For a more intuitive comparison, we selected the Boats and Parrots images to draw
the corresponding PSNR curves. The results are shown in Figure 8. It can be seen that
the reconstruction performance of each comparison algorithm is relatively poor at low
SNR, but the reconstruction algorithms based on nonlocal self-similarity prior are much
better than those based on sparse gradient prior. At the beginning, the proposed algorithm
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has no difference with BM3D-CS and NLR-CS. With the improvement of SNR, the PSNR
of TVAL3 and TVNLR increased significantly, at higher SNR, the PSNR improvement of
them became gentle. In contrast, the reconstruction performance of the proposed algorithm
and NLR-CS are improved steadily, and there is a certain disparity between the proposed
algorithm and BM3D-CS at higher SNR. Compared with NLR-CS, the proposed algorithm
achieves better reconstruction results under all SNR, although the gain amplitude of PSNR
is not large. Figure 9 shows the subjective visual comparison results of the reconstruction
of the Boats and Parrots images by each algorithm from noisy measurements. Here noise
environment with SNR of 25 dB is selected. It can be seen from Figure 9 that even if the
sampling rate is increased, the quality of image restoration is much worse than that of
noiseless measurements. From the perspective of local detail images, the reconstruction
algorithm based on nonlocal self-similarity prior is better. There are still some artifacts in
BM3D-CS. Compared with NLR-CS, the texture details of the proposed algorithm are richer,
such as the details of parrot head feathers. The comparison between PSNR and subjective
quality results shows that the proposed algorithm is robust to noisy measurements.

Table 2. The PSNR (dB) of test images reconstructed at 20% sampling rate from noisy measurements
(SNR = 10, 15, 20, 25, 30 dB). The best performance algorithm is shown in bold.

Image Method
PSNR(dB)

SNR = 10 SNR = 15 SNR = 20 SNR = 25 SNR = 30

Barbara

TVAL3 4.09 9.40 17.11 21.35 23.80
TVNLR 5.27 12.54 18.57 22.38 24.79

BM3D-CS 15.91 19.96 22.82 25.32 26.92
NLR-CS 16.20 20.35 23.90 26.64 30.06

Proposed 16.60 21.08 25.24 29.15 32.96

Boats

TVAL3 3.47 12.71 15.62 21.20 25.81
TVNLR 4.52 13.65 17.76 22.82 26.31

BM3D-CS 14.98 19.73 24.77 27.60 29.09
NLR-CS 16.02 20.98 25.30 28.75 31.51

Proposed 16.40 22.10 26.43 29.32 33.06

Cameraman

TVAL3 2.96 6.69 11.36 17.91 21.55
TVNLR 3.88 8.01 14.67 18.70 23.67

BM3D-CS 15.09 19.57 23.15 26.41 27.49
NLR-CS 16.24 20.57 24.44 27.49 29.52

Proposed 16.66 21.27 25.48 29.10 32.29

Foreman

TVAL3 2.44 10.16 17.40 19.67 21.48
TVNLR 3.71 11.93 20.33 22.51 24.21

BM3D-CS 14.58 19.63 24.33 28.41 31.89
NLR-CS 14.94 19.77 24.47 28.89 32.74

Proposed 15.26 20.28 25.10 29.68 33.88

House

TVAL3 3.82 10.40 16.37 22.39 25.75
TVNLR 5.15 12.61 20.65 25.06 27.78

BM3D-CS 15.69 19.62 24.19 29.07 30.62
NLR-CS 15.92 20.62 25.16 29.34 32.89

Proposed 16.30 21.23 25.94 30.35 34.27

Peppers

TVAL3 2.78 8.36 14.63 16.16 23.48
TVNLR 2.98 10.05 16.07 18.35 26.96

BM3D-CS 15.41 19.16 23.35 27.51 28.33
NLR-CS 16.39 20.75 24.58 28.47 30.26

Proposed 16.80 21.42 25.58 29.09 31.89

Monarch

TVAL3 3.74 10.22 18.09 23.15 25.94
TVNLR 4.66 11.49 21.16 24.26 26.42

BM3D-CS 15.86 20.57 24.03 26.58 28.08
NLR-CS 16.53 21.37 24.52 28.39 29.90

Proposed 16.99 21.43 25.51 29.31 32.97
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Table 2. Cont.

Image Method
PSNR(dB)

SNR = 10 SNR = 15 SNR = 20 SNR = 25 SNR = 30

Parrots

TVAL3 2.86 13.87 20.91 24.85 25.93
TVNLR 4.82 16.47 21.76 25.71 26.52

BM3D-CS 15.14 19.83 24.80 27.66 29.19
NLR-CS 16.19 20.21 25.67 29.04 32.14

Proposed 16.57 21.41 26.95 30.14 33.87

Testpat1

TVAL3 −2.18 2.67 6.48 12.55 16.59
TVNLR −1.65 3.97 7.97 13.75 17.89

BM3D-CS 12.87 17.03 21.12 23.58 24.79
NLR-CS 11.45 14.85 17.48 19.09 20.78

Proposed 11.80 15.59 18.92 21.51 23.22

Testpat2

TVAL3 −4.77 2.93 7.10 9.88 16.78
TVNLR −2.78 3.12 7.84 13.68 19.10

BM3D-CS 10.41 14.29 18.92 22.36 25.17
NLR-CS 10.94 15.07 19.99 23.11 26.64

Proposed 11.18 15.60 20.24 24.43 28.94

Figure 8. The PSNR (dB) curves of the (a) Boats and (b) Parrots images reconstructed at 20% sampling rate from
noisy measurements.

Figure 9. Comparison of reconstruction results of the Boats and Parrots images with (a) TVAL3, (b) TVNLR, (c) BM3D-CS,
(d) NLR-CS, (e) Proposed algorithm at 20% sampling rate from noisy measurements (SNR = 25 dB). The lower right corner
of the image is the selected local detail image.
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4.4. Reconstruction Time

Figure 10 shows the average reconstruction time required by several comparison
algorithms to restore ten test images at different sampling rates (5%, 10%, 15%, 20%,
25%). All the results were compared in the same iterative environment. From Figure 10,
the reconstruction time of TVAL3 which based on total variation model is quite short,
because of utilizing the steepest descent method, the advantage of this algorithm is fast
reconstruction. The reconstruction time of BM3D-CS is relatively short, because the pro-
cessing of its similar blocks is carried out in the wavelet transform domain.

Figure 10. The average reconstruction time(s) of ten test images reconstructed by different algorithms
at different sampling rates. The results are obtained by running Matlab R2016 b on a personal
computer with Win10 operating system, Intel®Core™i5 processor and 8 GB memory.

As the nonlocal filtering operation takes a lot of time in iteration, the reconstruction
time of TVNLR is the longest. Compared with TVAL3, the computational complexity of the
model increases due to the consideration of nonlocal structure information, similar block
searching and matching. The reconstruction time of NLR-CS and the proposed algorithm
is relatively longer, because the low-rank approximation of similar blocks requires singular
value decomposition of the matrix, and the computational complexity will be further
increased. Although the reconstruction time of the proposed algorithm will be a little longer,
the reconstruction quality is improved significantly by adding bilateral total variation
constraints for a joint solution. Compared with NLR-CS, the average time increase is about
only 3 seconds, the performance gain is acceptable.

5. Discussion and Conclusions

In this paper, we proposed a CS image reconstruction algorithm, which combines
bilateral total variation and weighted nuclear norm low-rank regularization. In this algo-
rithm, the bilateral total variation constraint is added to the reconstruction model based on
nonlocal low-rank as a global information prior, and the texture details of the reconstructed
image are enhanced by using the bilateral total variation operator to maintain the edge of
the image. Experimental results on standard test images demonstrate that the proposed
algorithm works well. Compared with traditional algorithms which using total variation
constraint or considering image nonlocal structure only, although the reconstruction time
of the algorithm increases a little, the proposed algorithm obtains better reconstruction
results both subjectively and objectively, and retains more detail information of the image,
which shows the effectiveness of the proposed algorithm.
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Appendix A

Table A1. Description of relevant symbols in Algorithm 1.

Symbol Description Symbol Description

CS compressive sensing Φ sampling matrix
DCT discrete cosine transform K ADMM iterations
DWT discrete wavelet transform T relocate similar blocks threshold

y measured value wj nuclear norm weight
x reconstructed image wb gradient weight

λ1 regularization parameter Xi similar block matrix
λ2 regularization parameter Li low-rank matrix
α spatial attenuation weight u auxiliary variable
p filter window size z auxiliary variable

η1 penalty parameter a Lagrange multiplier
η2 penalty parameter b Lagrange multiplier
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