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Abstract: In this paper, the application of the supervised descent method (SDM) for 2-D microwave
thorax imaging is studied. The forward modeling problem is solved by the finite element-boundary
integral (FE-BI) method. According to the prior information of human thorax, a 3-ellipse training set
is generated offline. Then, the average descent direction between an initial background model and the
training models is calculated. Finally, the reconstruction of the testing thorax model is achieved based
on the average descent directions online. The feasibility using One-Step SDM for thorax imaging is
studied. Numerical results indicate that the structural information of thorax can be reconstructed. It
has potential for real-time imaging in future clinical diagnosis.

Keywords: supervised descent method; microwave thorax imaging; 2-D inverse problem

1. Introduction

Microwave plays an important role in non-invasive detections, such as geophysics
explorations and industrial monitoring. Its capability in biomedical imaging is develop-
ing gradually. Compared with present clinical imaging modalities including computed
tomography (CT), magnetic resonance imaging (MRI), and ultrasound, microwave takes
advantage of non-ionizing radiation, portable, and cost-efficient devices. As an emerg-
ing biomecial imaging approach, microwave has already been proven to be effective in
breast cancer detection [1,2]. Its application for brain imaging has also been studied [3–7].
Microwave can also be used for thorax imaging and monitoring the human respiratory
system. The respiratory system is of great importance to human health. Human thorax
is a complex environment as the structure is complicated, consisting of lungs, heart, ribs,
and thoracic vertebrae. Various physiological functions are completed in the thorax. Some
previous work focused on vital sign capturing [8,9], detections of heart failure [10] and
pulmonary edema [11], and the measurement of lung water [12–14] and cancer [15–17].
Various systems [18,19] and sensors [16,20–26] are proposed for experimental and clinical
use. The feasibility of microwave respiration monitoring has already been studied [27] and
sensor antennas for corresponding applications have been proposed [28,29]. Due to the
complexity of the thorax, a complete and accurate microwave thorax imaging system is a
challenging task, of which researchers are addressing.

Microwave biomedical imaging can be formulated as an inverse problem. It is usually
ill-posed and nonlinear. The ill-posedness and nonlinearity are exacerbated by the complex
environment in the human thorax. Researchers applied the synthetic radar imaging method
in detection of human torso fluid [19] and brain stroke [30]. The Born iterative method
and Gauss Newton method have also been adopted in brain stroke detection [7,31]. Some
other optimization approaches are also applied to biomedical inverse problems, which are
usually computationally expensive.
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Machine learning techniques are rapidly developing in recent decades, which can
largely improve the imaging quality by integrating prior information and exploiting more
connections between data and images during the learning stage. Deep learning networks
can be qualified for microwave image reconstruction with a better performance than the
distorted Born iterative method and phase confocal method [32]. A convolutional neural
network (CNN) is used to learned the nonlinearity in breast tumour detection [33]. In [34],
a CNN is added after the non-linear inversion stage to achieve super resolution imaging
for breast phantom imaging. Deep neural networks can also improve the performance
of tumour classification in microwave biomedical imaging [35]. Learning-by-examples
strategies have proven to be successful in the prediction of lung dimensions from electrical
impedance tomography [36]. To the authors’ limited knowledge, there is not much research
being done on the application of machine learning techniques to microwave thorax imaging.

The supervised descent method (SDM) is a learning-based technique. Average descent
directions of cost functions are learned from a series of training samples and then used
to update the model and minimize the data misfit between measured and simulated
data. SDM is widely applied to face alignment [37]. Present work shows its feasibility in
microwave imaging [38–40]. SDM is able to reconstruct structures accurately in data sparse
case by recovering coefficients of compactly supported radial basis functions, which is
shown in [41]. SDM has also been applied to 2-D magnetotelluric inversion [42,43]. The
performance of SDM in pixel-based inversion for transient electromagnetic data is studied
as well [44]. Moreover, SDM has been used in electrical impedance tomography thorax
imaging [45].

In this paper, the application of SDM for 2-D microwave thorax imaging is discussed,
which is the first time for SDM applied in this field. The formulations of forward problem
and SDM are given. Then, numerical experiments based on thorax models are conducted
and discussions are made according to numerical results of iterative SDM. In order to
achieve a high temporal resolution, the capability of One-Step SDM is tested. Its potential
for real-time thorax imaging is analyzed. The influence of different training sets is given
as well. In the experiments, 433 MHz and 915 MHz are adopted as they both belong
to the industrial, scientific, and medical band (ISM). This paper is organized as follows.
Formulation of SDM is given in Section 2. Numerical experiments including the training
set and testing thorax models are described in Section 3. Conclusions are given in Section 4.

2. Formulations

A 2-D inverse scattering problem can be depicted as Figure 1. Transmitters and
receivers are located around the domain of interest (DoI) D, in which a 2-D object is
embedded. The forward problem is solved by the finite element-boundary integral (FE-BI),
which inherits advantages of the finite element method in dealing with complex medium
and integral equations in dealing with propagation of electromagnetic wave in free space.
With transverse magnetic (TM) sources, this problem can be formulated as:

∇2
t Ez(~ρ) + k2(~ρ)Ez(~ρ) = jωµJz(~ρ),~ρ ∈ D (1)

Ez(~ρ) =
∮

Γ
[G0(~ρ,~ρ′)

∂Ez(~ρ′)

∂n
− Ez(~ρ

′)
∂G0(~ρ,~ρ′)

∂n
]dΓ′,~ρ ∈ Γ (2)

where Ez and Jz represent the z-component of electric field and current density respectively.
G0(~ρ,~ρ′) denotes the Green’s Function in free space. k(~ρ), j =

√
−1, ω and µ denote the

wavenumber, imaginary unit, angular frequency, and permeability in D respectively. Γ
denotes the boundary of D.
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Figure 1. An example of a 2-D inverse problem.

To solve the forward problem, D together with its boundary is firstly discretized into
triangular meshes. Ez in D and its normal derivative ∂Ez/∂n on the boundary of D can be
expressed as:

Ez(~ρ) =
V

∑
n=1

EI
nN I

n(~ρ) +
Vb

∑
n=1

Eb
nNb

n(~ρ) (3)

E
′
z(~ρ) =

∂Ez(~ρ)

∂n
=

Vb

∑
n=1

Eb′
n Nb

n(~ρ) (4)

where V and Vb denote the number of nodes in and on the boundary of D. Furthermore, EI
n

denotes the value of the z-component of electric field at node n in D and N I
n(~ρ) denotes the

corresponding interpolation function; Eb
n and Eb′

n denote the value of the z-component of
electric field and its normal derivative at node n on the boundary of D; and Nb

n(~ρ) denotes
the corresponding interpolation function. The EI

n, Eb
n, and Eb′

n are unknowns to be solved.
Then multiplied with a testing function wm(~ρ) and integrated over D, a weak-form

representation of Equation (1) can be obtained as:∮
Γ
(wm(~ρ)E

′
z(~ρ))dΓ−

∫∫
D
(∇twm(~ρ) · ∇tEz(~ρ)− k2wm(~ρ)Ez(~ρ))dD =

∫∫
D

jωµwm(~ρ)Jz(~ρ)dD. (5)

Using the interpolation functions as testing functions, namely Galerkin’s method,
Equation (5) can be transformed into (V + Vb) equations. Similar steps can be applied to
Equation (2) as:∮

Γ
wm(~ρ)Ez(~ρ)dΓ =

∮
Γ

wm(~ρ)
∮

Γ
[G0(~ρ,~ρ′)

∂Ez(~ρ′)

∂n
− Ez(~ρ

′)
∂G0(~ρ,~ρ′)

∂n
]dΓ′dΓ. (6)

Another Vb equations can be obtained with point matching testing functions. Af-
ter substituting Equations (3) and (4) into Equations (5) and (6), these equations can be
combined into a compact matrix equation as:(

A1
A2

)(
E
E′

)
=

(
Jz
0

)
(7)

where A1 and A2 denote the coefficients calculated from Equations (5) and (6) respectively.
E and E

′
are column vectors consisting of the unknowns in Equations (3) and (4), namely

EI
n, Eb

n, and Eb′
n . Finally, Ez can be calculated by solving the matrix equation.

The above forward modeling process can be compactly written as:

d = F(m) (8)
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where d denotes the field measured by receivers, m denotes the distributions of dielectric
properties in DoI, and F(·) denotes the operator of forward modeling. Solving an inverse
problem can be considered as an optimization procedure to find out a reconstruction model
m that can minimize the data misfit between the measured data dobs and the simulated
data d. The cost function can be defined as:

C(m) = ||dobs − F(m)||22. (9)

Based on the Taylor expansion, Equation (9) at m + ∆m can be written as:

C(m + ∆m) = ||dobs − F(m + ∆m)||22 ≈ ||dobs − F(m)− JT
F ∆m||22 (10)

where JC and JF are the Jacobian matrices of C(m) and F(m) respectively. ∆m is an update
to the model. The minimum of C is reached when the gradient of C with respect to ∆m is
equal to zero, that is:

JT
F JF∆m = JT

F (dobs − F(m)) (11)

so the update of the model based on Equation (11) can be obtained as:

∆m = (JT
F JF)

−1JT
F (dobs − F(m)) = K(dobs − F(m)) (12)

which defines the Gauss Newton method. K sets the model update direction together
with the data misfit. As the inverse problem of thorax imaging is always nonlinear due
to multiple scattering, iteration process is adopted to realize the inversion. In the Gauss
Newton method, the update direction needs to be calculated during each iteration, which is
usually time consuming. In order to avoid excessive time cost, SDM provides an alternative
approach to calculate the update direction K offline in advance. Firstly, a number of training
samples mj is generated with corresponding forward modeling data dj. Then, an average
update direction Kt is calculated between a certain initial model and the training models.
In each iteration, a corresponding average update direction is learned. The average update
direction Kt in the t-th iteration can be calculated as:

arg min
Kt

{
N

∑
j=1
||∆mt

j −Kt∆dt
j ||22} (13)

where N is the number of training samples and:

∆mt
j = mj −mt

j (14)

∆dt
j = dj − dt

j (15)

where mt
j is the updated model of the j-th training sample and dt

j is the corresponding
forward modeling data in the t-th iteration. It can be transformed into a matrix form as:

arg min
Kt

{||∆Mt −Kt∆Dt||22} (16)

∆Mt together with ∆Dt is an N-Row matrix in which each row corresponds to a train-
ing sample. In order to solve Equation (16), a least square method is adopted and a
regularization procedure is introduced to stabilize the solution in case of the singularity
of ∆Dt:

Kt = (∆DT
t ∆Dt + αI)−1∆DT

t ∆Mt (17)

where α can be set proportional to the largest eigenvalue of ∆Dt. After the update direction
Kt is obtained, the model can be updated by:

mt+1
j = mt

j + Kt∆dt
j. (18)
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The model misfit and data misfit can defined as:

rmsM =
1
N

N

∑
j=1

||∆mt
j ||2

||mj||2
(19)

rmsD =
1
N

N

∑
j=1

||∆dt
j ||2

||dj||2
. (20)

After the training stage, a set of update directions K1, K2, K3... can be used for online
imaging and the reconstruction can follow a similar process as Equation (18). During the
inversion process, the data misfit should be checked in each iteration and the reconstruction
could be stopped if the data misfit is less than a predefined criteria. But it should also be
noted that this iterative approach can not guarantee an adequate temporal resolution. To
solve this problem, a compromised solution is to use One-Step SDM, which means only
the average descent direction of the first step is learned. During reconstruction, a one-step
inversion is adopted. This One-Step SDM is a qualitative imaging method, yet it can still
incorporate sufficient prior information through training stage and achieve a reasonable
reconstruction, with a largely saved reconstruction time.

3. Numerical Experiments and Discussions
3.1. Description of Thorax Model

The goal of thorax imaging is the inversion of the distributions of dielectric properties
in the human thorax. The main task is to reconstruct the lungs and heart. For simplicity, a
homogeneous background is used as an initial model in the following discussions, which
is shown in Figure 2. 2-D delta sources are placed on the boundary between free space
and muscle. As it is infinitely long in the z-direction, the electric field in is the TM mode.
The dielectric properties of human tissues including muscle, lung, and heart are given
in [46]. The relative permittivity and conductivity of muscle, inflated lung, and heart at
433 MHz and 915 MHz are shown in Table 1. The dielectric properties of muscle are used
for background.

Table 1. Relative permittivity and conductivity of muscle, inflated lung, and heart.

Tissue 433 MHz 915 MHz

εr σ (S/m) εr σ (S/m)

Muscle 56.9 0.80 55.0 0.95
Inflated Lung 23.6 0.38 22.0 0.46

Heart 65.3 0.98 59.8 1.24

Figure 2. Background model (yellow: Human; black: Free space).
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The numerical experiments including forward modeling and inversion are all carried
out with Matrix Laboratory (MATLABr R2017b). When solving the forward problem, the
model is partitioned into 4862 triangular elements with 150 elements on the boundary,
with a maximum side length less than 1 cm, which is 0.013 of the wavelength of 433 MHz
in vacuum.

3.2. Training Set

Training samples are usually set according to prior information. As lungs and heart
are the main reconstruction targets in thorax imaging, a 3-ellipse training model is adopted
in this application. Two random ellipses represent two lungs and one random circle in the
middle represents the heart. The position, size, dielectric properties and rotation angle
of different, training samples vary in a predefined range. Figure 3 shows an example of
training samples at 433 MHz.

(a) (b)

Figure 3. An example of training samples at 433 MHz: (a) Real Part; (b) Imaginary part.

The ranges of different parameters at 433 MHz and 915 MHz are shown in Table 2. It
should be mentioned that the major axis of the two ellipses is in y-direction before rotation.
So the rotation angle describes the angle between the major axis and y-direction. It is
positive if the rotation is clockwise. Moreover, in clinical diagnosis, abnormalities may
occur in only one of the two lungs, hence they may have different parameters. So the two
ellipses share same variation range but the values of their parameters are different. SDM
takes the advantage of prior information, so 3000 training samples are generated according
to the rules above. Figure 4 shows the training misfit at two frequencies. Both converge
after 10 iterations using SDM.

Table 2. Ranges of different parameters in training sets at 433 MHz and 915 MHz.

433 MHz

Center
Position (m)

Major
Axis (m)

Minor
Axis (m)

Relative
Permittivity

Conductivity
(S/m)

Rotation
Angle (◦)

Left Ellipse x ∈ (−0.110,−0.060)
y ∈ (−0.020, 0.020) (0.140, 0.279) (0.140, 0.274) (10, 55) (0.2, 0.8) (−60, 60)

Right Ellipse x ∈ (0.050, 0.130)
y ∈ (−0.020, 0.020) (0.140, 0.277) (0.111, 0.207) (10,55) (0.2, 0.8) (−60, 60)

Circle x ∈ (−0.020, 0.040)
y ∈ (0.030, 0.080)

Diameter
(0.080, 0.196) (57, 87) (0.8, 1.2) 0
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Table 2. Cont.

915 MHz

Center
Position (m)

Major
Axis (m)

Minor
Axis (m)

Relative
Permittivity

Conductivity
(S/m)

Rotation
Angle (◦)

Left Ellipse x ∈ (−0.110,−0.060)
y ∈ (−0.020, 0.020) (0.140, 0.278) (0.140, 0.274) (10, 55) (0.35, 0.95) (−60, 60)

Right Ellipse x ∈ (0.050, 0.130)
y ∈ (−0.020, 0.020) (0.140, 0.279) (0.111, 0.208) (10, 55) (0.35, 0.95) (−60, 60)

Circle x ∈ (−0.020, 0.040)
y ∈ (0.030, 0.080)

Diameter
(0.080, 0.199) (55, 85) (0.95, 1.35) 0

(a) (b)

Figure 4. Training misfit: (a) 433 MHz; (b) 915 MHz.

3.3. Numerical Experiments
3.3.1. Iterative SDM

After the training stage, a thorax model is used to test the algorithm, which is shown
in Figure 5a,d. The two ellipses represent two lungs and the circle in the middle represents
the heart. They are in different colors as they have different dielectric properties. During
reconstruction, 5% white noise is added to the testing data. The reconstructed relative
permittivity distributions of the thorax model at 433 MHz are shown in Figure 5b,e. The
red and yellow parts in Figure 5b represent reconstructed size and the real part of relative
permittivity of lungs and hearts respectively. The orange and black parts in Figure 5e show
the reconstructed imaginary part of relative permittivity. The data misfit of reconstruction
process is shown in Figure 6. With 10 iterations, a thorax model is reconstructed and the
reconstruction process converges. The position, size, and rotation of the lungs and heart
can be reconstructed accurately. The reconstruction at 915 MHz is also tested, which is
shown in Figure 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Thorax model for testing at 433MHz: (a,d) Real model; (b,e) 10-step reconstruction; (c,f)
One-step reconstruction.

(a) (b)

Figure 6. Reconstruction data misfit: (a) 433 MHz; (b) 915 MHz.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Thorax model for testing at 915 MHz: (a,d) Real model; (b,e) 10-step reconstruction; (c,f)
One-step reconstruction.

3.3.2. One-Step SDM

As mentioned before, the iteration process is adopted to overcome the nonlinearity
in thorax imaging, which can be computationally expensive and difficult to implement
for real-time imaging. In clinical diagnosis, respiration is continuous, which means the
dielectric properties of lungs are changing all the time. As a result, thorax imaging with a
high temporal resolution is necessary. The convergence of data misfit during training and
testing shows that the data misfit decreases significantly at the first iteration, which means
keeping only the first step of SDM may also have a reasonable performance. One-step
SDM retains the advantage of iterative SDM in the incorporation of prior information and
saves reconstruction time. Figure 5c,f show the reconstruction results using one-step SDM.
Compared with iterative SDM, a similar performance of a reconstruction size, position,
and rotation using one-step SDM is achieved. Lungs and heart can be distinguished from
the reconstruction result. Although the value of reconstructed dielectric properties using
one-step SDM are not so satisfying, the structural information of lungs and heart it provides
can help doctors to monitor human respiration in clinical diagnosis, such as detecting level
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of atelectasis. Similar phenomenon can be seen for 915 MHz. The above results indicate
that microwave real-time throax imaging may be feasible with the help of one-step SDM in
the future.

3.4. Discussions

According to the results in numerical experiments, the feasibility of SDM on 2-D mi-
crowave thorax imaging is basically verified. With a training set containing models of three
ellipses to mimic lungs and hearts, average descent directions can be learned for the inversion
of a testing thorax model. SDM shows great capability in solving nonlinear inverse problem,
which also shows prior information can play a significant role in inversion. Training sets
need to be specially designed to achieve a better performance. In common applications,
training samples can be generated simply according to possible shapes, sizes, positions, and
dielectric properties of the real model. However, in thorax imaging, the relative permittivity
and conductivity of heart are larger than those of background, while the opposite is true
for lungs. The average descent direction for heart and lungs is different. As a result, the
dielectric properties of the circle and ellipses are set to be larger and smaller than background
respectively. Moreover, it should be noted that, the heart always lies between the two lungs
in the front of the thorax. So the position of circles is set accordingly. More importantly, the
overlap of position variation range between circle and ellipses should be relatively small to
avoid learning and reconstruction mistakes in dielectric properties. If the ellipse is so large
that it exceeds the thorax boundary, the exceeding parts should be removed.

The reconstruction results using 433 MHz and 915 MHz are not the same. The outline
of heart and lungs is described more completely using low frequency. On the other
hand, the separation between two lungs is clearer using 915 MHz, which means high
frequency reconstruction focuses more on details. Reconstruction using two frequencies
simultaneously may recover both outline and details at the same time. The results of
dual-frequency one-step SDM are shown in Figure 8. Compared with single-frequency
reconstruction, the structural information is more precise including both outline and details.
Microwave at two frequencies shares the same structure during training and testing. As a
result, inversion with dual-frequency can better reconstruct structural information than
single-frequency reconstruction. In future, data with more frequencies may further improve
the inversion.

This work mainly focuses on the reconstruction of dielectric properties changes in tho-
rax caused by respiration. However the lung volume changes caused by thorax expansion
and contraction during the respiration process may also affect the received signals. These
factors should be further studied quantitatively in future studies.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Reconstruction results of dual-frequency one-step supervised descent method (SDM): (a,c)
433 MHz; (b,d) 915 MHz.

4. Conclusions

In this paper, the application of one-step SDM in 2-D microwave thorax imaging was
studied. A training set consisting of three ellipses was introduced to train the average
update direction. After training stage, a numerical thorax model was used to test the
algorithm. The results of numerical experiments verified its feasibility in thorax imaging.
The results based on one-step SDM showed its potential to realize thorax imaging with a
high temporal resolution, retaining adequate structural information for clinical diagnosis.
In future, human respiration experiments will be conducted and one-step SDM will be
adopted in experiments. The reconstruction of dielectric property distribution in human
thorax will be further tested based on measured data using SDM.
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Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [CrossRef] [PubMed]

24. Sugitani, T.; Kubota, S.; Toya, A.; Xiao, X.; Kikkawa, T. A Compact 4 × 4 Planar UWB Antenna Array for 3-D Breast Cancer
Detection. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 733–736. [CrossRef]

25. Yun, X.; Fear, E.C.; Johnston, R.H. Compact antenna for Radar-based breast cancer detection. IEEE Trans. Antennas Propag. 2005,
53, 2374–2380. [CrossRef]

26. Hagness, S.C.; Taflove, A.; Bridges, J.E. Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 1997,
33, 1594–1595. [CrossRef]

27. Zhang, H.; Li, M.; Yang, F.; Xu, S. A feasibility study of microwave respiration monitoring. In Proceedings of the 2017 Sixth
Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [CrossRef]

http://doi.org/10.1109/TBME.2002.800759
http://www.ncbi.nlm.nih.gov/pubmed/12148820
http://dx.doi.org/10.1109/22.883861
http://dx.doi.org/10.1109/IST.2016.7738246
http://dx.doi.org/10.1109/RADIOELEK.2018.8376398
http://dx.doi.org/10.1109/CAMA.2014.7003417
http://dx.doi.org/10.1049/iet-map.2013.0054
http://dx.doi.org/10.1109/LAWP.2011.2132690
http://dx.doi.org/10.1109/TBME.2013.2241763
http://www.ncbi.nlm.nih.gov/pubmed/23358946
http://dx.doi.org/10.1109/ACCESS.2014.2352614
http://dx.doi.org/10.1038/srep14047
http://dx.doi.org/10.1109/PROC.1980.11592
http://dx.doi.org/10.1109/TBME.1978.326376.
http://dx.doi.org/10.1109/TAP.2014.2309132
http://dx.doi.org/10.1049/el.2015.0230
http://dx.doi.org/10.1109/LAPC.2016.7807452
http://dx.doi.org/10.1109/APS.2005.1552382
http://dx.doi.org/10.1109/TIM.2013.2277562
http://dx.doi.org/10.1109/APS.2008.4619683
http://dx.doi.org/10.1109/LAWP.2014.2320495
http://dx.doi.org/10.1049/iet-map:20050189
http://dx.doi.org/10.1109/TBME.2015.2434956
http://www.ncbi.nlm.nih.gov/pubmed/26011862
http://dx.doi.org/10.1109/LAWP.2013.2270933
http://dx.doi.org/10.1109/TAP.2005.852308
http://dx.doi.org/10.1049/el:19971106
http://dx.doi.org/10.1109/APCAP.2017.8420537


Electronics 2021, 10, 352 13 of 13

28. Zhang, H.; Chen, X.; Li, M.; Yang, F.; Xu, S. A Compact Dual-Band Folded-Cavity Antenna for Microwave Biomedical Imaging
Applications. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai,
China, 20–22 March 2019; pp. 1–3. [CrossRef]

29. Zhang, H.; Li, M.; Yang, F.; Xu, S.; Zhou, H.; Yang, Y.; Chen, L. A Low-Profile Compact Dual-Band L-Shape Monopole Antenna
for Microwave Thorax Monitoring. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 448–452. [CrossRef]

30. Zamani, A.; Mobashsher, A.T.; Mohammed, B.J.; Abbosh, A.M. Microwave imaging using frequency domain method for
brain stroke detection. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless
Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [CrossRef]

31. Mojabi, P.; LoVetri, J. Microwave Biomedical Imaging Using the Multiplicative Regularized Gauss–Newton Inversion. IEEE
Antennas Wirel. Propag. Lett. 2009, 8, 645–648. [CrossRef]

32. Shao, W.; Du, Y. Microwave Imaging by Deep Learning Network: Feasibility and Training Method. IEEE Trans. Antennas Propag.
2020, 68, 5626–5635. [CrossRef]

33. Shah, P.; Chen, G.; Moghaddam, M. Learning Nonlinearity of Microwave Imaging Through Deep Learning. In Proceedings of the
2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA,
USA, 8–13 July 2018; pp. 699–700. [CrossRef]

34. Shah, P.; Moghaddam, M. Super resolution for microwave imaging: A deep learning approach. In Proceedings of the 2017 IEEE
International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA,
9–15 July 2017; pp. 849–850. [CrossRef]

35. Gerazov, B.; Conceicao, R.C. Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging.
In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July
2017; pp. 564–569. [CrossRef]

36. Salucci, M.; Marcantonio, D.; Li, M.; Oliveri, G.; Rocca, P.; Massa, A. Innovative Machine Learning Techniques for Biomedical
Imaging. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic
Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–3. [CrossRef]

37. Xiong, X.; De la Torre, F. Supervised Descent Method and Its Applications to Face Alignment. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 532–539. [CrossRef]

38. Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Full-wave Microwave Imaging. In
Proceedings of the 2019 Photonics Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December
2019; pp. 624–631. [CrossRef]

39. Guo, R.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Learning Technique for 2-D Microwave Imaging.
IEEE Trans. Antennas Propag. 2019, 67, 3550–3554. [CrossRef]

40. Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Pixel-and Model-based Microwave Inversion with Supervised
Descent Method for Dielectric Targets. IEEE Trans. Antennas Propag. 2020, 68, 8114–8126. [CrossRef]

41. Guo, R.; Jia, Z.; Song, X.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of Supervised Descent Method to Parametric Level-set
Approach. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai,
China, 20–22 March 2019; pp. 1–2. [CrossRef]

42. Ma, Y.; Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for 2D Magnetotelluric Inversion using Adam
Optimization. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China
(ACES), Nanjing, China, 8–11 August 2019; Volume 1, pp. 1–2. [CrossRef]

43. Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method method for 2D magnetotelluric data
inversion. Geophysics 2020, 85, WA53–WA65. [CrossRef]

44. Guo, R.; Li, M.; Fang, G.; Yang, F.; Xu, S.; Abubakar, A. Application of supervised descent method to transient electromagnetic
data inversion. Geophysics 2019, 84, E225–E237. [CrossRef]

45. Li, M.; Zhang, K.; Guo, R.; Yang, F.; Xu, S.; Abubakar, A. Supervised Descent Method for Electrical Impedance Tomography. In
Proceedings of the 2019 Photonics Electromagnetics Research Symposium—Fall (PIERS—Fall), Xiamen, China, 17–20 December
2019; pp. 2342–2348. [CrossRef]

46. Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; Technical Report; King’s Coll
London (United Kingdom) Department of Physics: London, UK, 1996.

http://dx.doi.org/10.1109/COMPEM.2019.8779102
http://dx.doi.org/10.1109/LAWP.2020.2967142
http://dx.doi.org/10.1109/IMWS-BIO.2014.7032452
http://dx.doi.org/10.1109/LAWP.2009.2023602
http://dx.doi.org/10.1109/TAP.2020.2978952
http://dx.doi.org/10.1109/APUSNCURSINRSM.2018.8609005
http://dx.doi.org/10.1109/APUSNCURSINRSM.2017.8072467
http://dx.doi.org/10.1109/EUROCON.2017.8011175
http://dx.doi.org/10.1109/COMCAS44984.2019.8958253
http://dx.doi.org/10.1109/CVPR.2013.75
http://dx.doi.org/10.1109/PIERS-Fall48861.2019.9021856
http://dx.doi.org/10.1109/TAP.2019.2902667
http://dx.doi.org/10.1109/TAP.2020.2999741
http://dx.doi.org/10.1109/COMPEM.2019.8779231
http://dx.doi.org/10.23919/ACES48530.2019.9060597
http://dx.doi.org/10.1190/geo2019-0409.1
http://dx.doi.org/10.1190/geo2018-0129.1
http://dx.doi.org/10.1109/PIERS-Fall48861.2019.9021506

	Introduction
	Formulations
	Numerical Experiments and Discussions
	Description of Thorax Model
	Training Set
	Numerical Experiments
	Iterative SDM
	One-Step SDM

	Discussions

	Conclusions
	References

