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Abstract: Using Spatial Domain Correlation Pattern Recognition (CPR) in Internet-of-Things (IoT)-
based applications often faces constraints, like inadequate computational resources and limited
memory. To reduce the computation workload of inference due to large spatial-domain CPR filters
and convert filter weights into hardware-friendly data-types, this paper introduces the power-of-
two (Po2) and dynamic-fixed-point (DFP) quantization techniques for weight compression and the
sparsity induction in filters. Weight quantization re-training (WQR), the log-polar, and the inverse
log-polar geometric transformations are introduced to reduce quantization error. WQR is a method
of retraining the CPR filter, which is presented to recover the accuracy loss. It forces the given
quantization scheme by adding the quantization error in the training sample and then re-quantizes
the filter to the desired quantization levels which reduce quantization noise. Further, Particle Swarm
Optimization (PSO) is used to fine-tune parameters during WQR. Both geometric transforms are
applied as pre-processing steps. The Po2 quantization scheme showed better performance close
to the performance of full precision, while the DFP quantization showed further closeness to the
Receiver Operator Characteristic of full precision for the same bit-length. Overall, spatial-trained
filters showed a better compression ratio for Po2 quantization after retraining of the CPR filter. The
direct quantization approach achieved a compression ratio of 8 at 4.37× speedup with no accuracy
degradation. In contrast, quantization with a log-polar transform is accomplished at a compression
ratio of 4 at 1.12× speedup, but, in this case, 16% accuracy of degradation is noticed. Inverse log-polar
transform showed a compression ratio of 16 at 8.90× speedup and 6% accuracy degradation. All the
mentioned accuracies are reported for a common database.

Keywords: correlation pattern recognition; sparsity; weight precision reduction; geometric pre-
processing; dynamic-fixed-point quantization; transform; particle swarm optimization;
memory minimization

1. Introduction

The computer vision system competence has faced many challenges during their
early development phases. These challenges impeded the target detection performance
of artificial vision systems. The human vision can easily distinguish the object despite
occlusion, clutter, rotation, lighting conditions, scale, or noise; however, the camera sensors
encountered difficulty while resolving the mentioned challenges. In order to mitigate
these hindrances, multiple efforts are made in the Correlation Pattern Recognition (CPR)
literature. Usually, these challenges can be solved by applying an appropriate form of rota-
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tion. Besides scale invariance, improving the statistical approach to training the matching
filter, extraction, and exploiting the scale-invariant features for the detection or geometrical
transform are other useful steps. Affixing pre-processing steps before the training and
inference phase incurs an extra computation cost.

Traditionally, CPR filters are trained and tested in the frequency domain. Contrary
to that, spatial domain CPR filters are trained in the frequency domain, and they are
later converted back to the space domain for inference. The current paper refers to this
methodology as frequency-trained (FT). In addition to this approach, this paper also
considers complete training and inference in the space domain known as spatially-trained
(ST). Inference in the spatial domain is computationally expensive as compared to the
frequency domain. It involves cross-correlation between the test image and the reference
template. Inference can be performed on various devices, like CPU, Internet-of-Things
(IoT) devices, GPU, or ASICs.

1.1. Motivation and Research Challenges

Computation Cost Associated with Spatial Domain Correlation Filters: In order to
handle the false detection under non-uniform lighting conditions, the state-of-the-art
CPR [1,2] employed spatial filters instead of a typical approach of training and testing
filters in the frequency domain. However, real-time implementation of the spatial filters
demands more computational resources than frequency domain filters.

Hardware Implementation Constraints: Intrinsically, embedded systems have limited
resources. So, synthesizing the state-of-the-art CPR inference on embedded systems poses
many challenges. Hardware is either constrained by the number of operations that can be
executed in parallel or by the memory interface transmission rate [3].

Associated Research Challenges: The problem of computation complexity and hard-
ware constraints poses the following challenges.

• Efficiency and Computational Complexity of Inference due to Number and Large Sizes
of Spatial Domain Correlation Filters: The large size of CPR-trained templates and the
number of filters required for each target, especially for out-of-plan training, make
the inference phase computationally complex. This complexity increases because of
certain limitations and critical requirements, such as limited available power, high
throughput demand, and hard real-time processing requirements; so, sparsity can
reduce workload and increase inference efficiency.

• Memory Requirement of CPR filter Weights: Full-precision filter weights have higher
memory requirements, which increases with the size and number of spatial filters.
In that case, memory minimization is possible through filter-weight compression.

Consequently, both the above-mentioned challenges increase the number and com-
plexity of operations required to detect the target. To address such challenges, this paper
mainly focuses on compression and retraining CPR approaches. Subsequently, the follow-
ing research gaps should be explored:

• We need to explore compression techniques for CPR filters and improve the infer-
ence computation efficiency; however, reducing the weight precision results in the
emergence of quantization error, which degrades the classification accuracy. The real
challenge is to maintain the classification accuracy for assuring the maximum possible
compression ratio

• To minimize the computation workload for inference without degradation in classifi-
cation accuracy.

Recent researches on CPR apply some pre-processing steps before training filters
focusing on accuracy or in-variance. These steps are used to achieve zoom, rotation,
or translation in-variance. Gardezi et al. [1] use Affine Scale Shift Invariant Feature Trans-
form (ASIFT) along with a spatial correlation filter that enables the fully-invariant filter.
Similarly, Awan et al. [4] devise an auto-contour-based technique to reduce the side lobes.
This method assures higher accuracy through prior object segregation before correlation
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with the reference template; however, the mentioned techniques do not target the filters’
compression, efficiency, or memory requirements.

The flow diagram of the proposed techniques is illustrated in Figure 1. Database
of training, validation, and testing samples are read to pre-process through geometric
transformation (step 1 in Figure 1), which is log-polar or inverse log-polar transform.
For direct quantization, training samples are passed through spatial-training (ST) (step 2
in Figure 1) or frequency-training (FT) (step 3 in Figure 1) before applying quantization
schemes. Weight quantization retraining (WQR) (step 5 in Figure 1) is applied after
ST. Then, the outcome is quantized (step 4 in Figure 1) for compressed filters. These
quantization techniques from all methods are cross-correlated with a testing image to
produce a correlation plane. This plane is used to generate the detection score. Particle
Swarm Optimization (PSO) (step 6 in Figure 1) is employed to find and fine-tune the γ and
β parameters. Further, Table 1 represents the details of variable and its description used in
this paper.
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Figure 1. Optimization flow of our Correlation Pattern Recognition (CPR) quantization technique.

1.2. Contributions

This paper makes the following contributions:

• A Weight Quantization Retraining (WQR) (step 5 in Figure 1) method is proposed in
this paper to retrain low-precision quantization weights of the CPR filter for dynamic
fixed point and power-of-two (step 4 in Figure 1) quantization schemes. Further,
the PSO (step 6 in Figure 1) technique is applied to optimize β and γ.

• Log-polar and inverse log-polar transforms (step 1 in Figure 1) are introduced as the
pre-processing strategies to support the low-precision CPR filter quantization.

• An analysis is performed to compare the advantages of ST filters (step 2 in Figure 1)
and FT filters (step 3 in Figure 1). This analysis is further extended to each domain,
either spatially-trained or frequency-trained, to investigate the comparative benefits
of power-of-two (Po2) and dynamic-fixed-point (DFP) quantization schemes.

• The overall analysis compares the advantages of direct, log-polar, inverse log-polar,
and WQR, which provides a better perspective.
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Table 1. Variables used in this work.

Variables Comments

fw Spatial filter weights in floating-point precision
Lpow2 Quantized weights for Power-of-Two (Po2) scheme
Ld f p Quantized weights for Dynamic-Fixed-Point (DFP) scheme
BW Bit-width for precision reduction
m1 Exponential power of two used for the upper-bound
m2 Exponential power of two used for the lower-bound
v Maximum absolute value of fw
Ud f p Quantized weights for the Dynamic-Fixed-Point scheme
mCx

β,γ Modified Average Image Correlation Height
mSx

β,γ Modified Average Image Similarity
γ Parameter of the contribution of quantization error
β Parameter of the contribution of average
ξ Co-efficient of quantization error
cpj Raw correlation plane for test image j
ncp Normalized correlation plane
COPI Correlation output peak intensity
τ Threshold for object detection
∆% Percentage difference between threshold τ and COPI

2. Mathematical Background and Related Work

CPR is a match-filtering [5–7] technique. Reference [8] is one of the correlation-based
pattern recognition approaches. During the last three decades, CPR progressively improves
the designs of statistical methods for training the reference templates. Typically, the CPR
training phase involves different sample images and their processing through a statistical
training method to prepare a reference template for the target/object. Target localization
in the testing image uses cross-correlation with a stride of 1, which means convolution
after 180-degree rotation for searching the target/object at each location, and that gives
the output correlation plane. For spatial domain filtering, each output in the correlation
plane has a float-point operational cost, which is equal to the product of height and
width of the reference template. The presence of the target is identified by the height
of the peak in the correlation plane. The relative class resemblance of the target/object
is proportional to the peak height in the output correlation plane. The larger peak in
the output correlation plane corresponds to a stronger probability of the target, whereas
the absence of the target results in a broader peak in the correlation output plane. Each
reference template design must be designed keeping in view the fact that there is a trade-off
between optimal correlation peak, distortion invariance, and clutter suppression [9,10].
Generally, these traits are regulated by optimized parameters. Preliminary steps to resolve
the target detection problem [5] are limited to optimal optical correlators [6,7]; however,
these basic template designs do not solve the issues, such as distortion and clutter rejection.
Synthetic Discriminant Filters (SDFs) [11] are used as the first decent strategy to deal with
the challenges. It is the earliest effort in the overall CPR domain and besides, it provides
the foundation for further advancements in this field. Although, the later generalization of
SDFs involves addressing the in-variance issue in the filter design [12,13]. This approach
partially handles the mentioned challenges. Besides, for achieving the optimality and
invariance [13], the SDF design emphasizes on enhances the signal-to-noise ratio in the
proximity of the target but it allows the side-lobes to function in the proximity of the
correlation peak, which complicates the estimation method, and makes it difficult to obtain
the optimal threshold value. Casasent et al. [14] generate a bigger dataset for training,
which is obtained by rotating and shifting each image. After that, the Minimum Average
Correlation Energy (MACE) [15,16] filter, which is a hybrid form of MACE, and a filter
with the minimum variance SDF (MVSDF) [17,18] are proposed. The proposed approaches
produce sharper peaks in the correlation output plan as compared to their predecessors.
Both these filters (MACE, MVSDF) give excellent responses against noise; however, their
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performances are inadequate against distortion. A trade-off must be kept between the
parameter to control the object/target detection despite clutter and the distortion of an
object/target. To answer the possible challenges, a breakthrough in the CPR field is made
in the mid-90s. First, the Maximum Average Correlation Height (MACH) and then the
Optimal Trade-Off MACH filter are introduced. These statistical models optimize the
filter response between noise, distortion, and clutter rejection but these filters excessively
depend on the mean of all the samples. This obstacle impedes the classifier’s performance
and results in false positives. Eigen Maximum Average Correlation Height (EMACH) [19]
mitigates the dependence on the sample average, which relatively improves the classifier
accuracy. Further improvement in the classification accuracy is possible in the Enhanced
Eigen Maximum Average Correlation Height Filter (EEMACH) [20] along with a tradeoff.
WMACH [21–23] enhances the performance of the reference template, and the Gaussian
wavelet is applied before training as a pre-processing step. Target search in the input scene
enables the CPR techniques to accurately localize the target. MMC filter [24] exploits this
CPR feature by integrating the Support Vector Machine (SVM) with CPR to pinpoint the
target’s location within the input scene. The CPR localizes the target when the SVM allowed
generalization in the input. Further enhancement in the CPR performance is introduced
through partial-aliasing correlation filters [25]. These filtering techniques ensure sharper
peaks in the presence of a target/object. Performance improvement originates from the
aliasing effect that takes place because of the circular correlation as compared to linear
convolution, which impedes the CPR performance. Human action recognition [26–29]
intercedes the CPR filters to detect human actions.

Achuthanunni et al. [30] and Banerjee et al. [31] propose the band-pass pre-processing
of Laplacian of Gaussian (LoG) of unconstrained correlation filter for facial recognition.
The band-pass filtering achieves a trade-off between suppressing irrelevant details and
enhancing the edges for feature representation. The proposed technique applies PSO to
find the optimum scale. The filter successfully handles the challenges, like illumination and
noise, during face recognition and outperforms other correlation filters. However, it lacks
detection in the presence of out-of-plane and in-plane rotation and scale. Akbar et al. [32]
also employ the rotational invariant correlation filter for moving human detection. The pro-
posed methodology pre-processes the color conversion approach and background elim-
ination to enhance correlation filters’ speed and accuracy. Akbar et al. [33] propose the
hardware implementation of correlation filters on FPGA, which reduces the processing time
with negligible performance loss. Hardware design is implemented in LabView, which
later may be used later in real-time security applications. Haris et al. [34] apply the MACH
filter to localize the target in videos. The target is tracked using a particle filter, while
motion is approximated using the Markov model. An approximate proximal gradient
algorithm is applied to limit the object tracking to target templates. Haris et al. [35] imple-
ment the fast-tracking and recognition using Proximal Gradient Filter (PG) and modified
MACH. The proposed tracking approach resolves the challenge of target detection and
changing the coordinates of the target. In another research [28], a blended approach is
proposed to simultaneously handle noise, clutter, and occlusion. Logarithm transform
and DoG are applied as a pre-processing step to achieve this. Further, to produce sharp
peaks, a minimum average correlation energy filter is adopted to recognize the target.
The results show a remarkable performance of the mentioned approach as compared to
other correlation filters.

Reducing the data precision is a straightforward approximation technique to reduce
memory and stringent requirements of energy. It also brings some accuracy degradation;
however, finding the application’s resilience against error introduces due to bit-width
reduction is vital for approximation. This approximation is feasible both at software and
architecture levels. Venkataramani et al. [36] propose an approximation approach to miti-
gate the energy requirements of Neural Networks (NNs). An approximation framework
is presented which employed the back-propagation to convert the standard trained NN
to AxNN which is an approximated and energy-efficient version with almost the same
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accuracy. This method locates the neuron, which has the least effect on accuracy then
replaces that neuron with its approximated equivalent neuron. Different approximation
versions with the energy-accuracy trade-off for original NN are produced by adjusting
the input precision and neuron weights. Retraining is used to recover the accuracy loss
generated due to approximations. Authors also proposed customized hardware that en-
ables the flexibility of weights, topologies, and tunable approximation called neuromorphic
processing engine. This engine exploits the computation and activations units to implement
the AxNN and achieve precision -energy trade-off during execution.

Rubio-Gonzalez et al. [37] propose a Precimonious framework for approximating
floating-point precision reduction. This approach finds low precision floating-point data
type for the program’s variables, which depends on given accuracy constraints. For hard-
ware applications, FPGA implementation requires the code change, while software applica-
tion only requires to use a dedicated library or modification in data type. The framework
evaluates different test programs which include numerical analysis applications, Scientific
Library, and Numerical Aerodynamic Simulation (NAS) parallel computing. The results
demonstrate a 41% improvement in the performance for a precision reduction in data types.
Pandey et al. [38] propose the fixed-point logarithm function approximation, which is im-
plemented using FPGA. The proposed approach approximates the mathematical function
by presenting a binary logarithm unit. The proposed hardware combines the fixed-point
data path with a combinational logical circuit, enabling low area utilization. This approach
is verified using a Xilinx Virtex-5 device. The hardware can approximate integer, a mix
of integer and fraction, and fractional-only inputs. Moreover, Table 2 summarizes the
comparison between significant works in CPR literature.

2.1. Optimal Trade-Off Maximum Average Height Correlation (OT-MACH) Filter

Maximum Average Height Correlation filter [39,40] is designed with a prime objective
of target/object recognition, which, unlike previous methods, simultaneously handles max-
imum possible distortion tolerance, ability to discriminate objects, and capability of dealing
with noise in the test image. The MACH filter mainly comprises of the criteria known as
Average Correlation Height (ACH), Average Correlation Energy (ACE), and Output Noise
Variance (ONV). For deriving the MACH, the following energy expression is used:

E(h) = α(ONV) + β(ACE) + γ(ASM)− δ(ACH), (1)

E(h) = αh+Ch + βh+Dxh + γh+Sxh− δ|hTmx|, (2)

h =
m∗x

αC + βDx + γSx
, (3)

where α, β and γ are non-negative filter-tuning parameters, mx is the average of the training
image vector x1, x2, x3 . . . , xn, and C is a diagonal-power spectral density matrix of additive
input noise.

Dx =
1
N

N

∑
i=1

[
Xi ∗ X+

i
]
, (4)

where Xi is a diagonal matrix of the ith training image. Sx denotes the similarity matrix of
the training images.

Sx =
1
N

N

∑
i=1

[
(Xi −Mx) ∗ (Xi −Mx)

+
]
, (5)

where Mx is mean of vectors Xi. Different values of α, β and γ are optimized to get the
required response under different test-image scenarios.
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Table 2. Comparative analysis of related work.

Approaches Cross-Correlation
Domain Emphasis Methodologies and Strengths Limitations

MACH,
OT-MACH [39,40] Frequency domain Automatic Target

Recognition

The generalization of the
minimum average correlation
energy presented, which improved
the target recognition in the
presence of additive noise
and distortions

Results in
false-positives obtained
because of excessive
dependence on mean
image and low
discrimination ability

EMACH [19] Frequency domain Automatic Target
Recognition

Two new metrics, all image
correlation height and the
modified average similarity
measure introduced to improve
false-positives and increase the
discrimination ability

Poor generalization ca-
pability

EEMACH [20] Frequency domain Automatic Target
Recognition

Based on Eigen analysis of
EMACH filter which resulted in
better generalization capability
than the EMACH filter

Required extensive
Eigen analysis is
computationally
expansive

Fully invariant
quaternion based
filter [41]

Frequency domain

Automatic Target
Recognition,
to achieve
invariance in
terms of color,
scale,
and orientation.

For color target recognition,
logarithm mapping and EMACH
combined in quaternion domain
which successfully solved color,
rotation, and scale distortions

Incurs an extra
computational cost due
to pre-processing
involved

Space variant
maximum average
correlation height
(MACH) filter [42]

Spatial domain Automatic Target
Recognition

Enables detection in an
unpredictable environment which
is resilient against background
heat signature variance and
scale changes

Incurs the additional
computation cost due
to spatial domain filters

Pre-processing
using low-pass
filtering of
space-variant
correlation
filter [43]

Spatial domain,
frequency domain
pre-processing

Automatic Target
Recognition
reduces
computation
workload for
target search

A low-pass filter is employed to
reduces the search space for
target detection

Incurs the computation
complexity due to
spatial domain
filters and
pre-processing steps

Combination of
spatial correlation
filters and affine
scale-invariant
feature
transform [1]

Spatial domain,
spatial domain
pre-processing

Automatic Target
Recognition,
to achieve
invariance to
color, scale,
and orientation

Used Affine Scale Invariant
Feature Transform (ASIFT) for
pre-processing to achieve
translation, zoom, rotation,
and two camera axis orientation
invariance

Increases performance
and increases the
computation
complexity due
to ASIFT

Composite
filtering [44] Frequency domain

Automatic Target
Recognition,
to achieve full
invariance

Resilience against distortion,
for example, in-plane and
out-of-plane rotation, illumination,
and scale alterations which
obtained after the pre-processing
of the difference of Gaussian (DoG)
and logarithmic on EEMACH

Requirement of
computational
resources increase
extensively

Ours Spatial domain

Automatic Target
Recognition,
to achieve sparse
and compressed
correlation filter
representation.

Automatic Target Recognition to
achieve sparse and compressed
correlation filter representation.
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2.2. Eigen Maximum Average Correlation Height (EMACH) Filter

EMACH [19] is designed to improve the false-positive generated due to over-emphasis
on the average training image. The improved statistical method introduced β to control
the average training image’s contribution in the filter design. EMACH filter is defined by
criteria Cβ

x and Sβ
x .

Cβ
x =

1
N

N

∑
i=1

(xi − βm)(xi − βm)+, (6)

Sβ
x =

1
N

N

∑
i=1

[Xi − (1− β)M][Xi − (1− β)M]+, (7)

Jβ
x =

h+Cβ
x h

h+(1 + Sβ
x)h

, (8)

(1 + Sβ
x)
−1Cβ

x h = λh. (9)

Eigen value λ and Eigen vector (1 + Sβ
x)C

β
x define the filter.

2.3. Log-Polar Transform

The mammalian retina is analog to the log-polar transform which converts the stan-
dard Cartesian coordinate (x, y) into log-polar coordinates θ and ρ. The log-polar transform
is used for object rotation and scale-invariance [41], where scalability and rotation translate
into a peak position in the output correlation plane. Log-polar transform of the color image
in RGB format is shown in Figure 2. Note that transform is applied to each channel sepa-
rately.

z = reθ+ρ. (10)

In log-polar domain, the same is represented as:

w = logr + θi + ρi = u + iv + ρi. (11)

In the log-polar domain, θ corresponds to the rotation. In fact, rescaling an object results in
a horizontal shift in the mapping, and the re-scaling effect is grasped through the following
set of equations (see Figure 2):

z = rγeθ (12)

w = logr + θi + logγ = u + iv + logγ (13)

where logγ corresponds to the horizontal shift.
This paper is organized into different sections. Each section describes a significant

part of our approach in detail. Section 3 demonstrates the methodology and subdivides
it into further sections. Section 3.2 describes the details of each quantization scheme.
Section 3.3 explains the CPR filters’ re-training using the quantization error. Details of
log-polar, inverse log-polar transformation and its support for quantization are mentioned
in Section 3.4. The quantization configuration settings are given in Section 3.5. Section 4
provides the details of the experimental analysis, which is further divided into experimental
setup, parameter optimization, and performance analysis. In the end, Section 5 concludes
the paper.
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Figure 2. Log-polar illustration from certain coordinates to log-polar coordinates.

3. Methodology
3.1. Overview

The block diagram presents an integrated framework of the proposed approach
in Figure 3. The framework accepts a number of training instances x1, x2, x3, ....xN and
a testing sample yi as inputs. Instances carry through a log-map (step 1 in Figure 3),
and inverse log-map transforms (step 2 in Figure 3). The details of these respective
transforms are provided in Section 3.4. Direct quantization is applied (step 3 in Figure 3)
without the transform. From this point onwards, each of these cases either branches out
into FT, ST, or spatially-retrained categories. For a FT filter, frequency transform (step 4 in
Figure 3) is used.
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Figure 3. Complete block diagram representation of step-by-step implementation of quantization
schemes for CPR.

After obtaining the Correlation Height (step 7 in Figure 3) and Average Similarity (step
8 in Figure 3) in the frequency domain, the regular training (step 13 in Figure 3) is performed
to get the HEEMACH . Spatial frequency response hspatial− f requency

EEMACH is obtained after the
Inverse Fourier Transform (step 14 in Figure 3) of HEEMACH . Further, the training process
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is repeated in the spatial domain where Spatial Correlation Height (step 5 in Figure 3)
and Spatial Average Similarity (step 6 in Figure 3) are calculated, while the training is
conducted in the spatial domain. Similarly, Weighted Quantization Retraining Modified
Spatial Correlation Height (step 9 in Figure 3) and Modified Average Similarity (step 10 in
Figure 3) are computed for retraining (step 12 in Figure 3) of reference filter hRtEEMACH .
Retraining requires β, γ and the already optimized filter hopt

EEMACH with floating-point
precision. The details of retraining are available in Section 3.3. Consequently, the trained
templates from all the quantized approaches (step 15 in Figure 3) use power-of-two (Po2)
and dynamic-fixed-point (DFP) schemes. The details of these schemes are in Section 3.2.
Subsequently, the correlation is calculated in a spatial domain, like a window operation,
which generates the correlation output plane. Lastly, the detection score evaluation (step
16 in Figure 3) is performed by post-processing of the output correlation plane. The details
of post-processing are available in Section 4.

3.2. Quantization Schemes

Quantization schemes convert the pre-trained floating-point precision weights into
quantized weights with minimum distance from the original filter; however, the magnitude
of distance depends on the type of quantization scheme.

Evaluation: For evaluating the quantization mechanism, two quantization schemes
are chosen and evaluated for filter compression. These schemes are power-of-two (Po2)
and dynamic-fixed-point (DFP) quantization. The resulting properties of these quan-
tization schemes are studied in conjunction with direct, log-polar, inverse log-polar,
and filter retraining.

Power-of-Two Quantization: Po2 is the state-of-the-art quantization technique used
for data compression. Zhou et al. [45] implement the Po2 quantization for quantization of
deep networks. This technique is employed due to its hardware-friendly nature, which
means that multiplication can be performed using a shift operation. This property gives
it an advantage over other quantization schemes during spatial cross-correlation. Po2
quantization can be defined using the following mathematical framework:

Lpow2 = [±2m1 , .......,±2m2 , 0]. (14)

m1 and m2 are integer numbers with

m1 = f loor(log2 1.33v), (15)

v = max(abs( fw)). (16)

For a given bit-width (BW), m2 can be mathematically represented as follows:

m2 = m1 − (2BW−1 − 1). (17)

Equation (14) presents the proposed quantization levels for different values of m1 and
m2; however, as mentioned in Equations (15) and (16), these values further depend on
the absolute maximum value of weights in the filter fw. Overall, the quantization levels
depend on the distribution and maximum absolute value of weights in the filter. Since the
quantization scheme’s nature is symmetric, we utilize only 2BW − 1 of 2BW quantization
levels. Additionally, we have added an extra quantization level at zero value, as shown in
Equation (14). Therefore, the filter may show high accuracy. CPR filters employ the training
samples containing black background, adding the quantization level at zero increases the
sparsity significantly in trained filters.

Dynamic-fixed-point Quantization: Since there are plenty of cases in which this
scheme is successfully implemented to achieve relatively better compression versus ac-
curacy trade-off [46,47], however, unlike Po2 quantization, DFP quantization has a better
peak-signal-to-noise ratio (PSNR). This property provides it an edge over Po2. Overall, this
scheme assures less noise because it produces equidistant points for quantization levels
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as compared to the previous quantization method. Equations (18) and (19) represent the
quantization scheme. For bit-width (BW), Equation (18) maintains quantization levels at
equal distance from each other.

Ld f p = [±2BW−1 − 1,±2BW−1 − 2, ......., 0], (18)

Ud f p =
Ld f p

2BW−1 × 2m1 . (19)

Like Po2 quantization, this approach is symmetric, while Equation (18) provides
the normalizing and scaling functions to the already-bounded quantization levels in
Equation (19).

The weight distribution of both quantization schemes before and after quantization is
presented in Figure 4. By comparing Figure 4a,b, the Po2 has non-uniform quantization
levels as compared to DFP, whereas more weights are mainly quantized around zeroth
quantization level, which preserves the low-value weights that help to improve the accuracy.
Meanwhile, the DFP induces more sparsity as compared to Po2 quantization. This sparsity
increases with a rise in compression ratio as more zeroth levels are added with an increase
in compression ratio.
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Figure 4. Distribution of filter weights prior and after direct quantization: (a) power-of-two (Po2); (b)
dynamic-fixed-point (DFP).

To establish a proper connection between the quantization schemes and the resulting
quantization noise, Figures 5 and 6 are provided for analysis. For DFP quantization,
Figure 5 illustrates the relationship between peak signal-to-quantization noise ratio (PSNR)
and compression ratio. A sample is taken from the Fashion MNIST dataset, and we
approximate it using DFP quantization. By applying direct DFP to the filter, the peak
signal-to-noise ratio remains constant up to 6-bit compression, but, after this, peak-signal-to-
noise-ratio starts to decrease because the quantization interval doubles with the reduction
of a bit, which doubles the compression ratio. Similarly, DFP quantization has better PSNR
after log-polar transform, while both quantization schemes have the same PSNR values
for 2-bit (CR = 8) to 1-bit compression (CR = 16). Likewise, in Figure 6, applying Po2
quantization on a sample and monitoring PSNR values for each compression level yields a
constant PSNR value, and this goes on up to 3-bit compression. From that point, as the
compression ratio increases, the new quantization levels are added near the zeroth level.
This causes more quantization noise in a compressed version. For direct Po2 quantization,
it gradually falls to 2-bit (CR = 8) and 1-bit (CR = 16) compression. Overall, a better PSNR
value is achieved through this method than the direct Po2 quantization, and besides, that
behavior reverses after 3-bit compression. PSNR for 2-bit (CR = 8) and 1-bit (CR = 16)
compression falls more rapidly than the direct Po2 quantization. By comparing the two
different quantization approaches, it is evident that DFP quantization has achieved better
PSNR values as compared to Po2 quantization. Contrary to that, PSNR values of Po2
remain insensitive to most compression values. Moreover, in the case of DFP quantization,
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PSNR value for 1-bit compression (CR = 16) drops to −40; however, in the case of Po2
quantization, PSNR drops to −32 in case of 1-bit (CR = 16) compression; therefore, it is
quite clear from both Figure 5 and 6 that Po2 quantization drops less in case of PSNR for
lower bit compression as compared to DFP quantization.

These observations hint at the superior accuracy of DFP quantization as compared
to Po2 up to 5-bit compression. After that, accuracy of both should be equal for 4-bit
compression, while, for 3-bit and more, Po2 quantization should have greater accuracy.
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Figure 5. Peak signal-to-noise ratio (PSNR) of baseline DFP quantization; DFP quantization after
log-polar transform for different compression ratios (CR).
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Figure 6. Peak signal-to-noise ratio (PSNR) of baseline Po2 quantization; Po2 quantization after
log-polar transform for different compression ratios (CR).

3.3. Retraining the CPR Filter

Quantization error causes inaccurately trained filters. The fine-tuning of the quantized
trained filter is an approach to get more accurate filters, which can be possible through
a retraining filter. A mathematical framework is proposed for retraining filter to add the
quantization error term in an already defined statistical training method. Equation (20)
adds the given quantization error for trained filter heq with each sample xi. In Section 3.2,
we have already seen the PSNR degradation with the increase in the compression ratio.
This PSNR degradation is different for the Po2 and DFP quantization schemes due to
quantization noise. In order to ensure the compensation because of introducing these
quantization approaches, quantization error co-efficient ξ is used to control the contribution
of quantization error (heq) in filter design, where (0 < ξ < 1). Modified Average Image
Correlation Height (mAICH) criteria has an additional term heq for each sample xi because it
adds to each sample, as well as in the average of samples, m. Equation (22) presents the
mAICH after substitution of vi and mh.
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mAICH =
1
N

N

∑
i=1

(h+(xi + ξheq))
2 − α(h+(m + ξheq))

2, (20)

where h+ is the complex conjugate transpose of h.

vi = xi + ξheq, mh = m + ξheq, (21)

mAICH =
1
N

N

∑
i=1

(h+vi)
2 − α(h+mh)

2, (22)

mCx
β =

1
N

N

∑
i=1

[vi − βmh]
+[vi − βmh], (23)

whereas β denotes the contribution of mh in Equation (23). In Equation (23), mCx
β is the

average of correlation peak intensities (vi − βmh) samples. Ideally, all training images
should follow this convention in which vi is subtracted from a partial average of training
samples. To achieve this, every sample vi should have an identical output correlation
plane, like the ideal output correlation plane f . To find out the f that suits all samples’
correlation output planes, the minimum deviation is required between its correlation
planes. Equation (24) describes this deviation as the average square error (ASE).

The average square error between f and gi is given in Equation (24):

ASE =
1
N

N

∑
i=1

(gi − f )+(gi − f ), (24)

where

g = (1− β)Mhh∗, (25)

where h∗ is the complex conjugate of h. To achieve the maximum peak, partial derivative
with respect to f should be equal to zero, as given in Equation (26):

∂ASE
∂ f

= 0 (26)

In this equation, fopt is the optimized filter, and, after solving Equation (26) and
substituting gi in Equation (27), we get the following:

fopt =
1
N

N

∑
i=1

gi = (1− β)Mhh∗ = (1− β)(M + ξHeq)h∗, (27)

where Mh = M + ξHeq. Heq is a diagonal matrix having heq along its main diagonal,
and M is a diagonal matrix having m along its diagonal. Substituting Equation (21) into
Equation (23), we get:

mCx
β,γ =

1
N

N

∑
i=1

[xi − βm + γheq]
+[xi − βm + γheq], (28)

γ = ξ(1− β). (29)

The next step is to change the Average Similarity Measure (ASM), which defines the
dissimilarity of training samples to (1− β)Mhh∗, the measure referred as modified ASM,
or mASM.
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mASM =
1
N

N

∑
i=1

[Vih∗ − (1− β)Mhh∗]+[Vih∗ − (1− β)Mhh∗]

= hT [
1
N

N

∑
i=1

[Xi − (1− β)M + βξHeq]
∗[Xi − (1− β)M + βξHeq]]h∗

= hTmSx
β,γh∗ = h+mSx

β,γh

,

where Vi = Xi + ξHeq. Xi is a diagonal matrix having vector xi along its main diagonal.
Similarly,

mSx
β,γ =

1
N

N

∑
i=1

[Xi − (1− β)M + βξHeq]
∗[Xi − (1− β)M + βξHeq], (30)

where mSx
β,γ is a diagonal matrix.

mJβ
x =

h+mCβ
x h

h+(1 + mSβ
x)h

, (31)

(1 + mSβ
x)
−1mCβ

x h = λh. (32)

Eigen value λ and Eigen vector (1 + mSβ
x)mCβ

x define the filter. In Equations (28)
and (30), mSx

β,γ and mCx
β,γ are the modified forms of Sx

β,γ and Cx
β,γ. Figure 7 shows the

floating-point filter’s histogram, quantized version, and the retrained quantize version.
The illustration clearly demonstrates the displacement of weight values of the retrained
filter. Noticeably, the intensity values of the filter shift to adjust to new values. The retrain-
ing process changes the value of retraining intensities. The complete retraining process
for a 3-by-3 snip of the filter is shown in Figure 8a. The floating-point precision filter, h f
transforms into a quantized version, hq. Further, the quantization error, heq is calculated to
support the retraining process. This process yields hrt filter using Equations (31) and (32),
which is a retrained version of the filter in floating-point precision. Finally, its quantized
version, hrtq has a reduced quantization error heq. Figure 8a demonstrates the function
of retraining approach as quantization error heq in case of retaining method (see the first
row in Figure 8a) is less than the direct quantization (see the second row in Figure 8a).
Note that the retrained filter in floating-point precision, hrt alters its weights to reduce the
quantization error, heq. Figure 8b illustrates a part of the filter before and after the retraining
process. All the weights of the filter do not change the value because the alteration is
only limited to certain intensities. The above observations confirm that WQR reduces the
quantization error heq. We expect that WQR will reduce the accuracy degradation in trained
CPR filters due to the quantization process.
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Figure 7. Comparison of weight distribution of filter between full precision, direct, and retrain quantization. (a) The
comparison case for Po2. (b) The comparison case for DFP.
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Figure 8. Retraining of a spatially-trained CPR filter. (a) Retraining process converts the floating-
point precision weights filter, h f into a retrain quantized version hrtq. The first row describes the
direct quantization and quantization error (heq calculation). The second row represents the retraining
filter hrt and retrained quantized version hrtq when ξ = 1. (b) Snips of the filter after direct and
retraining quantization. Highlighted weights are change before and after retraining.

3.4. Geometric Transform

Quantizing the magnitude of 2-dimensional filters introduces the quantization error,
which degrades the quality and causes accuracy loss during the inference process. PSNR
measures the ratio between the maximum possible signal power and noise power. This
ratio estimates the quality after quantization. Equation (33) represents the PSNR, while the
power of noise in the denominator is defined by the Mean Square Error (MSE), which is
the average of the square of the pixel-by-pixel difference between the original image and
the approximated version of the image; however, the MSE also depends on the variance of
the original and quantized signals. Equation (34) establishes a relationship between MSE
and variance of the signal. For a higher number of pixels, the variance of both original and
estimated images has more contribution than the equation’s last three terms. The equation
implies that there is a higher variance value of the original signal and its quantized version
results in more error. It is obvious in mathematical proof presented in the Appendix A.

PSNR = 20 log10
MAX f√

MSE
, (33)

whereas MAX f is the maximum possible value for a given bit-width.

MSE = σ2
Yi
+ σ2

Ŷi
− 2

N ∑N
i YiŶi +

1
N2 (∑

N
i Yi)

2 +
1

N2 (∑
N
i Ŷi)

2, (34)

whereas Yi and Ŷi denote the original image and the estimated image, respectively. σ2
Yi

and
σ2

Ŷi
are the variances of the original image and the estimated image, respectively. N denotes

the total number of pixels in the original image.
To enhance PSNR for a given compression ratio, minimizing the variance of the signal

and its approximated version require some transformation of the original signal. Here,
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we have introduced two types of geometric transforms to reduce the variance in the next
two subsections.

3.4.1. Reducing the Standard Deviation Using Log-Polar Transform

Sabir et al. [41] have already demonstrated in a previous study that applying the
log-polar transform has negligible influence on the classification accuracy degradation.
This paper demonstrates the additional property of log-polar besides achieving the scale
and rotation invariance. This transform alters the distribution of intensity levels, resulting
in reduced standard deviation in the transformed image compared to the original image.
This property may be useful for the quantization of the filter weights. A sample of a shirt
is selected in grayscale format to understand the effect of log-polar transform outcomes
on the intensity value distribution. Figure 9a is the picture of a shirt with strips of various
intensity levels. Figure 9c is a histogram of the image, which shows that a large portion
of the image has zero intensity level, while 100th intensity level has the second-largest
occurrence. By analyzing the overall distribution, the estimated standard deviation is
63.91. Figure 9b represents the picture’s log-polar transform, which is a distorted form of
an image; however, it changes the intensity distribution of the image. By observing the
histogram in Figure 9d, it is evident that it reduces the frequency of black from 1200 to
just 200, while the occurrence of 100th intensity level varies from less than 200 to ∼280,
it alters the histogram distribution of the image of the shirt. When the log-polar transform
is used, the standard deviation of the image falls from 63.91 to 45.62, which shows that now,
the frequency of intensity level is in a more compact form than before; therefore, it became
more efficient and convenient to apply any quantization scheme to represent the intensity
levels because it will reduce the PSNR value. For log-polar quantization, higher PSNR
values as compared to direct quantization confirm the better resilience of this method as
shown in Figures 5 and 6.

3.4.2. Reducing the Standard Deviation Using Inverse Log-Polar Transform

One of the many properties of log-polar is its reversibility, which means that it is
possible to convert an image back to its original for using a 2-dimensional inverse log-polar
transform. Figure 10b shows a transformed image, but, unlike the previous transform,
the resulting transformed object in the image reduced in size and quality because many
horizontal features of the image are almost curbed. The inverse log-polar transform
demonstrates in Figure 10d, and the standard deviation of the image is further reduced
to 42.48, but, in this process, zero intensity increased to 2300, which is almost double as
compared to the intensity of the log-polar transform.

Figure 9. (a) Represents the picture of full shirt sample from the Fashion MNIST dataset. (b) Two-
dimension log-polar transform of an image sample. (c) Histogram of image. (d) Histogram of
log-polar transform of the image.
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Equations (35) and (36) show the conversion of θ into x and y Cartesian coordinates;
however, when θ varies across its range (0 to 2π), the Cartesian coordinates x and y range is
0–r. Figure 10b represents the evidence that the frequency of most intensity levels beyond
zero is modified and reduced to the minimum level.

x = eρ cos θ, (35)

y = eρ sin θ, (36)

whereas ρ denotes the logarithm of the distance between the given point and the origin,
and θ denotes the angle between the x-axis and the line through the origin and the given
point. Based on the mentioned observations, we can expect that applying the log-map
and inverse log-map pre-processing will reduce the quantization noise, which indirectly
increases the compression ratio of spatial CPR filters.

Figure 10. (a) Represents the picture of full shirt sample from Fashion MNIST dataset. (b) Two-
dimensional inverse log-polar transform of an image sample. (c) Histogram of image. (d) Histogram
of inverse log-polar transform of image.

3.5. Configurations for Weight Quantization

To understand the quantization and re-quantization, it is necessary to first understand
different quantization methods and their configurations with or without the transform.
Figure 11a illustrates the direct quantization method, through which regular training of the
filter h is followed by quantization, which implies that either DFP or Po2 is performed for
a given bit-width. Figure 11b represents the retraining method, through which intensity
levels are reinforced using the retraining process. First, like direct quantization, hq filter is
obtained after regular filter training. Then, using hq, a separate retraining process for each
quantization approach (DFP and Po2) is employed. Finally, after the re-quantization process,
hqrt is achieved, which is a quantized form of the retrained filter. In Figure 11c, transforms
are applied to support the quantization process. The resulting filter h is transformed using
a log-polar or an inverse log-polar transform. For a given bit-width, each quantization
technique is performed to obtain a different filter of hl

q.
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Figure 11. Flow diagram of (a) Direct Quantization using DFP and Po2 quantization schemes. Filters have regular training
before quantization for a given bit-width. (b) Retraining Quantization using DFP and Po2 quantization schemes. Quantized
version of regularly trained filters retrain for the corresponding bit-width, then re-quantize to obtain Weight quantization
re-training (WQR) filters. (c) Pre-processing Quantization using DFP and Po2 quantization schemes. After regular training,
a spatial transform is applied. Then, quantization is performed.

4. Experimental Analysis
4.1. Experimental Setup

Figure 12 illustrates the overall experimental setup consisting of different components.
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Figure 12. Experimental setup showing different software components.
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4.1.1. CPR Filter Implementations and Setting

EEMACH [20] and its derivatives [44] showed a remarkable performance as compared
to other CPR filters. Literature shows their superior clutter-rejection capability as compared
to other methods, and experiments, which have shown better results, are conducted taking
Nv = 1 and not at other value of Nv. The same setting of Nv. is applied to our experiments.

We applied a couple of mathematical quantization techniques to filters to reiterate the
proposed approaches, as demonstrated in block diagrams Figure 11a–c. The experimental
setup in Figure 12 uses in-house MATLAB scripts and functions for training (Train.m),
cross-correlation (conv.m), quantizaion (Po2.m and DFT.m), WQR (Retraining.m) and
geometric transform (logpolar.m and inverselogpolar.m). The experiment setup trains the
filters on dataset 01, 02, and 03, with each dataset has unique purposes. For validation
purposes, the parameters β and γ are obtained using PSO optimization. The in-built
MATLAB function (Particleswarm.m) is employed for the PSO optimization of parameters
where cross-validation dataset is used explicitly for said purpose. Initially, the filters train
(Train.m) with a geometric transform (logpolar.m or inverselogpolar.m) or directly. Optimal
values of β and γ parameters are generated by the PSO optimization which are employed
for retraining (Retrain.m) the CPR filter. Either of these trained filters is quantized for DFP
(DFT.m) or Po2 (Po2) scheme. Then, either scale, moving lighting, rotation, or classification
test is performed using cross-correlation (conv.m). After this, evaluation and detection
score produces the analysis graphs separately for each test.

4.1.2. Database

For evaluation, the experimental work is carried out on publicly available datasets [48].
These datasets contain test images with or without a (black) background in different poses,
which vary from 0 to 180 degrees out of a plane at different elevation angles. For the
training phase, we use images without a background. These training snips are centered in
the middle of the test image, which makes them ideal for recognizing correlation patterns.
In order to analyze the responses of precision reduction in filters, dataset 01 is specifically
used to evaluate the ROC’s comparison of different techniques and methods adopted in this
paper. Similarly, to study the precision reduction responses against the scale enhancement
and lighting alterations, dataset 02 and dataset 03 are employed, respectively.

4.1.3. Evaluation Framework

To understand the efficiency of the proposed techniques, we initially outlined an
appropriate framework for experimental evaluation. After choosing the database, the next
step is to define the performance evaluation framework. Instead of performing a lexico-
graphical scan, equal window size for both the filter and the full-test image is considered.
The block diagram of this framework is shown in Figure 3. Three different objects are
demonstrated in Figure 13. At a 30-degree elevation angle, the images of each object are di-
vided into six sections. Each section has six object images with six consecutive out-of-plane
angles. These image sections have successive intervals 0–30, 35–55, 60–90, 95–125, 130–160,
and 165–180 degrees with 5-degree incremental gap in each section.

(a) Volvo C70 Gold (b) House (c) Cable Box Green

Figure 13. Different training objects are illustrated. These objects have different object complexities.

For testing, we use an image at a 50-degree elevation angle. An example is demon-
strated in Figure 14. Thus, a total of 18 filters are formed, while there are six filters for
each object. To assess the clutter rejection capability of each filter, we draw 2560 clut-
ter images from the database. The filter response of each filter has a maximum value
called correlation-output peak intensity. Instead of directly considering the raw correla-
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tion plane cp and the peak value for measuring the target object’s existence, we consider
a mathematically-derived form of correlation plane output intensity, as is presented in
Equations (37) and (38). This mathematical transform assures the output quality of the
correlation plane. Raw correlation plane response does not provide the quality of correla-
tion. Only considering the maximum value in the output correlation plane provides no
information about the suppression of side lobes in a correlation plane; therefore, during the
correlation process, there is a high probability that the final response has high-correlation
output peak intensity, but, after mathematical processing, correlation peak can reduce. Con-
versely, after the mathematical process, lesser peak intensity is observed in the correlation
plane with shorter side lobes’ intensity, which might increase.

ϑj =
cpj − µcpj√
∑x ∑y |cpj|2

, (37)

ncpj =
ϑj

σϑj

. (38)

Here, cpj is the raw correlation plane of the test image j, σϑj is the standard devia-
tion of the mean subtracted normalized correlation plane ϑj, and ncp is the normalized
correlation plane. The correlation output peak intensity of this plane serves as an object-
detection score. Table 3 represents sample COPI’s and its corresponding detection scores
for both quantization schemes.

ι = max (ncpj), (39)

∆% =
(ι− τ)

ι
× 100, (40)

τ = 0.5× 1
N

N

∑
i

ncpi. (41)

Table 3. The correlation output peak intensity (COPI) of correlated surface and its corresponding detection score of sample
compressed correlation filters.

Bit-Width Frequency Spatial

Po2 DFP Po2 DFP

COPI Score COPI Score COPI Score COPI Score

1 1.42 ×1011 3.5128 1.42 ×1011 3.5128 3.15 ×1017 3.5548 1.38 ×1015 3.9381
2 2,439,063 4.3748 2,439,063 4.3748 7.36 ×1015 3.4448 3.53 ×1015 3.6044
3 1,557,504 3.8072 1,783,727 4.1245 3.85 ×1010 3.8715 3.17 ×1010 3.7645
4 1,532,146 3.7792 1,986,866 3.965 3.69 ×1010 3.785 7.92 ×1016 3.4876
5 1,532,708 3.7801 1,901,382 3.9308 3.72 ×1010 3.7715 3.24 ×1015 3.4693
6 1,532,707 3.7801 1,895,484 3.9069 3.72 ×1010 3.7714 2.89 ×1017 3.4648
7 1,532,707 3.7801 1,898,087 3.9115 3.72 ×1010 3.7714 2.26 ×1016 3.4632
8 1,532,707 3.7801 1,903,349 3.9076 3.72 ×1010 3.7714 2.89 ×1017 3.4611
9 1,532,707 3.7801 1,903,271 3.9042 3.72 ×1010 3.7714 7.98 ×1016 3.461
10 1532707 3.7801 1,903,113 3.9072 3.72 ×1010 3.7714 7.98 ×1016 3.4607
11 1,532,707 3.7801 1,902,467 3.9057 3.72 ×1010 3.7714 7.98 ×1016 3.461
12 1,532,707 3.7801 1,902,701 3.9063 3.72 ×1010 3.7714 2.89 ×1017 3.4609
13 1,532,707 3.7801 1,902,787 3.9058 3.72 ×1010 3.7714 2.89 ×1017 3.4609
14 1,532,707 3.7801 1,902,709 3.9058 3.72 ×1010 3.7714 2.89 ×1017 3.4609
15 1,532,707 3.7801 1,902,748 3.9058 3.72 ×1010 3.7714 2.89 ×1017 3.4609
16 1,532,707 3.7801 1,902,741 3.9059 3.72 ×1010 3.7714 2.89 ×1017 3.4609

Note: Detection scores represent very small values as compared to corresponding COPI.



Electronics 2021, 10, 351 21 of 44

(a) 0o (b) 5o (c) 10o

(d) 15o (e) 20o (f) 25o

(g) Test image,elevation angle (50o)

Figure 14. Training image (a–f). Testing image (g).

Here, ncpj is the correlation response of the test image j. ι is the absolute peak
correlation intensity used in Equation (39). In Equation (40), ∆% is the percentage difference
between the threshold and the COPI of test response j. The average normalized correlation
peaks’ response τ of training instances i = 1, 2, 3, ........., N multiplied with a factor of 0.5 in
Equation (41).

4.2. Parameter Optimization

To maximize the filter response, we should select appropriate parameters for each
filter. For this purpose, we establish a framework of cross-validation set for each filter. This
validation set has a test image from the training set of the corresponding filter as a true
class and 100 clutter images are randomly chosen out of 2560 clutter images as a false class.
The cross-validation of 600 clutter images is defined for each object. Previously, to estimate
the binary class difference, Peak-to-Side-lobe Ratio and Fisher Ratio were used; however,
in this paper, we employ a simple ratio of mean correlation output peak intensity of the
false class µncpF to mean correlation output peak intensity of the true class, µncpT . This peak
ratio is illustrated in Equation (42).

Pr =
µncpF

µncpT
. (42)

We select an optimal β value with minimum ratio Pr. We search the optimal β value
across the beta range 0–1 using PSO for each compression ratio. As quantization process
for each filter results in the quantization error, which is different for direct quantization,
log-polar, inverse log-polar, and filter retraining methods; therefore, each compression
ratio holds a different set of optimal parameters.

PSO-Based Optimization of γ and β

The classical PSO is a self-organizing approach that holds the powerful property of
dynamic non-linearity. Our problem is non-linear, we want to calculate the parameter(s)
using the minimum objective function value. This makes PSO an ideal solution for parame-
ter searching, like previous literature [36]. This property ensures the trade-off between the
positive and negative response. The positive response supports constructing the swarm
structures, while the negative response acts as a counterweight to this construction. Overall,
this method provides a stable and complete solution to a non-linear problem. PSO also
offers a balance between the exploitation and exploration of a solution. Further, potential
solutions are known as particles, which excessively interact with neighboring particles.
This interaction spread the updated information through-out the swarm. Filter retraining
method search space is not limited to a parameter. We employed the classical PSO tech-
nique for finding the optimal values of β and γ, while minimizing the objective function of
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the peak ratio Pr, where vi,j = [v1,j, v2,j, ....v20,j] is the velocity vector of twenty particles and
pi = [γi, βi], β ∈ [0, 1], and γ ∈ [0, 1] for particle i and dimension j. Velocities and particles
are randomly initialized. Each particle is initialized with uniformly random values in a
bounded range [0,1]. For each particle, a filter is separately retrained and cross-correlated
with false and true images. Subsequently, the Pr ratio is calculated using the average of
peak intensity for false and true samples defined in the cross-validation dataset. Pr value
is minimized for each filter using the algorithm given in Figure 15. PSO exits on either
completion of the maximum number of epochs or getting the same minimum value of
Pr for the number of epochs. Equations (43) and (44) are used to update the velocity and
position of each particle.

vitr+1
i,j = wvitr

i,j + s1r()(pBesti,j − pitr
i,j ) + s2R()(gBestj − pitr

i,j ), (43)

pitr+1
i,j = pitr

i,j + vitr+1
i,j , (44)

where itr denotes iteration, i = 1, 2, ..., 20 and j = 1, 2. s1 and s2 are acceleration con-
stants. r() and R() are random functions, while w denotes the influence of motion in
previous iteration, 0 ≤ w < 1. pBest is the particle’s best position, while gBest is the global
best position.

Twenty uniformly 
random particles 

are initialized with 
in the range [0,1] 

A filter is retrained using WQR 
for each initialized Particle. 
Cross-correlation between the 
retrained filter and true/false 
images to calculate    

Calculate Pr   

,
Fncp


Tncp

True images

False images

Pr < pBest

Pr is assigned pBest Keep the old pBest 

Yes No

pBest is assigned to gBest

Calculate velocity 
of each Particle as 

in Equation 43

Update each Particle as 
in Equation 44

Target condition is achieved 
or maximum Epoch reached

NO

End

Yes

,
Fncp


Tncp

Figure 15. Flow diagram of Particle Swarm Optimization (PSO)-based parameter optimization of β

and γ.
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4.3. Performance Analysis
4.3.1. Rotational Analysis

For comparison, the full precision responses of 16-bit spatially-trained and frequency-
trained EEMACH are considered a baseline for the DFP and Po2 quantized trained fil-
ters. For each compression ratio, the ST and FT filters are quantized using both the
proposed approaches.

Commencing with a compression ratio of 16, the DFP and Po2 quantization schemes
are separately analyzed for spatial and frequency domains. The contemplated strate-
gies show nearly identical performance graphs. Detection responses of all the quanti-
zation schemes are slightly above the threshold. For direct quantization and retraining
filters, the detection on the average response is ∼23% more than the baseline. In the case
of inverse, log-map transform on the average response is ∼30% above the baseline in
Figure 16a (box 1). The log-map quantization response has a slight dip around 100 degrees
in Figure 16a (dip 1) and 300 degrees in Figure 16a (dip 2). On average, the log-map
response is ∼35% below the baseline in Figure 16a (box 2).

With compression ratio 8 for inverse log-map, the response reduces to ∼15% on aver-
age above the baseline in Figure 16e (box 3). Direct and retrained quantization filters show
responses, which are almost similar to the reference responses. The log-map pre-processing
on the average response is ∼40% below the baseline in Figure 16e (box 4). In the second
tetrad (e–h), the log-map response remained lower than the threshold in a 50–300 degree
interval in Figure 16e (dip 3) for each quantization type. Contrary to the frequency-trained
filter, the response of spatially-trained filters for log-map quantization remains below the
threshold within 75–270 degree interval in Figure 16g (dip 4). Subsequently, for all spatial
responses below compression ratio 8, the log-map pre-processing response for both quan-
tization types diminish below the threshold from 75 to 270 degrees in Figure 16o (dip 5).
No significant change is observed in the rest of the responses as compared to the previous
cases. All the responses, except for the log-map quantization, do not significantly vary.

Regarding the compression ratio of 5.33, the average response of the log-map pre-
processing remains ∼30% below the baseline; however, for all compression ratios below
5.33, the log-map pre-processing for FT filters with the Po2 quantization shows a response
that diminishes below the threshold of 0–190 degree interval in Figure 16m (dip 6). For com-
pression ratio 4 or below, the DFP quantization for FT filter remains below the threshold for
a 50–190 degree interval. Consequently, the full precision and direct quantization responses
have almost identical curves with a gradual drop in the compression ratio.

4.3.2. Scale and Moving Light Analysis

Dataset 2 includes the image of a car at different scales. Some samples are shown in
Figure 17. In order to investigate the resilience of the compressed configurations to handle
the target’s scalability, filter detection responses are measured on the scale of 0–400% of the
original target size, and it is given in Figure 18. Similar to the rotational test, each set of
the four graphs obtain for the following corresponding compression ratios: 16, 8, 5.33, 4, 8,
and 1.33.

For the 16 compression ratio, the full precision detection response for both ST and
FT filter is above the threshold up to 125% scalability. Beyond this scale, this response
mainly revolved around the threshold value; however, the detection response of the inverse
log-map is well above the threshold with a slight fall around 225% scale in Figure 18a
(dip 1). For direct and retrained quantization, the detection score is above the threshold up
to 350% in Figure 18a (dip 2), whereas log-map pre-processing is only successful up to 80%
scale in Figure 18a (dip 3).



Electronics 2021, 10, 351 24 of 44

Version January 2, 2021 submitted to Journal Not Specified 25 of 41

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 1 0
0

1 0
2 0
3 0
4 0
5 0
6 0

 F u l l _ P r e c i s i o n _ f r e
 D i r e c t _ Q u a n t i z a t i o n _ f r e _ p w 2
 L o g P o l a r _ Q u a n t i z a t i o n _ f r e _ p w 2
 I n v e r s e L o g P o l a r _ Q u a n t i z a t i o n _ f r e _ p w 2
 R e t r a i n _ Q u a n t i z a t i o n _ f r e _ p w 2
 

%

R o t a t i o n ( I n  P l a n e )

�
b o x 2 :  L o g  M a p :
 ~ 3 5 %  <  b a s e l i n e

d i p  1 d i p  2

b o x 1 :  I n v e r s e  L o g  M a p :
 ~ 3 0 %  >  b a s e l i n e

(a) Frequency-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 1 0
0

1 0
2 0
3 0
4 0
5 0
6 0

R o t a t i o n ( I n  P l a n e )
%

�

 F u l l _ P r e c i s i o n _ f r e
 D i r e c t _ Q u a n t i z a t i o n _ f r e _ d f t
 L o g P o l a r _ Q u a n t i z a t i o n _ f r e _ d f t
 I n v e r s e L o g P o l a r _ Q u a n t i z a t i o n _ f r e _ d f t
 R e t r a i n _ Q u a n t i z a t i o n _ f r e _ d f t
 

(b) Frequency-trained, DFP

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

 F u l l _ P r e c i s i o n _ s p
 D i r e c t _ Q u a n t i z a t i o n _ s p _ p w 2
 L o g P o l a r _ Q u a n t i z a t i o n _ s p _ p w 2
 I n v e r s e L o g P o l a r _ Q u a n t i z a t i o n _ s p _ p w 2
 R e t r a i n _ Q u a n t i z a t i o n _ s p _ p w 2
 

R o t a t i o n ( I n  P l a n e )

%�

(c) Spatially-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 1 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0

 F u l l _ P r e c i s i o n _ s p
 D i r e c t _ Q u a n t i z a t i o n _ s p _ d f t
 L o g P o l a r _ Q u a n t i z a t i o n _ s p _ d f t
 I n v e r s e L o g P o l a r _ Q u a n t i z a t i o n _ s p _ d f t
 R e t r a i n _ Q u a n t i z a t i o n _ s p _ d f t
 

R o t a t i o n ( I n  P l a n e )

%�

(d) Spatially-trained, DFP

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 4 0

- 2 0

0

2 0

4 0

6 0

b o x  4 :  L o g  M a p :
 ~ 4 0 %  <  b a s e l i n e

d i p  3

b o x  3 :  I n v e r s e  L o g  M a p :
 ~ 1 5 %  >  b a s e l i n e

R o t a t i o n ( I n  P l a n e )

�

%

(e) Frequency-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

R o t a t i o n ( I n  P l a n e )

�

%
(f) Frequency-trained, DFP

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

d i p  4

R o t a t i o n ( I n  P l a n e )

%�

(g) Spatially-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

R o t a t i o n ( I n  P l a n e )

�

%

(h) Spatially-trained, DFP

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

R o t a t i o n ( I n  P l a n e )

�

%

b o x  5 :  L o g  M a p :
 ~ 3 0 %  <  b a s e l i n e

(i) Frequency-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 4 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

R o t a t i o n ( I n  P l a n e )

�

%

(j) Frequency-trained, DFP

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0

R o t a t i o n ( I n  P l a n e )

�%

(k) Spatially-trained, Po2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0- 3 0
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0

R o t a t i o n ( I n  P l a n e )

�

%

(l) Spatially-trained, DFP

Figure 16. Cont.
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Figure 16. Rotation test for CPR. Each graph represents the responses from 0-360 degree rotation of
the testing object. For brevity, every four consecutive graphs (a-d), (e-h), (i-l), (m-p), (q-t) and (u-x)
correspond to compression ratios of 16, 8, 5.33, 4, 2 and 1.33, respectively. Four columns represent
Po2 frequency-trained, DFP frequency-trained, Po2 spatially-trained, and DFP spatially-trained filters,
respectively.

Figure 16. Rotation test for CPR. Each graph represents the responses from 0–360 degree rotation of the testing object.
For brevity, every four consecutive graphs, (a–d), (e–h), (i–l), (m–p), (q–t), and (u–x), correspond to compression ratios
of 16, 8, 5.33, 4, 2, and 1.33, respectively. Four columns represent Po2 frequency-trained, DFP frequency-trained, Po2
spatially-trained, and DFP spatially-trained filters, respectively.
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Figure 17. Random samples of a car from dataset 2 are illustrated at different scales.

When the compression ratio is 8, all the curves’ detection responses do not change
much except for the log-map pre-processing. In that case, the response increase continued
above the threshold on a scale of 0 to 400% in Figure 18e (box 1). Overall, compression ratio
8 is found to be more resilient in terms of scale enhancements for each type of quantization.

For the compression ratio of 5.33, the FT filter’s detection score for the inverse log-map
pre-processing has a slightly deeper dip with almost 225% scale enhancement in Figure 18i
(dip 4). This drop stays above the threshold for the spatially-trained filter in Figure 18k
(dip 5). On the other hand, for compression ratio below 5.33, this dip Figure 18m (dip 6) in
the detection score goes even deeper for ST and FT filters for both compression schemes but
the log-map pre-processing shows a detection score below the threshold for FT-quantized
filter versions.

Conversely, the detection score remains well above the threshold for the ST versions
of filters. The remaining quantization versions do not considerably alter its detection
score by analyzing the curves related to the rest of the compression ratios. Sequel to a
comprehensive analysis of graphs in Figure 18, the detection responses of ST quantized
filters are more resilient to scale enhancements than the FT quantized filters. Conversely,
the detection score remains well above the threshold for the ST filter versions. By analyzing
the rest of the compression ratios’ curves, the remaining quantization versions do not
significantly alter its detection score. The comprehensive analysis is presented in the
graphs in Figure 18, which show more resilience in the detection responses of the ST-
quantized filters than the FT-quantized filters. Dataset 3 includes more than 1000 car
images captured under various lighting conditions. Each image has a background, which
shows that it belonged to a specific set of images developed by incremental rotation from
0 to 360 degrees under a particular light setting around the car as shown in Figure 19.
Overall, the compressed versions of the filter exhibit excellent responses under different
lighting conditions. For brevity, the compression ratios of 8 and 16 are demonstrated in
Figures 20 and 21, respectively. Generally, for all compression ratios, including log-map
and inverse log-map, pre-processing exhibits superior performance as compared to the
baseline. That is equally valid for both ST and FT filters; however, the retrained and direct
quantization filter responses are below the baseline. In Figure 20, responses of each graph
for all the quantized instances are found identical. In comparison, Figure 21 expresses a
better response to the FT filter as compared to the ST filter for both cases of the inverse
log-map and the log-map. Beyond a compression ratio of 8, the performance graphs do not
change; however, their responses remain well above the threshold. Table 4 explains the
legends in Figures 16, 18–21.
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Figure 18. Cont.
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Figure 19. Scalability test for CPR. Each graph represents the responses up to 400% maximum scale
of the testing object. For brevity, every four consecutive graphs (a-d), (e-h), (i-l), (m-p), (q-t) and (u-x)
correspond to compression ratios of 16, 8, 5.33, 4, 2 and 1.33, respectively. Four columns represent
Po2 frequency-trained, DFP frequency-trained, Po2 spatially-trained, and DFP spatially-trained filters,
respectively.

Figure 18. Scalability test for CPR. Each graph represents the responses up to 400% maximum scale of the testing object.
For brevity, every four consecutive graphs, (a–d), (e–h), (i–l), (m–p), (q–t), and (u–x), correspond to compression ratios
of 16, 8, 5.33, 4, 2, and 1.33, respectively. Four columns represent Po2 frequency-trained, DFP frequency-trained, Po2
spatially-trained, and DFP spatially-trained filters, respectively.
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Figure 19. Samples of a car from dataset 3 are illustrated under different lighting conditions.Version January 2, 2021 submitted to Journal Not Specified 30 of 41
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Figure 20. CPR responses for the object under different moving lighting conditions. Graphs with a
compression ratio of sixteen contain the first row, which represents Po2 frequency-trained and DFP
frequency-trained filter graphs, respectively. The second row represents Po2 spatially-trained, and DFP
spatially-trained filter graphs, respectively.

each approach holds 16 curves for each trained method, a total of 32 ROC curves are evaluated for608

each method. All 32 ROC curves should be compared with the corresponding ROC baseline curve609

representing full precision to find the compression outcomes for each bit-width. In our experimental610

analysis, Z, D, E, and their corresponding p-values are used to describe the likeness between the611

baseline ROC and the corresponding compressed versions for each method, for example, direct,612

log-map, and inverse log-map. E measure may highlight the differences between any two paired613

ROC’s and the E values with their p-values are more significant as compared to Z and D; therefore,614

for brevity, we have only discussed the bit-widths having a minimum E value. See appendix B for615

detailed results.616

Fig. 22.a illustrates the E values and p-values [50][51] for all above-mentioned methods for ROC617

comparison. E and p-value demonstrate an integrated absolute difference between two ROC curves;618

so, the smaller E value shows the two ROC curves’ closeness. The large value of E and p < 0.05619

illustrates ROC’s degradation due to corresponding bit-width compression. For direct quantization,620

the FT filter has the least E value 1308 with p-value < 0.92 for both Po2 and DFP. This indicates a strong621

closeness between ROCs, which implies nearly equal classification performance like original ROCs.622

The ST filter has E=2368, p-value < 0.1525, E=1106 and p-value < 0.106 for Po2 and DFP, respectively623

which means relatively less closeness as compared to FT. For log-map transform, the E value of all FT624

and ST quantization schemes varies between 83184 and 88000 with p-value < 2.2E-16. This shows a625

classification of performance degradation for all bit-width compression. For inverse log-map transform,626

the E value of all FT and ST quantization schemes varies between 29714 and 32948 with p-value <627

2.2E-16. This demonstrates relatively less classification performance degradation for all bit-width628

compression as compared to log-map transform. For WQR, the ST filter has E = 3618, p-value < 0.028,629

Figure 20. CPR responses for the object under different moving lighting conditions. Graphs with
a compression ratio of sixteen contain the first row, which represents Po2 frequency-trained and
DFP frequency-trained filter graphs, respectively. The second row represents Po2 spatially-trained,
and DFP spatially-trained filter graphs, respectively.
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Figure 21. CPR responses for the object under different moving lighting conditions. Graphs with
a compression ratio of eight contain the first row which represents Po2 frequency-trained and DFP
frequency-trained filter graphs, respectively. The second row represents Po2 spatially-trained, and DFP
spatially-trained filter graphs, respectively

E=2442 and p-value < 0.053 for Po2 and DFP, respectively. These bit-widths have better classification630

performances than log-map and inverse log-map but less classification performance than the direct631

quantization.632

For comparing ROC curves, the area under the curve (AUC) is assumed as an accuracy measure.633

In Eq. 45, we present parameter Z and p-value to find the difference between the AUC of the two634

curves.635

Z =
θ2 − θ2

σ2
(45)

In Eq. 45, θ1 and θ2 denote the respective AUCs of ROC1 and ROC2, while σ2 is the standard636

deviation of the difference between the thetas. Fig. 22.b illustrates the Z value and p-value [52]637

for all above-mentioned methods for AUC comparison. The negative and small values indicate no638

or insignificant drop in AUC while a large value demonstrates signification fall in AUC. For direct639

quantization, the Z value varies from -1.4929 to 0.22072, with p-values showing no significant difference640

between the AUC of quantized versions and the original. For the log-map transform, the Z value for641

ST and FT varies from 19.357 to 20.232 with p-value 2.2E-16 illustrating a significant AUC loss for642
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Figure 21. CPR responses for the object under different moving lighting conditions. Graphs with
a compression ratio of eight contain the first row which represents Po2 frequency-trained and
DFP frequency-trained filter graphs, respectively. The second row represents Po2 spatially-trained,
and DFP spatially-trained filter graphs, respectively.
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Table 4. Description of legends employed in Figures 16–21.

Legends Response Description Legends Response Description

Full_Precision_sp Floating-point precision of ST
filter Full_Precision_fre Floating-point precision of ST

filter

Direct_Quantization_fre_pw2 Direct quantization using Po2
of FT filter

InverseLogPolar_Quantization
_fre_pw2

Quantization with Inverse
log-polar pre-processing using
Po2 of FT filter

Direct_Quantization_fre_dft Direct quantization using DFP
of FT filter

InverseLogPolar_Quantization
_fre_dft

Quantization with Inverse
log-polar pre-processing using
DFP of FT filter

Direct_Quantization_sp_pw2 Direct quantization using Po2
of ST filter

InverseLogPolar_Quantization
_sp_pw2

Quantization with Inverse
log-polar pre-processing using
Po2 of ST filter

Direct_Quantization_sp_dft Direct quantization using DFP
of ST filter

InverseLogPolar_Quantization
_sp_dft

Quantization with Inverse
log-polar pre-processing using
DFP of ST filter

LogPolar_Quantization
_fre_pw2

Quantization with log-polar
pre-processing using Po2 of
FT filter

Retrain_Quantization
_fre_pw2

Retrain-quantization using
Po2 of FT filter

LogPolar_Quantization
_fre_dft

Quantization with log-polar
pre-processing using DFP of
FT filter

Retrain_Quantization _fre_dft Retrain-quantization using
DFP of FT filter

LogPolar_Quantization
_sp_pw2

Quantization with log-polar
pre-processing using Po2 of
ST filter

Retrain_Quantization
_sp_pw2

Retrain-quantization using
Po2 of ST filter

LogPolar_Quantization
_sp_dft

Quantization with log-polar
pre-processing using DFP of
ST filter

Retrain_Quantization _sp_dft Retrain-quantization using
DFP of ST filter

4.3.3. ROC Comparative Analysis

Typically, the CPR paradigm’s evaluation analysis is achieved through conventional
Receiver Operator Characteristic (ROC). Previously, the EMACH [19] and EEMACH [20]
were analyzed in the available literature using the ROC analysis approach, but the issues
with the ROC results made it insignificant for statistical analysis and inconsistent for
application. Each compression level has a ROC curve, so each is considered a separate
classifier; therefore, there are many ROC curves. The full-precision implementation has a
distinct ROC curve for each trained method. These FT or ST methods provide a baseline
for comparison to the corresponding compression rates. Since each approach holds 16
curves for each trained method, a total of 32 ROC curves are evaluated for each method.
All 32 ROC curves should be compared with the corresponding ROC baseline curve
representing full precision to find the compression outcomes for each bit-width. In our
experimental analysis, Z, D, E, and their corresponding p-values are used to describe the
likeness between the baseline ROC and the corresponding compressed versions for each
method, for example, direct, log-map, and inverse log-map. E measure may highlight the
differences between any two paired ROCs and the E values with their p-values are more
significant as compared to Z and D; therefore, for brevity, we have only discussed the
bit-widths having a minimum E value. See Appendix B for detailed results.

Figure 22a illustrates the E values and p-values [49,50] for all above-mentioned meth-
ods for ROC comparison. E and p-value demonstrate an integrated absolute difference
between two ROC curves; so, the smaller E value shows the two ROC curves’ closeness.
The large value of E and p < 0.05 illustrates ROC’s degradation due to corresponding
bit-width compression. For direct quantization, the FT filter has the least E value 1308
with p-value < 0.92 for both Po2 and DFP. This indicates a strong closeness between ROCs,
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which implies nearly equal classification performance, like original ROCs. The ST filter
has E = 2368, p-value < 0.1525, E = 1106 and p-value < 0.106 for Po2 and DFP, respec-
tively which means relatively less closeness as compared to FT. For log-map transform,
the E value of all FT and ST quantization schemes varies between 83,184 and 88,000
with p-value < 2.2 ×10−16. This shows a classification of performance degradation for
all bit-width compression. For inverse log-map transform, the E value of all FT and
ST quantization schemes varies between 29,714 and 32,948 with p-value < 2.2 ×10−16.
This demonstrates relatively less classification performance degradation for all bit-width
compression as compared to log-map transform. For WQR, the ST filter has E = 3618,
p-value < 0.028, E = 2442 and p-value < 0.053 for Po2 and DFP, respectively. These bit-
widths have better classification performances than log-map and inverse log-map but less
classification performance than the direct quantization.

For comparing ROC curves, the area under the curve (AUC) is assumed as an accuracy
measure. In Equation (45), we present parameter Z and p-value to find the difference
between the AUC of the two curves.

Z =
θ2 − θ2

σ2
. (45)

In Equation (45), θ1 and θ2 denote the respective AUCs of ROC1 and ROC2, while σ2

is the standard deviation of the difference between the thetas. Figure 22b illustrates the Z
value and p-value [51] for all above-mentioned methods for AUC comparison. The negative
and small values indicate no or insignificant drop in AUC, while a large value demonstrates
signification fall in AUC. For direct quantization, the Z value varies from−1.4929 to 0.22072,
with p-values showing no significant difference between the AUC of quantized versions
and the original. For the log-map transform, the Z value for ST and FT varies from 19.357
to 20.232 with p-value 2.2 ×10−16 illustrating a significant AUC loss for all quantization
schemes. For the inverse log-map transform, the Z value for ST and FT varies from 9.799 to
11.198, with a p-value 2.2 ×10−16 illustrating a less significant AUC loss than the log-map.
For the WQR, the ST filter has the Z value -1.4954 with p-value < 0.1348 for Po2 and
Z = −0.3745 with p-value < 0.708 for DFP, which shows better AUC of bit-widths than
log-map and inverse log-map transform. Equation (46) is another measure to compare the
AUC’s of ROCs, whereas D is given as follows:

D =
Vr(θr)−Vs(θs)√

σ2
r + σ2

s
. (46)

In Equation (46), θr and θs denote the respective AUCs of r and s ROC curves, while
σ2

r and σ2
s are the standard deviations of “r” and “s”, respectively. Figure 22c demonstrates

the D value and p-value [52] for AUC comparison. The D values further support the results
of E and Z. The D value and p-value for direct quantization are showed no significant
AUC loss for all quantization methods. The D value varies between −1.4993 to 0.22624
with p-values. For the log-map transform, the D value changes from 18.697 to 20.433 for
all quantization. This demonstrates a lot of performance degradation (AUC). For inverse
log-map transform, the D value changes from 9.548 to 11.251 for all quantization. This
demonstrates a less AUC degradation as compared to the log-map transform. Figure 22d
illustrates the AUC values for each quantization method for both ST and FT filters and its
comparisons with baseline AUCs.

To signify the benefits of quantization to the CPR filters, the performance parameters
are demonstrated by column graphs in Figures 23–25. The compressed versions of these fil-
ters are concluded based on the least E value. The selected performance parameters include
sparsity, CPU execution time, and memory minimization. Here, the sparsity implies the
number of zero weights in the trained filters, which implies a reduction in floating-point
operations workload and speed-up in the convolution process during inference. The spar-
sity of the corresponding quantization schemes is displayed in Figure 23. On average,
the direct and inverse log-map quantization schemes have better weight sparsity values as
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compared to full-precision versions. The best case is Po2 compression, with a compression
ratio 16 but the log-map sparsity is insignificant. For a few instances, their sparsity lagged
behind the full precision. The second performance measure is the memory minimization,
as shown in Figure 24. Again, the inverse log-map and the direct one have meager memory
requirements as compared to the full-precision version.

Electronics 2021, 1, 0 32 of 45

compared to full-precision versions. The best case is Po2 compression, with a compression
ratio 16 but the log-map sparsity is insignificant. For a few instances, their sparsity lagged
behind the full precision. The second performance measure is the memory minimization,
as shown in Figure 24. Again, the inverse log-map and the direct one have meager memory
requirements as compared to the full-precision version.Version January 2, 2021 submitted to Journal Not Specified 33 of 41

13
08

88
00

0

32
94

8

13
08

84
74

6

32
15

0

23
68

83
18

4

30
95

4

36
18

11
06

86
20

4

29
71

4

24
42

D i r e c t L o g p o l a r I L o g p o l a r W Q R
0 . 0

2 . 0 E 4

4 . 0 E 4

6 . 0 E 4

8 . 0 E 4

1 . 0 E 5

,p
<0

.92
85

E

P o 2 - F T
D F P - F T
P o 2 - S T
D F P - S T

2-b
it

2-b
it

3-b
it

13
-bi

t 4-b
it

4-b
it

4-b
it

8-b
it

1-b
it

4-b
it

3-b
it

3-b
it 3-b

it
9-b

it

,p
<0

.92
6

,p
<0

.15
25

,p
<0

.10
6

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<2

.2E
-16

,p
<0

.02
8

,p
<0

.05
3

(a) E values for each method

-0.
36

42

20
.23

2

10
.45

9

-0.
36

42

19
.35

7

11
.19

8

0.2
20

72

19
.49

7

10
.39

6

-1.
49

54

-1.
49

29

19
.36

1

9.7
99

3

-0.
37

45

D i r e c t L o g p o l a r I L o g p o l a r W Q R
- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

3 0

Z

P o 2 - F T
D F P - F T
P o 2 - S T
D F P - S T

2-b
it

2-b
it

3-b
it

13
-bi

t

4-b
it

4-b
it

4-b
it

8-b
it

1-b
it

4-b
it

3-b
it

3-b
it

3-b
it

9-b
it

p<
0.7

15
7

p<
0.7

15
7

p<
0.8

25
3

p<
0.1

35
5

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
0.1

34
8

p<
0.7

08

(b) Z values for each method

-0.
36

82

20
.43

3

10
.25

2

-0.
36

21

18
.69

7

11
.25

1

0.2
26

24

19
.80

2

10
.59

6

-1.
49

23

-1.
49

93

19
.45

9.5
48

-0.
37

39

D i r e c t L o g p o l a r I L o g p o l a r W Q R
- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

3 0

D

P o 2 - F T
D F P - F T
P o 2 - S T
D F P - S T

2-b
it

2-b
it

3-b
it

13
-bi

t

4-b
it

4-b
it

4-b
it

8-b
it

1-b
it

4-b
it

3-b
it

3-b
it

3-b
it

9-b
it

p<
0.7

12
7

p<
0.7

15
2

p<
0.8

21
p<

0.1
35

4

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
2.2

E-
14

p<
0.1

35
6

p<
0.7

08
5

(c) D values for each method

0.9
69

9

0.8
02

89

0.9
01

51

0.9
60

19

0.9
60

99

0.8
08

7

0.9
02

72

0.9
60

19

0.9
55

1

0.8
06

88

0.9
00

24

0.9
59

2

0.9
55

57

0.9
57

28

0.8
01

48

0.9
02

61

0.9
56

27

0.9
55

57

D i r e c t L o g p o l a r I L o g p o l a r W Q R F P
0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

AU
C

P o 2 - F T
D F P - F T
P o 2 - S T
D F P - S T

2-b
it

2-b
it

3-b
it

13
-bi

t

4-b
it

4-b
it 4-b

it
8-b

it 1-b
it

4-b
it

3-b
it

3-b
it

3-b
it

9-b
it

(d) AUC values for each method
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On the other hand, log-map memory requirements are modest. This third measure
is the CPU execution time, which is given in Figure 25. The CPU is i5-2500k, 3.30 GHz
with 3301 MHz 4 Core processor, whereas the system is 64-bit, equipped with 16GB RAM.
The CPU time is measured using tic and toc standard functions available in MATLAB.
Overall, the inverse log-map has the least execution time on the CPU, which is followed
by the direct quantization scheme. The fastest case is the Po2 quantization with a 16-bit
compression, which showed ∼8.90× speed-up capacity during the full-precision imple-
mentation.
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On the other hand, log-map memory requirements are modest. This third measure
is the CPU execution time, which is given in Figure 25. The CPU is i5-2500k, 3.30 GHz
with 3301 MHz 4 Core processor, whereas the system is 64-bit, equipped with 16GB RAM.
The CPU time is measured using tic and toc standard functions available in MATLAB.
Overall, the inverse log-map has the least execution time on the CPU, which is followed
by the direct quantization scheme. The fastest case is the Po2 quantization with a 16-bit
compression, which showed ∼8.90× speed-up capacity during the full-precision imple-
mentation.

88
.54

84

6.1
53

7

94
.87

71

0.0
14

9

88
.54

84

34
.30

45

34
.30

45

0.0
14

9

69
.51

23

4.2
54

8

73
.58

26

10
.07

35

9.8
87

7

4.8
29

9

79
.41

35

10
.07

35

D i r e c t L o g p o l a r I L o g p o l a r F P
0

2 0

4 0

6 0

8 0

1 0 0

3-b
it

3-b
it

4-b
it

1-b
it

8-b
it

4-b
it

4-b
it

4-b
it13
-bi

t3-b
it

2-b
it

Sp
arc

ity 
(%

)

 P o 2 - F T
 D F T - F T
 P o 2 - S T
 D F T - S T

2-b
it

Figure 23. The graph demonstrates a sparsity comparison between direct, log-map, and inverse
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log-map quantization for filter bank.

5. Conclusions

The spatial-domain CPR filters require substantial computation resources and mem-
ory. The proposed weight quantization is imperative to reduce the computation workload,
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processing time, and memory minimization. We propose the WQR approach and pre-
processing steps, like log-map and inverse log-map, to improve the accuracy degradation
through full-precision weight quantization. The WQR regulates the filter retraining process
by fine-tuning the weights through any stated quantization scheme. The PSO is used for
selecting WQR training parameters. Quantization error causes more accuracy loss to the ST
filters than the FT filters, and WQR alleviates this accuracy loss. No accuracy degradation
occurs at 9.88–88.54% MAC sparsity, 1.11×–4.73× speedup, and 14 is the maximum com-
pression ratio for direct quantization. The inverse log-map achieves 34.30–94.87% MAC
sparsity, 2.57×–8.90× speed-up, and maximum 1-bit compression with 6% accuracy loss,
while the log-map achieves 4.25–34.30% MAC sparsity, 0.98×–1.12× speedup, and maxi-
mum 4-bit compression with 16% decline in accuracy. To study the quantization for the
CPR, Po2 and DFP quantization approaches are applied. The results showed that better
ROC closeness of DFP quantization is assured with the floating-point, while Po2 achieved
better precision reduction. Based on the results, it is unnecessary to perform the retraining
procedure with DFP quantization. On the other hand, retaining with Po2 showed better
performance improvement than the DFP quantization. It can easily be concluded that Po2
quantization is a preferable choice for CPR. Moreover, the Po2 implementation for the
spatial-domain CPR on hardware is recommended for future work. Further, multiplication
in Po2-quantized filter could be performed using the shift operation, which makes it more
hardware-friendly; however, it needs optimized hardware. We consider recovering the
accuracy loss of geometric pre-processing, Po2 quantization, and retraining for future work.
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Appendix A. Relationship between Mean Square Error and Variance of Sample and Its
Quantized Version

Whereas Yi and Ŷi denote the original image and the estimated image, respectively, N
denotes the total number of pixels in the original image. 4Y is the difference between an
original image and its corresponding quantized version. µ4Y is the average of differences
between original and estimated images.

As we know the equation,

∑N
i (4Y− µ4Y)

2 =∑N
i (4Y)2 − 1

N
(∑N

i 4Y)2, (A1)

4Y =Yi − Ŷi

∑N
i (4Y)2 = ∑N

i (Yi − Ŷi)
2

= ∑N
i (Y2

i + Ŷ2
i − 2YiŶi)

= ∑N
i Y2

i + ∑N
i Ŷ2

i − 2 ∑N
i YiŶi. (A2)
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By multiplying Equation (A2) with 1
N ,

− 1
N
(∑N

i 4Y)2 =− 1
N
(∑N

i (Yi − Ŷi))
2

=− 1
N
(∑N

i Yi −∑N
i Ŷi)

2

=− 1
N
((∑N

i Yi)
2 − (∑N

i Ŷi)
2 + 2(∑N

i Yi)(∑N
i Ŷi))

=− 1
N
(∑N

i Yi)
2 − 1

N
(∑N

i Ŷi)
2 +

2
N
(∑N

i Yi)(∑N
i Ŷi). (A3)

By substituting the Equation (A2) and Equation (A3) into L.H.S. of Equation (A1),
we get

∑N
i (4Y− µ4Y)

2 = ∑N
i Y2

i −
1
N
(∑N

i Yi)
2 + ∑N

i Ŷ2
i −

1
N
(∑N

i Ŷi)
2 − 2 ∑N

i YiŶi +
2
N
(∑N

i Yi)(∑N
i Ŷi). (A4)

Equation (A4) can be simplified by substituting µYi =
1
N (∑N

i Yi) and µŶi
= 1

N (∑N
i Ŷi),

∑N
i (4Y)2 − 1

N
(∑N

i 4Y)2 = ∑N
i (Yi − µYi )

2 + ∑N
i (Ŷi − µŶi

)2 − 2 ∑N
i YiŶi +

2
N
(∑N

i Yi)(∑N
i Ŷi), (A5)

∑N
i (4Y)2 = ∑N

i (Yi − µYi )
2 + ∑N

i (Ŷi − µŶi
)2 − 2 ∑N

i YiŶi +
2
N
(∑N

i Yi)(∑N
i Ŷi) +

1
N
(∑N

i Yi)
2

+
1
N
(∑N

i Ŷi)
2 − 2

N
(∑N

i Yi)(∑N
i Ŷi). (A6)

By simplifying above equations, we get

∑N
i (4Y)2 = ∑N

i (Yi − µYi )
2 + ∑N

i (Ŷi − µŶi
)2 − 2 ∑N

i YiŶi +
1
N
(∑N

i Yi)
2 +

1
N
(∑N

i Ŷi)
2. (A7)

By multiplying Equation (A7) with 1
N ,

1
N ∑N

i (4Y)2 =
1
N ∑N

i (Yi − µYi )
2 +

1
N ∑N

i (Ŷi − µŶi
)2

− 2
N ∑N

i YiŶi +
1

N2 (∑
N
i Yi)

2 +
1

N2 (∑
N
i Ŷi)

2. (A8)

σ2
Yi

and σ2
Ŷi

are the variances of the original image and its corresponding quantized version,
respectively.

MSE = σ2
Yi
+ σ2

Ŷi
− 2

N ∑N
i YiŶi +

1
N2 (∑

N
i Yi)

2 +
1

N2 (∑
N
i Ŷi)

2, (A9)

whereas MSE = 1
N ∑N

i (4Y)2, σ2
Yi
= 1

N ∑N
i (Yi − µYi )

2, and σ2
Ŷi
= 1

N ∑N
i (Ŷi − µŶi

)2:

PNSR = 20 log10
MAX f√

MSE
. (A10)

Appendix B. Performance Tables
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Table A1. Performance measurements of direct Power-of-Two (Po2) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 −0.2462 0.8055 −0.2473 0.8047 10,574 2.20 ×
10−16 0.96109 −0.3126 0.7546 −0.3114 0.7555 18,590 2.20 ×

10−16 0.95734

2 −0.3642 0.7157 −0.3682 0.7127 1308 0.926 0.96099 2.3705 0.01776 2.3321 0.0197 7706 2.20 ×
10−16 0.94758

3 3.9235 8.73 ×
10−5 3.9435 8.03 ×

10−5 3960 2.20 ×
10−16 0.95384 0.22072 0.8253 0.22624 0.821 2368 0.1425 0.9551

4 4.1619 3.16 ×
10−5 4.1554 3.25 ×

10−5 2870 2.20 ×
10−16 0.95552 0.70579 0.4803 0.71656 0.4736 2914 0.1435 0.95401

5 4.4951 6.95 ×
10−6 4.5996 4.23 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0428 0.297 2972 0.115 0.95325

6 4.4951 6.95 ×
10−6 4.507 6.58 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0751 0.2823 2972 0.117 0.95325

7 4.4951 6.95 ×
10−6 4.398 1.09 ×

10−5 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0528 0.2924 2972 0.103 0.95325

8 4.4951 6.95 ×
10−6 4.4449 8.79 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0777 0.2812 2972 0.119 0.95325

9 4.4951 6.95 ×
10−6 4.5224 6.11 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0657 0.2866 2972 0.111 0.95325

10 4.4951 6.95 ×
10−6 4.5241 6.06 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0655 0.2866 2972 0.1195 0.95325

11 4.4951 6.95 ×
10−6 4.5114 6.44 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0849 0.278 2972 0.119 0.95325

12 4.4951 6.95 ×
10−6 4.528 5.95 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0418 0.2975 2972 0.1225 0.95325

13 4.4951 6.95 ×
10−6 4.4079 1.04 ×

10−5 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0544 0.2917 2972 0.1245 0.95325

14 4.4951 6.95 ×
10−6 4.4938 7.00 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0746 0.2826 2972 0.1355 0.95325

15 4.4951 6.95 ×
10−6 4.4672 7.93 ×

10−6 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0528 0.2924 2972 0.1175 0.95325

16 4.4951 6.95 ×
10−6 4.3845 1.16 ×

10−5 3114 2.20 ×
10−16 0.9551 1.0599 0.2892 1.0692 0.285 2972 0.1275 0.95325

Mean 3.838516 0.0950876 3.829514 0.0948503 3505 0.057875 0.955788 0.981449 0.346773 0.982549 0.345194 4202.625 0.1073125 0.953317
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Table A2. Performance measurements of direct Dynamic-Fixed-Point (DFP) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 −0.2462 0.8055 −0.2416 0.8057 10,574 2.20 ×
10−16 0.96109 −0.2921 0.7702 −0.2986 0.7652 18,644 2.20 ×

10−16 0.95722

2 −0.3642 0.7157 −0.3621 0.7152 1308 0.9285 0.96099 −2.859 0.00425 −2.859 0.00425 5890 2.20 ×
10−16 0.96201

3 3.6811 0.000232 3.6785 0.000235 3244 5.00 ×
10−4 0.95496 −1.4347 0.1514 −1.4309 0.1525 2878 0.0075 0.95799

4 5.7414 9.39 ×
10−9 5.6051 2.08 ×

10−8 4800 2.20 ×
10−16 0.95186 −2.1165 0.0343 −2.0812 0.03742 3076 0.0015 0.95884

5 5.3215 1.03 ×
10−7 5.1707 2.33 ×

10−7 4794 2.20 ×
10−16 0.95198 −1.9785 0.04788 −2 0.0455 3212 2.20 ×

10−16 0.95862

6 5.7997 6.65 ×
10−9 5.7624 8.30 ×

10−9 3984 2.20 ×
10−16 0.95311 −2.9184 0.00352 −3.0227 0.00251 2062 0.003 0.95907

7 6.2809 3.37 ×
10−10 5.9641 2.46 ×

10−9 4038 2.20 ×
10−16 0.953 −2.5313 0.01136 −2.6258 0.00865 1806 0.0165 0.95855

8 6.6003 4.10 ×
10−11 6.549 5.79 ×

10−11 4202 2.20 ×
10−16 0.95272 −3.2168 0.0013 −3.1945 0.0014 2254 5.00 ×

10−4 0.95951

9 6.7322 1.67 ×
10−11 6.6732 2.50 ×

10−11 4326 2.20 ×
10−16 0.9525 −1.5704 0.1163 −1.5638 0.1179 1144 0.1025 0.95736

10 6.7452 1.53 ×
10−11 6.7872 1.14 ×

10−11 4296 2.20 ×
10−16 0.95256 −1.5612 0.1185 −1.6002 0.1096 1134 0.1015 0.95735

11 6.7298 1.70 ×
10−11 6.5328 6.46 ×

10−11 4284 2.20 ×
10−16 0.95258 −1.5262 0.127 −1.5251 0.1272 1126 0.1075 0.95731

12 6.7298 1.70 ×
10−11 6.5587 5.43 ×

10−11 4284 2.20 ×
10−16 0.95258 −1.5203 0.1284 −1.5532 0.1204 1126 0.109 0.9573

13 6.7299 1.70 ×
10−11 6.6692 2.57 ×

10−11 4280 2.20 ×
10−16 0.95258 −1.4929 0.1355 −1.493 0.1354 1106 0.106 0.95728

14 6.7357 1.63 ×
10−11 6.5614 5.33 ×

10−11 4280 2.20 ×
10−16 0.95258 −1.5074 0.1317 −1.4917 0.1358 1110 0.11 0.95729

15 6.7343 1.65 ×
10−11 6.5028 7.88 ×

10−11 4280 2.20 ×
10−16 0.95258 −1.5041 0.1326 −1.5299 0.126 1112 0.0985 0.95729

16 6.7349 1.64 ×
10−11 6.6145 3.73 ×

10−11 4282 2.20 ×
10−16 0.95258 −1.4929 0.1355 −1.4704 0.1415 1110 0.0935 0.95728

Mean 5.417898 0.0950895 5.31412 0.0950709 4453.5 0.0580625 0.953766 −1.84517 0.128107 −1.85875 0.126951 3049.375 0.0535938 0.95814
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Table A3. Performance measurements of log-map pre-processing with Power-of-Two (Po2) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 25.447 2.2 ×
10−16 25.506 2.2 ×

10−16 11,6428 2.2 ×
10−16 0.75207 20.725 2.2 ×

10−16 20.959 2.2 ×
10−16 153,240 2.2 ×

10−16 0.68165

2 22.362 2.2 ×
10−16 22.256 2.2 ×

10−16 88,130 2.2 ×
10−16 0.80265 19.84 2.2 ×

10−16 20.344 2.2 ×
10−16 88,062 2.2 ×

10−16 0.79816

3 19.913 2.2 ×
10−16 20.342 2.2 ×

10−16 84,376 2.2 ×
10−16 0.80936 22.533 2.2 ×

10−16 22.49 2.2 ×
10−16 105,932 2.2 ×

10−16 0.76622

4 20.232 2.2 ×
10−16 20.433 2.2 ×

10−16 88,000 2.2 ×
10−16 0.80289 19.497 2.2 ×

10−16 19.802 2.2 ×
10−16 83,184 2.2 ×

10−16 0.80688

5 20.223 2.2 ×
10−16 19.888 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.398 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

6 20.223 2.2 ×
10−16 20.225 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.584 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

7 20.223 2.2 ×
10−16 19.875 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.562 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

8 20.223 2.2 ×
10−16 20.242 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 18.998 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

9 20.223 2.2 ×
10−16 20.889 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.222 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

10 20.223 2.2 ×
10−16 20.267 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.979 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

11 20.223 2.2 ×
10−16 20.254 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.242 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

12 20.223 2.2 ×
10−16 20.436 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.129 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

13 20.223 2.2 ×
10−16 20.101 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.363 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

14 20.223 2.2 ×
10−16 19.796 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.663 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

15 20.223 2.2 ×
10−16 20.032 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.576 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

16 20.223 2.2 ×
10−16 20.425 2.2 ×

10−16 88,022 2.2 ×
10−16 0.80285 19.508 2.2 ×

10−16 19.022 2.2 ×
10−16 83,272 2.2 ×

10−16 0.80672

Mean 20.66438 2.2 ×
10−16 20.68544 2.2 ×

10−16 89,574.88 2.2 ×
10−16 0.80007 19.79319 2.2 ×

10−16 19.77081 2.2 ×
10−16 89,355.13 2.2 ×

10−16 0.795847
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Table A4. Performance measurements of log-map pre-processing with Dynamic-Fixed-Point (DFP) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 25.447 2.2 ×
10−16 25.264 2.2 ×

10−16 116,428 2.2 ×
10−16 0.75207 21.279 2.2 ×

10−16 20.926 2.2 ×
10−16 103,956 2.2 ×

10−16 0.76975

2 22.362 2.2 ×
10−16 22.913 2.2 ×

10−16 88,130 2.2 ×
10−16 0.80265 17.184 2.2 ×

10−16 17.45 2.2 ×
10−16 89,472 2.2 ×

10−16 0.79564

3 20.371 2.2 ×
10−16 20.187 2.2 ×

10−16 92,402 2.2 ×
10−16 0.79502 22.68 2.2 ×

10−16 22.463 2.2 ×
10−16 105,502 2.2 ×

10−16 0.76698

4 19.357 2.2 ×
10−16 18.697 2.2 ×

10−16 84,746 2.2 ×
10−16 0.8087 22.86 2.2 ×

10−16 23.514 2.2 ×
10−16 107,350 2.2 ×

10−16 0.76368

5 19.574 2.2 ×
10−16 19.717 2.2 ×

10−16 87,790 2.2 ×
10−16 0.80326 19.466 2.2 ×

10−16 19.577 2.2 ×
10−16 85,634 2.2 ×

10−16 0.8025

6 19.589 2.2 ×
10−16 19.444 2.2 ×

10−16 86,792 2.2 ×
10−16 0.80504 19.242 2.2 ×

10−16 18.842 2.2 ×
10−16 85,456 2.2 ×

10−16 0.80282

7 19.501 2.2 ×
10−16 20.113 2.2 ×

10−16 86,834 2.2 ×
10−16 0.80497 19.386 2.2 ×

10−16 19.155 2.2 ×
10−16 86,260 2.2 ×

10−16 0.80138

8 19.554 2.2 ×
10−16 19.13 2.2 ×

10−16 86,842 2.2 ×
10−16 0.80496 19.361 2.2 ×

10−16 19.45 2.2 ×
10−16 86,204 2.2 ×

10−16 0.80148

9 19.532 2.2 ×
10−16 19.15 2.2 ×

10−16 86,844 2.2 ×
10−16 0.80495 19.341 2.2 ×

10−16 18.899 2.2 ×
10−16 86,280 2.2 ×

10−16 0.80134

10 19.511 2.2 ×
10−16 19.569 2.2 ×

10−16 86,824 2.2 ×
10−16 0.80499 19.352 2.2 ×

10−16 19.555 2.2 ×
10−16 86,256 2.2 ×

10−16 0.80139

11 19.521 2.2 ×
10−16 19.997 2.2 ×

10−16 86,818 2.2 ×
10−16 0.805 19.349 2.2 ×

10−16 19.403 2.2 ×
10−16 86,252 2.2 ×

10−16 0.80139

12 19.517 2.2 ×
10−16 19.707 2.2 ×

10−16 86,814 2.2 ×
10−16 0.80501 19.35 2.2 ×

10−16 18.871 2.2 ×
10−16 86,270 2.2 ×

10−16 0.80136

13 19.524 2.2 ×
10−16 20.022 2.2 ×

10−16 86,822 2.2 ×
10−16 0.80499 19.349 2.2 ×

10−16 19.742 2.2 ×
10−16 86,250 2.2 ×

10−16 0.8014

14 19.523 2.2 ×
10−16 19.428 2.2 ×

10−16 86,824 2.2 ×
10−16 0.80499 19.35 2.2 ×

10−16 19.257 2.2 ×
10−16 86,254 2.2 ×

10−16 0.80139

15 19.523 2.2 ×
10−16 19.449 2.2 ×

10−16 86,824 2.2 ×
10−16 0.80499 19.348 2.2 ×

10−16 19.831 2.2 ×
10−16 86,254 2.2 ×

10−16 0.80139

16 19.524 2.2 ×
10−16 19.354 2.2 ×

10−16 86,822 2.2 ×
10−16 0.80499 19.35 2.2 ×

10−16 19.033 2.2 ×
10−16 86,254 2.2 ×

10−16 0.80139

Mean 20.12063 2.2 ×
10−16 20.13381 2.2 ×

10−16 89,034.75 2.2 ×
10−16 0.801035 19.76544 2.2 ×

10−16 19.748 2.2 ×
10−16 89,994 2.2 ×

10−16 0.794705
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Table A5. Performance measurements of inverse log-map pre-processing with Power-of-Two (Po2) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 10.459 2.20 ×
10−16 10.252 2.20 ×

10−16 32,948 2.20 ×
10−16 0.90151 10.272 2.20 ×

10−16 10.455 2.20 ×
10−16 34,392 2.20 × 10−16 0.89409

2 12.387 2.20 ×
10−16 12.347 2.20 ×

10−16 35,646 2.20 ×
10−16 0.89647 10.788 2.20 ×

10−16 10.76 2.20 ×
10−16 32,438 2.20 × 10−16 0.89759

3 11.824 2.20 ×
10−16 11.667 2.20 ×

10−16 33,776 2.20 ×
10−16 0.89981 10.396 2.20 ×

10−16 10.596 2.20 ×
10−16 30,954 2.20 × 10−16 0.90024

4 12.313 2.20 ×
10−16 12.229 2.20 ×

10−16 34,682 2.20 ×
10−16 0.89819 10.134 2.20 ×

10−16 10.34 2.20 ×
10−16 31,348 2.20 × 10−16 0.89954

5 12.447 2.20 ×
10−16 12.339 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.255 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

6 12.447 2.20 ×
10−16 12.526 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.625 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

7 12.447 2.20 ×
10−16 12.32 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.288 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

8 12.447 2.20 ×
10−16 12.501 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.325 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

9 12.447 2.20 ×
10−16 12.128 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.421 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

10 12.447 2.20 ×
10−16 12.447 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.31 2.20 ×
10−16 31,156 2.20 × 10−16 0.89988

11 12.447 2.20 ×
10−16 12.514 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.088 2.20 ×
10−16 31,156 2.20 × 10−16 0.899878

12 12.447 2.20 ×
10−16 12.886 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.367 2.20 ×
10−16 31,156 2.20 × 10−17 0.89988

13 12.447 2.20 ×
10−16 12.793 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.008 2.20 ×
10−16 31,156 2.20 × 10−18 0.89988

14 12.447 2.20 ×
10−16 12.634 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.069 2.20 ×
10−16 31,156 2.20 × 10−19 0.89988

15 12.447 2.20 ×
10−16 12.501 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.538 2.20 ×
10−16 31,156 2.20 × 10−20 0.89988

16 12.447 2.20 ×
10−16 12.731 2.20 ×

10−16 36,004 2.20 ×
10−16 0.89583 10.288 2.20 ×

10−16 10.458 2.20 ×
10−16 31,156 2.20 × 10−21 0.89988

Mean 12.27169 2.2 ×
10−16 12.30094 2.2 ×

10−16 35,568.75 2.2 ×
10−16 0.896619 10.31538 2.2 ×

10−16 10.36894 2.2 ×
10−16 31,437.75 1.52778 ×

10−16 0.899375
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Table A6. Performance measurements of inverse log-map pre-processing with Dynamic-Fixed-Point (DFP) quantization scheme.

Bit-Width Frequency, AUC = 0.9601852 Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC Z p-Value < D p-Value < E p-Value < AUC

1 10.459 2.2 ×
10−16 10.465 2.2 ×

10−16 32,948 2.20 ×
10−16 0.90151 9.3355 2.2 ×

10−16 9.3886 2.2 ×
10−16 31,530 2.20 ×

10−16 0.900483

2 12.387 2.2 ×
10−16 12.36 2.2 ×

10−16 35,646 2.20 ×
10−16 0.89647 11.028 2.2 ×

10−16 10.887 2.2 ×
10−16 32,748 2.20 ×

10−16 0.897033

3 12.176 2.2 ×
10−16 12.541 2.2 ×

10−16 34,758 2.20 ×
10−16 0.89806 9.7993 2.2 ×

10−16 9.548 2.2 ×
10−16 29,714 2.20 ×

10−16 0.902613

4 11.198 2.2 ×
10−16 11.251 2.2 ×

10−16 32,150 2.20 ×
10−16 0.90272 10.378 2.2 ×

10−16 10.258 2.2 ×
10−16 31,416 2.20 ×

10−16 0.899414

5 12.397 2.2 ×
10−16 12.222 2.2 ×

10−16 36,440 2.20 ×
10−16 0.89505 9.7374 2.2 ×

10−16 9.6062 2.2 ×
10−16 29,964 2.20 ×

10−16 0.902131

6 12.41 2.2 ×
10−16 12.462 2.2 ×

10−16 35,888 2.20 ×
10−16 0.89604 9.7943 2.2 ×

10−16 9.6758 2.2 ×
10−16 29,980 2.20 ×

10−16 0.902088

7 12.128 2.2 ×
10−16 11.943 2.2 ×

10−16 34,146 2.20 ×
10−16 0.89915 10.011 2.2 ×

10−16 10.015 2.2 ×
10−16 30,208 2.20 ×

10−16 0.901573

8 12.689 2.2 ×
10−16 12.435 2.2 ×

10−16 37,076 2.20 ×
10−16 0.89391 10.179 2.2 ×

10−16 10.241 2.2 ×
10−16 31,246 2.20 ×

10−16 0.899718

9 12.677 2.2 ×
10−16 12.947 2.2 ×

10−16 36,890 2.20 ×
10−16 0.89424 10.071 2.2 ×

10−16 9.8498 2.2 ×
10−16 30,332 2.20 ×

10−16 0.901351

10 12.769 2.2 ×
10−16 12.823 2.2 ×

10−16 37,116 2.20 ×
10−16 0.89384 10.144 2.2 ×

10−16 9.6202 2.2 ×
10−16 30,474 2.20 ×

10−16 0.901098

11 12.686 2.2 ×
10−16 12.723 2.2 ×

10−16 35,874 2.20 ×
10−16 0.89606 10.106 2.2 ×

10−16 9.9334 2.2 ×
10−16 30,412 2.20 ×

10−16 0.901208

12 12.689 2.2 ×
10−16 12.54 2.2 ×

10−16 35,888 2.20 ×
10−16 0.89604 10.112 2.2 ×

10−16 9.9988 2.2 ×
10−16 30,416 2.20 ×

10−16 0.901201

13 12.692 2.2 ×
10−16 12.417 2.2 ×

10−16 35,884 2.20 ×
10−16 0.89604 10.107 2.2 ×

10−16 10.105 2.2 ×
10−16 30,406 2.20 ×

10−16 0.901219

14 12.689 2.2 ×
10−16 12.831 2.2 ×

10−16 35,872 2.20 ×
10−16 0.89606 10.107 2.2 ×

10−16 10.377 2.2 ×
10−16 30,410 2.20 ×

10−16 0.901212

15 12.691 2.2 ×
10−16 12.605 2.2 ×

10−16 35,876 2.20 ×
10−16 0.89606 10.107 2.2 ×

10−16 9.6937 2.2 ×
10−16 30,410 2.20 ×

10−16 0.901212

16 12.689 2.2 ×
10−16 13.224 2.2 ×

10−16 35,872 2.20 ×
10−16 0.89606 10.107 2.2 ×

10−16 10.28 2.2 ×
10−16 30,408 2.20 ×

10−16 0.901216

Mean 12.33913 2.2 ×
10−16 12.36181 2.2 ×

10−16 35,520.25 2.2 ×
10−16 0.896706 10.07022 2.2 ×

10−16 9.967344 2.2 ×
10−16 30,629.63 2.2 ×

10−16 0.900923
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Table A7. Performance measurements of retraining with Power-of-Two (Po2) quantization scheme.

Bit-Width Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC

1 −1.484 0.1378 −1.5176 0.1291 11,484 2.20 × 10−16 0.9614257
2 −1.3442 0.1789 −1.3351 0.1819 4444 0.0055 0.9589876
3 −1.4954 0.1348 −1.4923 0.1356 3618 0.028 0.9592128
4 −2.4204 0.0155 −2.4541 0.01412 4054 0.005 0.961272
5 −3.6926 0.000222 −3.7461 0.00018 5778 2.20 × 10−16 0.9645181
6 −2.2286 0.02584 −2.2825 0.02246 3724 0.009 0.9606535
7 −3.2514 0.00115 −3.2259 0.00126 5118 2.20 × 10−16 0.9633884
8 −1.9956 0.04598 −2.0536 0.04001 3674 0.0155 0.9602138
9 −1.9956 0.04598 −2.003 0.04518 3674 0.0165 0.9602138
10 −1.9956 0.04598 −2.0175 0.04364 3674 0.0155 0.9602138
11 −1.9956 0.04598 −2.0453 0.04082 3674 0.009 0.9602138
12 −1.9956 0.04598 −1.9694 0.0489 3674 0.016 0.9602138
13 −1.9956 0.04598 −1.9812 0.04757 3674 0.014 0.9602138
14 −1.9966 0.04587 −1.9966 0.04587 3674 0.01 0.9602138
15 −1.9956 0.04598 −1.9794 0.04777 3674 0.0125 0.9602138
16 −1.9956 0.04598 −2.0171 0.04368 3674 0.0115 0.9602138

Mean −2.11738 0.056745 −2.13229 0.055503 4455.375 0.0105 0.960711394

Table A8. Performance measurements of retraining with Dynamic-Fixed-Point (DFP) quantization scheme.

Bit-Width Spatial, AUC = 0.9555699

Z p-Value < D p-Value < E p-Value < AUC

1 −0.84641 0.3973 −0.84277 0.3994 11,650 2.20 × 10−16 0.95901
2 −1.6187 0.1055 −1.6063 0.1082 5118 2.20 × 10−16 0.95978
3 −1.6091 0.1076 −1.607 0.1081 3542 0.007 0.95882
4 0.17147 0.8639 0.17203 0.8634 2644 0.0645 0.95524
5 2.6438 0.008199 2.6344 0.008428 3636 0.0095 0.94999
6 4.2815 1.86 × 10−5 4.1887 2.81 × 10−5 10,824 2.20 × 10−16 0.93636
7 4.2447 2.19 × 10−5 4.2655 2.00 × 10−5 10,374 2.20 × 10−16 0.93725
8 −0.5619 0.5742 −0.5581 0.5768 2694 0.024 0.9566
9 −0.3745 0.708 −0.3739 0.7085 2442 0.053 0.95627
10 −0.3324 0.7396 −0.3411 0.733 2492 0.054 0.95619
11 −0.3081 0.758 −0.3148 0.7529 2474 0.0545 0.95615
12 −0.3238 0.7461 −0.3141 0.7535 2490 0.0535 0.95617
13 −0.3181 0.7504 −0.3001 0.7641 2480 0.051 0.95616
14 −0.3239 0.746 −0.3152 0.7526 2474 0.054 0.95617
15 −0.3181 0.7504 −0.3222 0.7473 2480 0.0435 0.95616
16 −0.322 0.7475 −0.3166 0.7516 2476 0.0545 0.95617

Mean 0.255282 0.5001712 0.253044 0.5017423 4393.125 0.0326875 0.953907
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