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Abstract: This paper centers on the design of highly robust observer sliding mode (HROSM)-based
load frequency and tie-power control to compensate for primary frequency control of multi-area
interconnected power systems integrated with renewable power generation. At first, the power
system with external disturbance is model in the state space form. Then the state observer is used to
estimate the system states which are difficult or expensive to measure. Secondly, the sliding mode
control (SMC) is designed with a new single phase sliding surface (SPSS). In addition, the whole
system asymptotic stability is proven with Lyapunov stability theory based on the linear matrix
inequality (LMI) technique. The new SPSS without reaching time guarantees rapid convergence of
high transient frequency, tie-power change as well as reduces chattering without loss of accuracies.
Therefore, the superiority of modern state-of-the-art SMC-based frequency controllers relies on good
practical application. The experimental simulation results on large interconnected power systems
show good performance and high robustness against external disturbances when compared with
some modern state of art controllers in terms of overshoots and settling time.

Keywords: load frequency control; renewable plants; sliding mode control

1. Introduction

High level penetration of renewable generation systems into interconnected multi-area
generation systems will make power sectors more economical and reliable to deliver power
to end users. Since each area consists of increase numbers of generating sets, renewable
power sets can be used as reservation for peak load demand. However, external distur-
bances such as intermittent generation associated with renewable sources and continuous
load demand on one area can cause a high spike of frequency and tie-power flow in the
multi-area [1]. Thus, frequency spike can damage power system equipment; can cause
wear and tear of steam actuator valve, affects primary frequency control, etc. To solve
this issue, load frequency control (LFC) is applied. LFC is one vital aspect of automatic
generation control. Its duty is to compensate for primary control to ensure frequency and
tie line flow at scheduled value [1]. Its design application in power systems follows two
approaches, i.e., centralized and decentralized. The decentralized approach is commonly
used since each local area is controlled on its own without interfering with neighboring
areas. Furthermore, different techniques have been designed for LFC studies in various
power systems. In the literature, early existing LFC methods were proportional-integral
(PI) and proportional-integral-derivative (PID). These traditional schemes benefit in simple
structures and performed well under parameters’ nominal operating points. However, they
are degraded at variable points [2–4]. The degradation of PI and PID were solved with the
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development of intelligent control such as artificial neural network (ANN) and fuzzy logic
given in [5–8]. Moreover, with the use of fuzzy logic, determining the accurate fuzzy set for
tuning traditional control method is challenging. Optimal control techniques were applied
with fuzzy logic to improve fuzzy set decision [9]. So far, both PI and intelligent control
were combined to improve traditional LFC method [10–15]. Meanwhile, PI tuning has
further improved with new algorithms given in [16–18]. Nevertheless, the major problem
with interconnected power systems integrated with renewable power sets is that they
result in a higher increase of the system order, the number of tuning control parameters,
uncertainties in the system states and large external disturbances. When the power sys-
tem is modeled, the external disturbance most especially cannot be avoided. Therefore,
the requirement of the LFC must be robust against external disturbance in reality. Thus,
sliding mode control (SMC) is used nowadays due to it robust against disturbance [19].
However, SMC based LFC is not new to control engineers. Various SMC-based LFC for
power systems are briefly discussed. SMC was designed to control frequency, tie-power
and area control errors for three area power system consisting of non-reheat, reheat and
hydro-plant distributed in the areas [19]. Discrete-time SMC based LFC was constructed
for controlling areas in power system with full state feedback [20]. A nonlinear SMC was
proposed for mismatch power system with wind farms [21]. Furthermore, optimal LFC
based SMC was designed for nonlinear power system [22]. Adaptive SMC based LFC for
power systems are discussed in [23–26]. However, the SMC controllers discussed in the
literature were designed with all power system states assumed to be measured. In practical
power system, it is difficult to measure all system states [27]. To solve this problem, the
SMC based observer technique is employed [28,29]. It estimates system states and filters
higher frequency harmonics [30]. In addition, it provides cost effective design of LFC for
power systems. SMC combined with an observer has been applied for LFC studies in
power systems [31,32]. A robust higher observer SMC via nonlinear super twisting LFC
was recently designed for multi-area power system with good performance and robustness
of SMC which lies on the control switching law and sliding surface [31]. The switching
laws ensure all system states deviations are driven to the sliding surface and remain therein.
In studies, the robustness of an integral sliding surface combined with an observer was
designed for the LFC of a power system which guarantees frequency deviation in the
nominal value. However, these above SMCs combined with observer need time for the
trajectories to reach the sliding surface, which may decrease the system performance [33].
In addition, a more robust controller without reaching time ensures system state trajectories
starts from its surface at the initial time moment [33]. Therefore, the single phase sliding
surface (SPSS) choice emerges to design sliding mode control. Thus, this motivates my
interest to design an SMC via SPSS based on an observer for LFCs of a large power network.
The novelties of this article are stated below:
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Experimental simulation results depict the better performance in terms settling time
and overshoot in comparison with recently results.

2. State Space Power System Model

In this part, we model the considered large interconnected power system and also the
wind farms. Before proceeding, we briefly describe the power system which consists of
three area interconnected electricity systems with non-reheat turbines shown in Figure 1.
Areas 1 and 3 are integrated with wind power. Each block represents power generation
components with their dynamics and subsystem parameters.
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To derive the system states model, we begin from Area 1 to Area 3 in the following
equation.

The frequency deviation of Areas 1, 2 and 3 is

∆
.
f 1(t) = −

1
Tp1

∆ f1(t) +
Kp1

Tp1
∆Pm1(t)−

Kp1

Tp1
∆Ptie1(t)− a31

Kp1

Tp1
∆Ptie3(t)−

Kp1

Tp1
∆Pd1 −

Kp1

Tp1
∆PW1 (1)

∆
.
f 2(t) = −

1
Tp2

∆ f2(t) +
Kp2

Tp2
∆Pm2(t)− a12

Kp2

Tp2
∆Ptie1(t)−

Kp2

Tp2
∆Ptie2(t)−

Kp2

Tp2
∆Pd2 (2)

∆
.
f 3(t) = −

1
Tp3

∆ f3(t) +
Kp3

Tp3
∆Pm3(t)− a23

Kp3

Tp3
∆Ptie2(t)−

Kp3

Tp3
∆Ptie3(t)−

Kp3

Tp3
∆Pd3 −

Kp3

Tp3
∆PW3 (3)

The mechanics power deviation of the 3-area power system are

∆
.
Pm1(t) = −

1
Tt1

∆Pm1(t) +
1

Tt1
∆Pv1(t) (4)

∆
.
Pm2(t) = −

1
Tt2

∆Pm2(t) +
1

Tt2
∆Pv2(t) (5)

∆
.
Pm3(t) = −

1
Tt3

∆Pm3(t) +
1

Tt3
∆Pv3(t) (6)

The valve position deviation of the 3-area power system are given as

∆
.
Pv1(t) = −

1
R1Tg1

∆ f1(t)−
1

Tg1
∆Pv1(t) +

1
Tg1

u1 (7)

∆
.
Pv2(t) = −

1
R2Tg2

∆ f2(t)−
1

Tg2
∆Pv2(t) +

1
Tg2

u2 (8)

∆
.
Pv3(t) = −

1
R3Tg3

∆ f3(t)−
1

Tg3
∆Pv3(t) +

1
Tg3

u3 (9)
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The area control error of Areas 1, 2 and 3 are as follows

∆
.
E1(t) = KB1∆ f1(t) + ∆Ptie1(t) + a31∆Ptie3(t) (10)

∆
.
E2(t) = KB2∆ f2(t) + a12∆Ptie1(t) + ∆Ptie2(t) (11)

∆
.
E3(t) = KB3∆ f3(t) + a23∆Ptie2(t) + ∆Ptie3(t) (12)

The tie-line power deviation between the second area of Areas 1, 2 and 3 are presented as

∆
.
Ptie1(t) = 2π(T12 + T31)∆ f1(t)− 2πT12∆ f2(t)− 2πT31∆ f3(t) (13)

∆
.
Ptie2(t) = 2π(T12 + T23)∆ f2(t)− 2πT12∆ f1(t)− 2πT23∆ f3(t) (14)

∆
.
Ptie3(t) = 2π(T31 + T23)∆ f3(t)− 2πT31∆ f1(t)− 2πT23∆ f2(t) (15)

where ∆ f1, ∆ f2(t) and ∆ f3(t) are frequency errors in area 1, 2 and 3, ∆E1(t), ∆E2(t) and
∆E3(t) are the control area errors, and ∆Ptie1(t), ∆Ptie2(t) and ∆Ptie3(t) are total changes in
tie-power. Equations (1)–(15) represent the dynamic characteristics of the power system
with wind turbines. Therefore, the power system model is written in the state space
form below .

x(t) = Ax(t) + Bu(t) + F∆P(t)
y(t) = Cx(t)

(16)

where x(t) is the system states variable x(t) ∈ Rn, u(t) is the control vector matrix u(t) ∈
Rm and ∆P(t) is the disturbance vector matrix. The detail of the above variables are as
follows: x(t) = [x1(t) x2(t) x3(t)]T in which x1(t) = [∆ f1(t) ∆Pm1(t) ∆Pv1(t) ∆E1(t)
∆Ptie1(t)] ; x2(t) = [∆ f2(t) ∆Pm2(t) ∆Pv2(t) ∆E2(t) ∆Ptie2(t)]; x3(t) = [∆ f3(t) ∆Pm3(t)
∆Pv3(t) ∆E3(t) ∆Ptie3(t)]; u(t) = [u1u2u3]

T ; ∆P(t) = [∆Pd1∆Pd2∆Pd3∆PW1∆PW3]
T and

y(t) is denoted the system output vector and A, B, F are the system matrices with A ∈ Rn×n,
B ∈ Rn×m, F ∈ Rn×k

A =

− 1
Tp1

Kp1
Tp1

0 0 −Kp1
Tp1

0 0 0 0 0 0 0 0 0 −a31
Kp1
Tp1

0 − 1
Tt1

1
Tt1

0 0 0 0 0 0 0 0 0 0 0 0
− 1

R1Tg1
0 − 1

Tg1
1

Tg1
0 0 0 0 0 0 0 0 0 0 0

KB1 0 0 0 1 0 0 0 0 0 0 0 0 0 a31
2π(T12 + T31) 0 0 0 0 −2πT12 0 0 0 0 −2πT31 0 0 0 0

0 0 0 0 −a12
Kp2
Tp2

− 1
Tp2

Kp2
Tp2

0 0 −Kp2
Tp2

0 0 0 0 0

0 0 0 0 0 0 − 1
Tt2

1
Tt2

0 0 0 0 0 0 0
0 0 0 0 0 − 1

R2Tg2
0 − 1

Tg2
1

Tg2
0 0 0 0 0 0

0 0 0 0 a12 KB2 0 0 0 1 0 0 0 0 0
−2πT12 0 0 0 0 2π(T12 + T23) 0 0 0 0 −2πT23 0 0 0 0

0 0 0 0 0 0 0 0 0 −a23
Kp3
Tp3

− 1
Tp3

Kp3
Tp3

0 0 −Kp3
Tp3

0 0 0 0 0 0 0 0 0 0 0 − 1
Tt3

1
Tt3

0 0
0 0 0 0 0 0 0 0 0 0 − 1

R3Tg3
0 − 1

Tg3
1

Tg3
0

0 0 0 0 0 0 0 0 0 a23 KB3 0 0 0 1
−2πT31 0 0 0 0 −2πT23 0 0 0 0 2π(T31 + T23) 0 0 0 0



;

B =


0 0 1

Tg1
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
Tg2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
Tg3

0 0


T

;

F =



−Kp1
TP1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −KP2

TP2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −KP3
TP3

0 0 0
Kp1
TP1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 KP3

TP3
0 0 0



T

.
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Tgi, Tti and Tpi are governor, turbine and subsystem time constant in seconds. Kpi, Ri,
and KBi are power system gain (Hz/p.u. MW), speed regulation coefficient (Hz/p.u. MW),
and frequency bias factor (p.u. MW/Hz), respectively. Tij is the synchronized coefficient.
If there is no power exchange between each area Tij = 0. Furthermore, the wind output
power is expressed below

Pω =
1
2

ραVω
3CP(λ, β) (17)

where ρ is the air density, α is the cross section of rotor, λ is the tip speed ratio, β is the
pitch angle, and CP(λ, β) is the power coefficient and Vω is the wind speed. Variation
of wind speed can cause external disturbance to the interconnected power system. To
proceed, we make some assumptions that will be beneficial in this work. The assumptions
are as follows.

Assumption 1. If the A, B pair are controllable by u(t) then A, C are observable [21].

Assumption 2. The load disturbance ∆P(t) is unknown and bounded, i.e., there exists a known
scalar κ such that ‖∆P(t)‖ ≤ κ, where ‖.‖ is the norm.

3. Observer Design

To achieve a better LFC in power systems, all parameters values related to LFC are
assumed to be measured probably by sensors. This will create a high cost. Therefore,
to design a cost effective controller, an observer approach is introduced. The observer
estimates system state variables to overcome the use of sensors. By applying the state
observer, the estimator of the system state in Equation (16) is written as follows

.
x̂(t) = Ax̂(t) + Bu(t) + L(y− ŷ)
ŷ(t) = Cx̂(t)

(18)

where x̂(t) ∈ Rn is the estimate of x(t), ŷ(t) ∈ Rp is the output of the observer, L ∈ Rnxp

is the gain of the observer. The observer takes a discontinuous signal in u(t) and y(t) as
the input and ŷ(t) as output signal. The observer gain Γ is chosen such that the eigenvalue
of AT − CTΓ lie in the desire location in the hyper plane. The observer gains matrix L for
the original system, therefore, can be determined by using the relation L and ΓT give as

L = ΓT (19)

4. SMC via Single Phase Surface Design

In this section, we design the SMC based single phase switching surface for large
power systems and prove the system dynamics stabilization. To begin, a single phase
switching surface is first designed and discussed below.

4.1. New Single Phase Sliding Surface

To design an SM controller, the choice for switching techniques and sliding surface
are very important. The switching scheme is used to move the system states and maintain
convergence at a designated sliding surface [21]. Hence, a new single phase sliding surface
is constructed. The robustness at reaching stage without reaching time is guaranteed by
the single phase switching surface given below.

σ[x̂(t)] = Sx̂(t)−
t∫

0

S(A− BK)x̂(τ)dτ − Sx̂(0)e−βt (20)

where σ[x̂(t)] denotes the single phase sliding surface. We take into account the SMC
law that variables must reach the surface and remain therein that is, σ[x̂(t)]

.
σ[x̂(t)] < 0

which denotes reachability of the system states trajectories,
.
σ[x̂(t)] =σ[x̂(t)] = 0 . At the

beginning time t = 0, the SPSS in Equation (20) is equal zero σ[x̂(t)] = 0 which shows the
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system remain on the single phase sliding surface for all time. In Equation (20), K is the
design matrix gain. The matrix S is chosen carefully to ensure SB is invertible. Therefore, if
we take the time derivative of Equation (20), we have

.
σ[x̂(t)] = S

.
x̂(t)− S(A− BK)x̂(t)Sβx̂(0)e−βt (21)

Substituting
.
x̂(t) into Equation (21) gives us

.
σ[x̂(t)] = S[Ax̂(t) + Bu(t) + L(y− ŷ)]− S(A− BK)x̂(t) + Sβx̂(0)e−βt

= SAx̂(t) + SBu(t) + SL(y− ŷ)− S(A− BK)x̂(t) + Sβx̂(0)e−βt

= SAx̂(t) + SBu(t) + SL(y− ŷ)− SAx̂(t) + SBKx̂(t) + Sβx̂(0)e−βt

= SBu(t) + SL(y− ŷ) + SBKx̂(t) + Sβx̂(0)e−βt

(22)

Therefore, if
.
σ[x̂(t)] = 0 then, the corresponding equivalent controller ueq(t) can be

determine as

ueq(t) = −(SB)−1
[
SBKx̂(t) + SL(y− ŷ) + Sβx̂(0)e−βt

]
(23)

However, to satisfy the reaching condition of system state trajectories, the design
controller becomes

u(t) = ueq(t)− (SB)−1δsgn(σ[x̂(t)]) (24)

where u(t) is the designed controller for the power system. In practice, this new controller
maintains nominal frequency at agreed value, i.e., 50 Hz/60 Hz and tie-power exchange
between the multi-areas. The new controller is designed to depend only on the state
observer written as

u(t) = −(SB)−1{SBKx̂(t) + SL(y− ŷ) + Sβx̂(0)e−βt + δsgn( σ[x̂(t)])} (25)

Next, we determine the system dynamic equation in the single phase sliding surface,
we start by making u(t) = ueq(t) and substitute into (16) in the following

.
x(t) = Ax(t)− BKx̂(t)− B(SB)−1SL(y− ŷ)− B(SB)−1Sβx̂(0)e−βt + F∆P(t) (26)

where y(t) is the real output which is given as y(t) = Cx(t) and ŷ(t) is the estimated output
from the observer given as ŷ(t) = Cx̂(t). Therefore, the Equation (26) can be achieved.

.
x(t) = Ax(t)− BKx(t) + BKx(t)− BKx̂(t)− B(SB)−1SLC[x(t)− x̂(t)]

−B(SB)−1Sβx̂(0)e−βt + F∆P(t)
(27)

By simplifying (27), the equation is written in the following

.
x(t) = (A− BK)x(t) +

[
BK− B(SB)−1SLC

]
A(t) + F∆P(t) − B(SB)−1Sβx̂(0)e−βt (28)

where A(t) represents the error between the real system state and observer state given below

A(t) = x(t)− x̂(t) (29)

If we take the time derivative of Equation (29) and using Equations (16) and (18), we have

.
A(t) = (A− LC)A(t) + F∆P(t) (30)

Combining (28) and (30), therefore, the dynamic equation in the SPSS becomes[ .
x(t)
.
A(t)

]
=

[
(A− BK)

[
BK− B(SB)−1SLC

]
0 (A− LC)

][
x(t)
A(t)

]
+

[
I Π
I 0

][
F∆P(t)

e−βt

]
. (31)
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where
Π = −B(SB)−1Sβx̂(0)

Equation (31) represents the dynamic equation in the SPSS. It is designed in such a way
that both x(t) and A(t) deviation begins at the surface at initial time moment. Meanwhile,
(BK− B(SB)−1SLC) reflects the fact that system is constrained to remain on the defined
single phase sliding surface at σ[x̂(t)] = 0.

4.2. Theoretical Prove of System Dynamic Stabilization

It is very important to prove the stabilization of the whole system. In studies, Lya-
punov stability theory is used theoretically to investigate differential systems. Some lemmas
are also adopted and LMI theorem stated to support the stabilization proves which are
given.

Lemma 1 ([34]). If X and Y are real matrix of suitable dimension then, for any scalar µ > 0, the
following matrix inequality holds

XTY + YTX ≤ µXTX + µ−1YTY

Lemma 2 ([34]). For a given inequality[
Q(x) S(x)
S(x)T R(x)

]
< 0 (32)

where Q(x) = Q(x)T and R(x) = R(x)T such that S(x) depend affinity on x, therefore, R(x) < 0
and Q(x)− S(x)R(x)−1S(x)T < 0.

Theorem 1. The system (31) is asymptotically stable, if there exist symmetric positive definite
matrices R > 0 and P > 0 and positive scalars µ, γ and π such that the below LMI holds


R(A− BK) + (A− BK)T R R

[
BK− B(SB)−1SLC

]
0 RIF RΠ[

BK− B(SB)−1SLC
]T

R P(A− LC) + (A− LC)T P PIF 0 0

0 FT IT P −π−1 I 0 0
FT IT R 0 0 µ−1 0
ΠT R 0 0 0 γ−1

 < 0 (33)

To prove the stability of the system (31), the Lyapunov function V(x(t),A(t)) is
selected as

V(x(t),A(t)) =
[

x(t)
A(t)

]T[ R 0
0 P

][
x(t)
A(t)

]
(34)

When we take the time derivative of (34), we have

.
V(x(t),A(t)) =

[
x(t)
A(t)

]T[ R 0
0 P

][ .
x(t)
.
A(t)

]
+

[ .
x(t)
.
A(t)

]T[
R 0
0 P

][
x(t)
A(t)

]
(35)

Substitute
.
x(t) and

.
A(t) into (35),

.
V(x(t),A(t)) becomes

.
V(x(t),A(t)) =

[
x(t)
A(t)

]T[ R 0
0 P

][[
(A− BK)

[
BK− B(SB)−1SLC

]
0 (A− LC)

][
x(t)
A(t)

]
+

[
I Π
I 0

][
F∆P(t)
e−βt

]]

+

[[
(A− BK)

[
BK− B(SB)−1SLC

]
0 (A− LC)

][
x(t)
A(t)

]
+

[
I Π
I 0

][
F∆P(t)
e−βt

]]T[
R 0
0 P

][
x(t)
A(t)

] (36)

By simplifying (36) further, we have
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.
V(x(t),A(t)) =

[
x(t)
A( t)

] T
[

R(A− BK) R
[

BK− B ( SB ) −1 SLC
]

0 P(A− LC)

][
x( t )
A( t )

]
+

[
x( t )
A( t )

] T [
RI RΠ
PI 0

][
F∆P(t)
e −βt

]

+

[
x( t )
A( t )

]T
 (A− BK) T R 0[

BK− B ( SB ) −1 SLC
]T

R (A− LC) T P

[ x( t )
A( t )

]
+

[
F∆P(t)
e −βt

] T [
IT R IT P
ΠT R 0

][
x( t )
A( t )

]

=

[
x( t )
A( t )

] T
 R(A− BK) + (A− BK) T R R

[
BK− B ( SB ) −1 SLC

][
BK− B ( SB ) −1 SLC

]
T R P(A− LC) + (A− LC) T P

[ x( t )
A( t )

]
+

x (t) T RIF∆P(t) + x (t) T RΠ e −βt + ∆P (t) T FT IT Rx(t) + ∆P (t) T FT IT PA(t) +A (t) T PIF∆P(t) + (e −βt )
T ΠT Rx(t)

(37)

By applying Lemma 1 into (37), we therefore re-write Equation (37) in the follow-
ing form

.
V(x(t),A(t)) ≤

[
x(t)
A(t)

]T
 R(A− BK) + (A− BK)T R R

[
BK− B(SB)−1SLC

]
[

BK− B(SB)−1SLC
]T

R P(A− LC) + (A− LC)T P

[ x(t)
A(t)

]
+µx(t)T RIFFT IT Rx(t) + (µ−1 + π−1)∆P(t)T∆P(t) + γx(t)T RΠΠT Rx(t)

+γ−1 (e−βt)
Te−βt + πA(t)T PIFFT IT PA(t)

(38)

Equation (38) is further simplified to give
.

V(x(t),A(t)) ≤
[

x(t)
A(t)

]T
 R(A− BK) + (A− BK)T R + µRIFFT IT R + γRΠΠT R R

[
BK− B(SB)−1SLC

]
[

BK− B(SB)−1SLC
]T

R P(A− LC) + (A− LC)T P + πPIFFT IT P

[ x(t)
A(t)

]
+ϕ∆P(t)T∆P(t) + γ−1(e−βt)

Te−βt

=

[
x(t)
A(t)

]T
 R(A− BK) + (A− BK)T R + µRIFFT IT R + γRΠΠT R R

[
BK− B(SB)−1SLC

]
[

BK− B(SB)−1SLC
]T

R P(A− LC) + (A− LC)T P + πPIFFT IT P

[ x(t)
A(t)

]
+ϕ‖∆P(t)‖2 + γ−1(e−βt)

Te−βt

≤
[

x(t)
A(t)

]T
 R(A− BK) + (A− BK)T R + µRIFFT IT R + γRΠΠT R R

[
BK− B(SB)−1SLC

]
[

BK− B(SB)−1SLC
]T

R P(A− LC) + (A− LC)T P + πPIFFT IT P

[ x(t)
A(t)

]
+ϕκ2 + γ−1(e−βt)

Te−βt

(39)

where ϕ = µ−1 + π−1. By applying Lemma 2, the LMI (33) can be rewritten as R(A− BK) + (A− BK)T R + µRIFFT IT R + γRΠΠT R R
[

BK− B(SB)−1SLC
]

[
BK− B(SB)−1SLC

]T
R P(A− LC) + (A− LC)T P + πPIFFT IT P

 < 0 (40)

The term γ−1(e−βt)
Te−βt in Equation (39) will approach zero when the time ap-

proaches infinity. Therefore
.

V(x(t),A(t)) ≤ 0 is achieved by using Equations (39) and (40).
If

.
V(x(t),A(t)) ≤ 0 shows that the LMI given in (33) holds, therefore, it further explains

that the system (16) is asymptotically stable.
Furthermore, we theoretically prove the reachability of the system states to the SPSS.

We assumed that x̂(t) > 0 little above the equilibrium part at the surface, then the Lyapunov
function is selected

V[x̂(t)] =
1
2

σ[x̂(t)]Tσ[x̂(t)] (41)

If we take the time derivative of (41), we have

.
V[x̂(t)] = σ[x̂(t)]T

.
σ[x̂(t)] (42)

Substituting Equation (22) into Equation (42) then it becomes

.
V[x̂(t)] = σ[x̂(t)]T{S[Ax̂(t) + Bu(t) + L(y− ŷ)]− S(A− BK)x̂(t) + Sβx̂(0)e−βt} (43)
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Using the controller (24), then

.
V[x̂(t)] = −δ‖σ[x̂(t)]‖ (44)

Therefore, Equation (44) indicates that
.

V[x̂(t)] < 0 which proves the reachability of
the system states to the SPSS. Next, the flowchart of the proposed control algorithm of
highly robust observer sliding mode can be implemented as Figure 2.
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Remark 1. The stability of the LFC in power system using LMI technique can be seen in [35].
However, the above approach needs to find four positive matrices in the LMI equations. Thus, the
proposed approach only needs to find two positive matrices in LMI equations making it easier to
find a feasible solution.
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5. Simulation Results and Discussions

In this part, two simulations are done and the results are discussed and compared
with other recent results.

5.1. Simulation 1

Parameters of the subsystem are obtained for simulation as given in [31] shown in
Table 1.

Table 1. Power system parameters.

Parameters TPi KPi TTi TGi Ri

Area 1 20 120 0.3 0.08 2.4

Area 2 25 112.5 0.33 0.072 2.7

Area 3 20 115 0.35 0.07 2.5

The system matrices are calculated as

A =



−0.05 6 0 0 −6 0 0 0 0 0 0 0 0 0 −6
0 −3.3 3.3 0 0 0 0 0 0 0 0 0 0 0 0
−5.2 0 −12.5 12.5 0 0 0 0 0 0 0 0 0 0 0
0.42 0 0 0 1 0 0 0 0 0 0 0 0 0 1
6.28 0 0 0 0 −3.45 0 0 0 0 −3.42 0 0 0 0

0 0 0 0 4.5 −0.04 4.5 0 0 −4.5 0 0 0 0 0
0 0 0 0 0 0 −3.03 3.03 0 0 0 0 0 0 0
0 0 0 0 0 −5.14 0 −13.8 13.8 0 0 0 0 0 0
0 0 0 1 0.42 0 0 0 1 0 0 0 0 0 0
−3.4 0 0 0 0 6.28 0 0 0 0 −4.08 0 0 0 0

0 0 0 0 0 0 0 0 0 −5.75 −0.05 5.75 0 0 5.75
0 0 0 0 0 0 0 0 0 0 0 −2.85 2.85 0 0
0 0 0 0 0 0 0 0 0 0 −5.71 0 −14.28 14.28 0
0 0 0 0 0 0 0 0 0 1 0.42 0 0 0 1
−3.42 0 0 0 0 −4.08 0 0 0 0 6.28 0 0 0 0


The design parameters in the propose control are chosen to be β = 0.015, µ = 1.3,

γ = 2.2,ϑ = 2.2,

S =

 0 0 12.5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 13.89 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 14.28 0 0


and

K = 172.5 58.8 5.3 −401.9 −592.8 5.7 −0.8 −0.07 −427.6 −731.7 −10.4 −1.4 −0.04 −1028 −768
15.9 0.6 −0.04 −1498.8 −1093.1 222.1 59.1 4.7 −922.2 −1125.2 13.1 2.6 0.11 −979 −1229
−9.6 −2.46 −0.1 −839 −942.06 12.1 4.7 0.3 −1127.5 −1015.7 196.7 59.6 4.45 −740 −790


By solving LMI (33), we have
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R =



0.001 0 0 0.009 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.009 0 0 8.612 3.4 −0.21 −0.01 0
0 0 0 3.40 2.12 −0.1 −0.02 0

−0.001 0 0 −0.21 −0.1 0.03 0.002 0
0 0 0 −0.014 −0.02 0 0.001 0
0 0 0 −0.001 0 0 0 0

0.002 0 0 6.53 2.87 −0.13 −0.008 0
0 0 0 3.61 2.14 −0.1 −0.015 0
0 0 0 −0.078 −0.06 0 0 0
0 0 0 −0.007 −0.01 0 0 0
0 0 0 0 0 0 0 0

−0.003 0 0 5.91 2.5 −0.13 −0.008 0
0 0 0 3.68 2.18 −0.11 −0.018 0

0.002 0 0 0 0 −0.004 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−6.53 3.6 −0.078 −0.008 0 5.9 3.68
2.87 2.14 −0.06 −0.013 0 2.5 2.18
−0.13 −0.1 0 0 0 −0.13 −0.11

0 −0.02 0 0 0 −0.008 −0.02
0 0 0 0 0 0 0

6.07 3.04 −0.11 −0.01 0 5.029 3.04
3.04 2.19 −0.06 −0.01 0 2.655 2.2
−0.11 −0.07 0.016 0.001 0 −0.08 −0.05
−0.01 −0.01 0.001 0.001 0 −0.007 −0.01

0 0 0 0 0 0 0
5.03 2.65 −0.08 −0.007 0 4.49 2.6
3.05 2.2 −0.06 −0.01 0 2.67 2.2



> 0

and

P =

0 0 0 0 −0.01 0 0 0 0 0 0 0 0 −0.01 0
0 15864 0 0.01 0 0 0 0 −0.01 0 0 0.001 0 0 0
0 0 13564 0 0 0 0 0 0 0 0 0 0 0 0
0 0.01 0 11847 −0.03 −0.35 0.3 0 0.12 −0.02 −0.1 −0.02 0 −0.05 −0.11
−0.01 0 0 −0.03 10516 −0.22 0 0 −0.36 −0.3 −0.1 0.02 0 −0.21 −0.2

0 0 0 −0.35 −0.22 0.06 0.01 0 −0.13 −0.16 0 0 0 −0.1 −0.13
0 0 0 0.028 0 0.011 8586 0 −0.03 −0.01 0 0.002 0 0 0
0 0 0 0.002 0 0 0 7865 0 0 0 0 0 0 0
0 −0.01 0 0.12 −0.36 −0.13 −0.02 0 7255 −0.41 −0.14 0.04 0 −0.26 −0.2
0 0 0 −0.02 −0.3 −0.15 −0.01 0 −0.4 6733 −0.12 0.02 0 −0.2 −0.18
0 0 0 −0.12 −0.14 0 0 0 −0.14 −0.12 0.03 0.006 0 −0.07 −0.07
0 0 0 −0.02 0.02 0 0 0 0.03 0.02 0 5886 0 0.01 0
0 0 0 0 0 0 0 0 0 0 0 0 5538 0 0
−0.01 0 0 −0.05 −0.21 −0.11 0 0 −0.26 −0.2 −0.07 0.01 0 5228 −0.13

0 0 0 −0.11 −0.19 −0.13 0 0 −0.2 −0.18 −0.07 0.009 0 −0.13 4952



> 0

Therefore, the LMI (33) is feasible.

5.1.1. Case 1

To examine the power system under the new algorithm, we apply step load changes
with values of 0.01 p.u, 0.015 p.u and 0.02 p.u for Area 1, 2, and 3 together with wind
speed variation in Figure 3. The respective results for incremental change in frequency and
tie-flow distortion for the three areas are displayed in Figures 4 and 5.
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Both frequencies and tie-power flows spike at the initial point. At 2 s, the spikes
are restored to zero point with lesser overshoots as compared to [31]. Table 2 gives a
comparison result of both controllers. The single phase sliding surface without reaching
time is used to cut-off the smaller overshoots.

Table 2. Setting time Ts and Maximum Overshoot (M.O.S).

Proposed HROSM
via Single Phase Sliding Surface The Approach Given in [31]

Frequency
Errors

Settling Time
Ts [s]

Max.O. S
[pu]

Settling Time
Ts [s]

Max.O. S
[pu]

∆ f1 1.5 0.003 2 0.005
∆ f2 1.5 0.0019 2 0.003
∆ f3 1.5 0.0019 2 0.003

HROSM: highly robust observer sliding mode.

Remark 2. The power system response is seen better in terms of overshoots and settling time when
compared with [31].
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5.1.2. Case 2

In reality, there is always continuous load demand from industries, households, etc.,
therefore, we assumed random load variations at every 5 s intervals as shown in Figure 6.
We simulate again and the incremental frequency and tie-flow fluctuation for the three
areas are shown in Figures 7 and 8, accordingly. At this time, the new controller proves to
be robust and converge the errors to zero at every interval without loss of control accuracies.
The power system response is seen to be much better. This is to say the new controller
provides good correction signal to adjust the reference load in the speed changer motor
(non-reheat systems).
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Remark 3. The new controller robustness is validated against random load change and variable
wind speed. It also proves to be applicable in real power system in terms of the smaller overshoots
seen which do not have any significant effect as to cause wear and tear of the actuator valve.

5.2. Simulation 2

In this section, we simulate the performance of HROSM control design in a New
England (IEEE 39 bus system) with parameters and the performance indices calculation
shown in Table 3 as given in [36]. This system consists of 10 machines. The one-line
diagram of the test system with its tie-line is displayed in Figure 9. Areas 1 and 2 have
three generators, and there are four generators in Area 3; all generators are synchronized
and operating in parallel running in a non-deregulated environment. The generators are
equipped with governors. The total generated power and loads connected in Areas 1, 2
and 3 are 265.5, 233, 125 and 842 MW, respectively [36].

Table 3. Parameters of the New England IEEE 39 bus power system.

Generations
(bus No.)

M (Moment of Inertia
of the Generator)

D (Generator’s
Damping Rations)

Tg (Governor
Time Constant)

TT (Turbine-Generator
Time Constant)

Linearization Parameter of the
Governor Characteristic

Kt eT r

G1 (39) 3.0 4.0 0.25 0.2 250 39.4 19
G2 (31) 2.5 4.0 0.25 0.2 250 39.4 19
G3 (32) 4.0 6.0 0.25 0.2 250 39.4 19
G4 (33) 2.0 3.5 0.25 0.2 250 39.4 19
G5 (34) 3.5 3.0 0.25 0.2 250 39.4 19
G6 (35) 3.0 7.5 0.25 0.2 250 39.4 19
G7 (36) 2.5 4.0 0.25 0.2 250 39.4 19
G8 (37) 2.0 6.5 0.25 0.2 250 39.4 19
G9 (38) 6.0 5.0 0.25 0.2 250 39.4 19
G10 (30) 4.0 5.0 0.25 0.2 250 39.4 19

The New England system is simulated with the designed HROSM against variable
load changes as shown in Figure 3. Figure 10 displayed the results of the frequency error of
Area 3, while Figure 11 shows the tie-power exchange error results. In the results, it is seen
that the new controller performance is good by damping the frequency and tie-power flow
changes without loss of control and chattering free. The New England system response is
better in terms of lesser settling time and overshoots which also cannot have any significant
effect (i.e., wear and tear) on the governor steam actuator valve.
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Remark 4. It is seen that the new SPSS and the controller without reaching time keep frequency
and tie-power flow at desired values in the New England 39 bus system with better response in
overshoots and settling time. Therefore, this is the evidence that the new SPSS and controller
without reaching time is good application for LFC of large power system.
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6. Conclusions

In this paper, LFC problems in multi-area power integrated with renewable power
plants is solved with proposed design of highly robust observer sliding mode via single
phase switching. The proposed controller is designed to act only on the observer informa-
tion and a single phase sliding is selected for SMC such that all estimated states trajectories
begin at the surface at an initial time moment which makes it highly robust for applications.
System stability is proved via the Lyapunov theory based on a new LMI scheme. Experi-
mental simulation results show the new controller performed better when compared with
recent SMC in terms of the rapid control of frequency and tie-flow spikes, and achieved
chattering free without any weak control accuracies against external disturbances acting on
the large multi-area power system. In addition, the proposed sliding surface and new con-
troller, which depend on only the observer state estimation, are useful in applications for
real power systems where all system state variables are difficult or expensive to measure.
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