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Abstract: Though great progress has been made in the Aspect-Based Sentiment Analysis(ABSA) task
through research, most of the previous work focuses on English-based ABSA problems, and there
are few efforts on other languages mainly due to the lack of training data. In this paper, we propose
an approach for performing a Cross-Lingual Aspect Sentiment Classification (CLASC) task which
leverages the rich resources in one language (source language) for aspect sentiment classification
in a under-resourced language (target language). Specifically, we first build a bilingual lexicon for
domain-specific training data to translate the aspect category annotated in the source-language corpus
and then translate sentences from the source language to the target language via Machine Translation
(MT) tools. However, most MT systems are general-purpose, it non-avoidably introduces translation
ambiguities which would degrade the performance of CLASC. In this context, we propose a novel
approach called Reinforced Transformer with Cross-Lingual Distillation (RTCLD) combined with
target-sensitive adversarial learning to minimize the undesirable effects of translation ambiguities in
sentence translation. We conduct experiments on different language combinations, treating English
as the source language and Chinese, Russian, and Spanish as target languages. The experimental
results show that our proposed approach outperforms the state-of-the-art methods on different target
languages.

Keywords: cross-lingual aspect sentiment classification; reinforced transformer; adversarial learning

1. Introduction

Aspect Sentiment Classification (ASC) aims to identify fine-grained polarity towards
a specific aspect category (i.e., aspect). This task allows users to evaluate aggregated
sentiments for each aspect of a given product or service and gain a more granular under-
standing. To date, a number of corpus-based approaches (Ma et al. [1]; Wang et al. [2];
Xu et al. [3]) have been developed for ASC. The approaches heavily rely on an adequate
amount of manually annotated corpora for every domain. However, labeled data are
not evenly distributed among languages and across domains. For a few rich-resource
languages, including English, such labeled data are easily available. However, for many
other languages, it is normal that only a limited number of labeled data exists (Lo et al. [4]).
To leverage resources in the source language (e.g., English) to improve the aspect sentiment
classification performance in the target language, we focus on the research task, namely
Cross-Lingual Aspect Sentiment Classification (CLASC).

Existing methods in cross-lingual tasks either employ Machine Translation (MT) sys-
tems or combine a task-agnostic, pre-trained cross-lingual model with a task-specific neural
architecture. There are limitations and challenges in both methods. MT is a common
approach of bridging the gap between languages; however, there are some expected
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drawbacks. Most MT systems (e.g., Google Translate) are trained on general text and
thus introduce translation ambiguities which would lead to the domain shift problem
(Fu et al. [5]) when translate domain-specific text. Moreover, redundant tokens are intro-
duced, which would influence the distribution of word representations, and their sentiment
polarity does not necessarily hold in translation contexts because of the imperfect natural
language generation. These disadvantages degrade the performance of CLASC seriously
because the sentiment polarity of aspect is related to specific words or phrases rather than
the whole sentence.

Apart from MT-based approaches, multilingual representation is employed for cross-
lingual tasks. Usually, paired sentences from parallel corpora are used to learn cross-lingual
representations, eliminating the need of MT systems. However, pre-training cross-lingual
language models from scratch are expensive and time-consuming. Most pre-trained
cross-lingual language models rely on the large-scale task-unrelated parallel corpora and
the general-purpose representations are far from satisfactory for the downstream task.
Moreover, multilingual representation is not able to generalize equally well in all cases, it
is constrained by typological similarity of languages (Pires et al. [6]).

In this paper, we propose the CLASC task that aims to help ASC in low-resource
languages. We first build a bilingual lexicon for domain-specific training data to translate
aspect. It is low cost because the number of aspect categories in a domain-specific corpus is
always limited. Then, we employ Google Neural Machine Translation (GNMT) system to
translate sentences into the target language. Next, we design approaches to overcome the
problems caused by machine translation. Specifically, we adopt target-sensitive adversarial
learning to solve domain shift problems, i.e., machine-translated training data and the
target-language test data are not in exactly the same domain and genre (Duh et al. [7]).
Adversarial learning has gained a lot of attention for domain adaptation by building
domain-independent feature representations (Ganin et al. [8], Chen et al. [9]). Moreover,
ASC is a fine-grained task which means that aspect sentiment polarity depends on specific
tokens in the sentence sequence. For this, we propose a token selection model, namely
Reinforced Aspect-guided Token Selector (RATS) to alleviate the effects of translation noise
through discarding redundant token representations in a sentence-translation sequence.
On the basis of RATS, we develop a Reinforced Transformer (In this paper, we use a
transformer to denote the transformer encoder block.) with Cross-Lingual Distillation
(RTCLD) approach to CLASC. Note that, we extend knowledge distillation to CLASC
based on the intuition that the aspect sentiment distribution depends on semantic concepts
other than specific languages and construct a well-trained source language classifier for
guiding target language classifier to learn aspect-aware knowledge. On the whole, we
propose a hybrid architecture, i.e., on the one hand, we combine the ASC model with MT
tools for the CLASC task. On the other hand, we integrate deep learning and reinforcement
learning in a single model and use a unified training framework. The main contributions
in this paper are the following:

• We propose a novel approach for a CLASC task. Instead of large-scale parallel corpora,
only annotated source-language corpora and source-to-target translations are required.
Experiments demonstrate our approach outperforms state-of-the-art methods.

• We adopt target-sensitive adversarial learning to solve the distribution mismatch
problem caused by domain shift. Furthermore, a innovative approach called RTCLD
is proposed for the CLASC task, which distills aspect sentiment knowledge from the
source to model aspect-aware representations in the target.

2. Related Work
2.1. Cross-Lingual Sentiment Classification

Exiting studies for Cross-Lingual Sentiment Classification (CLSC) mainly focus on
document-level or sentence-level. The approaches for CLSC can be divided into MT-based
approached and cross-lingual representations.
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MT-based approaches translate the source language into the target language (e.g., Chi-
nese). More sophisticated algorithms including co-training (Wan [10]; Demirtas and Pech-
enizkiy [11]) and multi-view learning (Xiao and Guo [12]) have been shown to improve per-
formance. Zhou et al. [13] proposed a combination CLSC model, which adopted denoising
autoencoders to enhance the robustness to translation errors of the input. Zhou et al. [14]
translated each document into the other language and enforce a bilingual constraint be-
tween the original document and the translated version. Xu et al. [15] conducted cross-
lingual distillation by constructing pseudo parallel corpora from the source and translation.
These methods construct pseudo-parallel corpus with the source sentence and translation
version but all neglect the effect of noise words.

Cross-lingual representation is another approach to a cross-lingual task. Chen et al. [16]
used bilingual word embedding to map documents in the source and target languages
into the same semantic space, and adversarial training was applied to enforce the trained
classifier to be language-invariant. Feng et al. [17] learned sentiment-specific word rep-
resentations for CLSC without any cross-lingual supervision but relied on pre-trained
bilingual representation. Keung et al. [18] proposed language-adversarial training during
finetuning multilingual BERT, i.e., mBERT (Devlin et al. [19]) for cross-lingual classification
and named-entity recognition. Dong et al. [20] proposed a robust self-learning framework
for cross-lingual text classification which is based on pre-trained cross-lingual language
model.

2.2. Cross-Lingual Aspect-Level Sentiment Classification

There are few studies that focus on cross-lingual aspect-level sentiment classification.
Lambert [21] employed constrained Statistical Machine Translation (SMT) to translate the
opinionated units (e.g., opinion holder, opinion target or opinion phrase) and train clas-
sifiers on translated opinionated units. However, this is a resource-limited SMT system
which is not available in most language combinations. Barnes and Lambert et al. [22]
explored distributional representations and machine translation for aspect-based CLSC,
but all of the work was based on translated opinionated units without considering the
sentence context.

Unlike all the above studies, this paper performs CLASC measuring the relationship
of aspect category (i.e., aspect) and the sentence. Instead of relying on translated opinion-
ated units, our method leverages a reinforced transformer to explore diverse interactions
between aspect and sentence.

3. Proposed Method

Firstly, we introduce several notations used in our approach. We have training set in
source language Lsrc = 〈S ,A,Y〉, where S denotes sentences, A denotes aspect categories,
Y denotes the sentiment labels and Ltrans = 〈Str,Atr,Y tr〉 denotes the translation version
of Lsrc. We then have our test set in the target language, given by Ltgt = 〈St,At,Yt〉 and
adequate target-language sentences given by Utgt = 〈Su〉. We assume Lsrc, Ltgt and Utgt
are in the same domain.

In this section, we first introduce the token selection model, i.e., RATS, which functions
as a fundamental module of our approach to alleviate the effects of noisy representations.
On the basis of RATS, we propose an RTCLD approach for CLASC which involves the target
encoder and target classifier. Then, we introduce target-sensitive adversarial learning, i.e.,
target discriminator to solve distribution mismatch problems between the translated train-
ing set and the test set. Note that, we introduce Gradient Reversal Layer (Ganin et al. [23])
to update the parameters involved in the target encoder and target discriminator. Finally,
we introduce our optimization strategy. The overall framework of our approach is shown
in Figure 1.
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Figure 1. The overall framework of our approach. Note that we kept the parameter of source classifier constant in the training phase and the modules with dashed lines were not involved
in the test phase.
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3.1. Reinforced Aspect-Guided Token Selector (RATS)

Given an input sequence x = {x1, x2, ..., xn}. RATS generates an equal-length sequence
of binary random variables a = {a1, a2, ..., an} where ai = 1 implies that xi is selected,
whereas ai = 0 indicates that xi is discarded. The framework of RATS is shown in Figure 2.

In this way, RATS virtually functions as a hard attention mechanism to select a set
of critical tokens according to a specific aspect. However, there are no ground labels to
indicate whether or not a token should be selected, and the discrete random variables
lead to a non-differentiable problem. Therefore, we employed the reinforcement learning
algorithm, i.e., policy gradient to learn an optimal policy π(a1:n) for RATS. The progress
of learning the policy must rely on the local action-observation histories. To consider the
full history, we adopted an LSTM network to model the policy network pπ for performing
token selection over the token sequence x, denoted as LSTMp.

Figure 2. The framework of our proposed token selector, i.e., Reinforced Aspect-guided Token
Selector (RATS).

The policy network pπ uses a Reward to guide the policy learning over token sequence
x. It samples an Action ai with the probability pπ(ai|si; θr) at each State si to decide to
select xi or not. In this paper, state, action and reward are defined as follows.

• State. The state si at i-th time-step should provide adequate information for deciding
to select the token xi or not for aspect sequence xA. Thus, the state si ∈ R3d is composed of
three parts, i.e., hi, vi, and vA and the state si is formulated as follows:

si = hi ⊕ vi ⊕ vA (1)

where hi is the hidden state of LSTMp; vi is the representation of token xi; va is vector
representation of xA and ⊕ denotes vector concatenation.

• Action. Policy network pπ samples action ai ∈ {0, 1} with conditional probability
pπ(ai|si; θr). We use a logistic function to compute pπ(ai|si; θr) as follows: where θr =
{Wr ∈ R3d, br ∈ R} is the parameter to be learned.

• Reward. To encourage the pπ to take better actions, we define an aspect-guided
rewardRwhich integrates cross-lingual distillation. Specifically, for each translated sample
(xS, xA, y) ∈ Ltrans and the source version (x′S, x′A, y) ∈ Lsrc, the reward is formulated as
follows:

R = log p(y|xS, xA; θtgt) + p(y|x′S, x′A; θsrc) log p(y|xS, xA; θtgt)− γN′/N (2)
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where θsrc denotes the parameter of the source classifier and θtgt denotes the parameter
of the target classifier. It’s worthwhile to mention that we combine the cross-entropy of
the target task with the cross-entropy of cross-lingual distillation (Section 3.2) as the delay
reward. The intuition behind the definition is that integrating sentiment polarity knowledge
captured by the source classifier can better guide the selector to select discriminative tokens.
γN′/N is an additional term for limiting the number of selected tokens, where N′ denotes
the number of selected tokens and N denotes the number of total tokens, γ is a penalty
weight (tuned to be 1 × 10−4 with the development set).

3.2. Reinforced Transformer with Cross-Lingual Distillation (RTCLD)

The fundamental idea behind this paper is that policy network functions as a hard
attention mechanism to discard redundant tokens which may degrade the soft attention
mechanism (e.g., self-attention) effectiveness. Based on this idea, we combined the RATS
with a stacked transformer block to model interactions between aspect representations and
sentence representations, i.e., RTCLD as shown in Figure 3.

In this paper, we adopted BERT as the target encoder, which calculates the token-
level representations by using multi-head self-attention layers. Given a training sample
(xS, xA) ∈ Ltrans, where xS denotes the token sequence of the sentence and xA denotes the
token sequence of the aspect. Let ES = [e1

S, ..., eN
S ] denote the input representation of the

sentence, EA = [e1
A, ..., eM

A ] denotes the input representation of aspect, where N, M are the
respective maximum lengths. Let BERT(·) be the pre-trained BERT model, we can obtain
the hidden representations of xS as HS = [h1

S, ..., hN
S ] and the hidden representations of

xA as HA = [h1
A, ..., hM

A ]. Note that, we calculate token representations of the aspect and
sentence separately rather than construct a sentence pair as the whole input. In order
to alleviate the effects of noisy tokens, we employ the RATS module (as introduced in
Section 3.1) to perform token selection over a translated sentence, i.e.,

a = [a1, a2, ..., an] ∼ RATS(HS, vA) (3)

where a denotes the sampling result from the output of RATS, ∼ denotes the discrete
action sampling operation, vA denotes the vector representation of xA, which is obtained
by mean-pooling operation over HA. We then append the selected representations to HD,
which denotes the denoised hidden representations of xS.

Once we obtain the hidden representations HA of the aspect and the denoised hidden
representation HD of the sentence, we employed an additional transformer block to model
interactions between HA and HD, i.e.,

H = Transformer(HA ⊕ HD) (4)

where Transformer(·) was constructed by stacking L transformer blocks to generate aspect-
aware hidden representations. We then employed a pooling layer and a linear layer to
calculate logits q = [q1, q2, ..., qK] of each class, where K denotes the class number. The
logits are converted into probabilities of classes through the softmax layer, by normalizing
each qi with all other logits, i.e.,

pi =
exp(qi/T)

∑K
k=1 exp(qk/T)

(5)

where T is a temperature and is normally set to 1. Using a higher value of T generates a
softer probability distribution over classes.
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Figure 3. The framework of our proposed Reinforced Transformer with Cross-Lingual Distillation approach. TS Loss denotes task-specific loss and KD Loss denotes knowledge
distillation loss.
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Based on the intuition that the sentiment polarity distribution is language-independent
and semantic-related, the knowledge captured in the source model can be transferred to
the target model. We adopted cross-lingual distillation, which leverages a well-trained
source classifier (i.e., teacher) to guide the target classifier (i.e., student). In the cross-lingual
distillation framework, we first predicted a soft class distribution by source classifier with
high temperature. Then, we minimized the cross-entropy of soft distributions produced by
the source and target classifiers and the task-specific cross-entropy simultaneously. More
formally, we optimized θtgt according to the following loss function,

JT = − ∑
(xS ,xA ,y)∈Ltgt

log p(y|xS, xA; θtgt)(1 + p(y|x′S, x′A; θsrc)) (6)

where θsrc denotes the parameter of the source classifier, which has been frozen, θtgt = {θe, θy}
contains the parameter θe of the target encoder and the parameter θy of the target classifier.
During distillation, the same high temperature was used for training the target model and
the temperature was set to T = 6. After it was trained, we set the temperature to 1 for
testing.

3.3. Target-Sensitive Adversarial Learning

Although we leveraged a policy network to discard noisy token representations of
the translated sentence and transfer knowledge from the source to target classifiers, all of
the work was based on sentences in Lsrc and Ltrans. However, we use Ltgt in the test phase,
which have non-negligible distribution mismatch with Ltrans because of domain shift. The
distribution divergence may cause the policy network to fail to make the correct decision
in the test phase, thereby reducing the overall performance.

To address this problem, we added a target discriminator module, which uses vector
representations generated by the target encoder and a mean-pooling layer to classify
whether the input sequence is the translation version or the native target version, i.e.,

JD = − ∑
xS∈Ltrans

log p(0|xS; θadv)− ∑
xS∈Utgt

log p(1|xS; θadv) (7)

where θadv = {θd, θe}. We then seek the parameter θd of the target discriminator to minimize
JD, while simultaneously seeking the parameter θe of the target encoder to maximize JD
to adapt the target encoder to alleviate distribution divergence. In fact, we can leverage
the gradient reversal layer to update those parameters by gradient descent in an objective
function, i.e., the gradient reversal layer between target encoder and target discriminator
could reverse the gradient w.r.t. θe by multiplying it by −λ and passing it to the preceding
layer. Therefore, when we minimized the loss function JD of the target discriminator,
the parameter θd is updated to minimize JD, while the parameter θe maximized JD as a
result of the existing gradient reversal layer. In this way, we can optimize a single objective
function to achieve the adversarial training.

3.4. Optimization Strategy

The parameters in our approach were divided into two parts according to the opti-
mization strategy, θr for the RATS module and θ for the remaining parts, which included
the parameter θe for the target encoder, the parameter θy for the target classifier and the
parameter θd for the target discriminator.

Optimizing θr was formulated as a reinforcement learning problem solved by the
policy gradient method (Sutton et al. [24]). In detail, we first obtained an aspect-guided
reward R according to Equation (2). Then, the objective of learning θr maximized the
expected reward JR(θr) and the policy gradient w.r.t. θr was computed as follows:

∇θrJR(θr) = −
1
D

D

∑
i=1

N

∑
t=1
R∇θr log pπ(a(i)t |s

(i)
t ) (8)



Electronics 2021, 10, 270 9 of 14

where D denotes the number of training samples and N is the length of sentences.
For θ, we optimized it with back-propagation. In detail, we sought the parameter θe

to minimize JT and maximize JD, while simultaneously seeking the parameter θy and
θd to minimize their corresponding loss function. We can minimize JT and update the
parameter θy and θe by gradient descent. Likewise, we minimized JD and updated the
parameter θd and θe. Note that both involve the parameter θe, and we used λ (mentioned
in Section 3.3) as a hyper-parameter to balance the relative importance. Thus, we take the
sum of two loss functions as the final optimization objective, i.e.,

J (θ) = JT + JD (9)

During model training, θr is not updated in early stage, which means that the RATS selects
all tokens in the sentence sequence. When θ is optimized for several beginning epochs
until the loss over development set does not decrease significantly, we begin to optimize θe,
θy and θr simultaneously.

4. Experiment
4.1. Experimental Settings

• Data Settings. We conducted experiments on the SemEval 2016 Task 5 review dataset.
In order to evaluate our approach on the CLASC task, we treated English as the
source language, others as the target language and experiment on datasets from two
domains, i.e., restaurants and laptops. To test our model, we selected parts of samples
from the annotated samples in the target language as the test set and the rest as
unlabeled data. In order to alleviate the effect of unbalanced data distribution, we
discarded the samples with a neutral label and aspect categories, which contained
less than 20 samples. It is noted that we annotated the Chinese test data in the laptops
domain according to annotation guidelines of SemEval 2016, because there is no public
annotated Chinese corpus in the laptops domain. The statistics of datasets are shown
in Table 1.

• Model Details. We used pre-trained English BERT as the source classifier, i.e., teacher
classifier and fine-tune pre-trained BERT on the English dataset for ASC via construct-
ing the auxiliary sentence (Sun et al. [25]). For the target classifier, we achieved the
best results when L = 4 and tuned the hyper-parameters on the development set.
Specifically, we adopted the Adam optimizer with an initial learning rate of 1 × 10−5

for the target classifier, 1 × 10−6 for the target discriminator, 1 × 10−6 for the policy
network. λ was tuned to be 5 × 10−7 for target-sensitive adversarial learning. The
temperature T for cross-lingual distillation was tuned to be 6. The number of training
epochs, batch size and the dropout rate was respectively set as 10, 32 and 0.3. The
maximum length of the aspect and sentence inputs were set as M = 10 and N = 50,
respectively.

Table 1. Corpus statistics. Note that Asp denotes the number of the aspect category.

Languages Domain Positive Negative All Asp

Chinese Laptops 1205 819 2024 20
English Laptops 1430 923 2330 20
English Restaurants 1657 749 2406 12
Russian Restaurants 2533 626 3159 12
Spanish Restaurants 1926 674 2600 12

4.2. Baselines

• Machine Translation Baselines. We evaluated our approach against MT-based ap-
proaches in detail. MT-DAN (Chen et al. [16], 2018) translated the target-language
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test set into the source language and employed a Deep Averaging Network (DAN) for
CLSC. BERT (Devlin et al. [19], 2018) translated the source-language training set into
the target language and fine-tuning BERT based on a translated dataset for CLASC.
CLD-KCNN (Xu et al. [15], 2018) conducted cross-lingual distillation by constructing
pseudo-parallel corpora from the source and translation. Dual BERT (Cui et al. [26],
2019) leveraged cross-lingual attention mechanism to model interactions between
the source and translation. Since the input of all these approaches should be a single
sentence sequence, we concatenate the aspect and sentence sequence to generate a
single sequence.

• Cross-Lingual Transfer Baselines. We also compared our approach against cross-
lingual transfer approaches. ADAN (Chen et al. [16], 2018) leveraged bilingual rep-
resentations and language-adversarial training for CLSC. mBERT (Devlin et al. [19],
2018), i.e., multilingual version of BERT demonstrated the ability to perform cross-
lingual classification. AmBERT (Keung et al. [18], 2019) further improved the
cross-lingual performance of mBERT via language adversarial training. SL-mBERT
(Dong et al. [20], 2019) presented a robust self-learning framework for cross-lingual
classification. Cross-lingual transfer approaches achieve comparable performance to
MT-based approaches, which demonstrates the potential of multilingual representa-
tions for cross-lingual tasks.

4.3. Experimental Results

For comparison, we implemented several state-of-the-art approaches to CLASC as
baselines. Table 2 shows the performances of different approaches to CLASC. As seen from
the table, our proposed approach RTCLD outperforms all the baseline methods for the
CLASC task.

Table 2. The results of all the methods. The best scores are shown in bold.

Approaches
EN-SP EN-RU EN-CH

Acc F1 Acc F1 Acc F1

MT-DAN (Chen et al.) 0.796 0.736 0.772 0.707 0.763 0.702
CLD-KCNN (Xu et al.) 0.808 0.749 0.780 0.735 0.749 0.730
BERT (Devlin et al.) 0.830 0.801 0.790 0.775 0.758 0.757
Dual BERT (Cui et al.) 0.858 0.828 0.810 0.781 0.794 0.778
ADAN (Chen et al.) 0.826 0.747 0.806 0.776 0.765 0.740
mBERT (Devlin et al.) 0.816 0.753 0.770 0.728 0.747 0.734
AmBERT (Keung et al.) 0.828 0.784 0.790 0.752 0.781 0.767
SL-mBERT (Dong et al.) 0.842 0.790 0.818 0.769 0.794 0.769

RTCLD (ours) 0.878 0.838 0.822 0.798 0.803 0.799

In MT-based approaches, MT-DAN is a source-language classifier and back-translates
the test set from the target language into the source language. Back-translate approaches
for a cross-lingual task depend on machine translation tools during the test phase. BERT
is trained as a target-language classifier via translating the source training set into the
target language. Both of the above methods only construct monolingual classifiers without
any multilingual interaction. Dual BERT proposes a cross-lingual attention mechanism
to simultaneously model the training data in both source and target language to better
exploit the relations among different languages. We can see that Dual BERT achieved
an improvement of 2.8% (Accuracy) and 2.7% (F1) in EN-SP, 0.2% (Accuracy) and 0.6%
(F1) in EN-RU, 3.6% (Accuracy) and 2.1% (F1) in EN-CH compared with BERT, which
proves that it is beneficial to adopt a source language to improve the performance of ASC in
other languages. Although these approaches are all based on machine translation, RTCLD
significantly outperforms all the state-of-the-art approaches, which proves the significance
of considering domain shift and noise words in CLASC tasks.
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mBERT is another baseline that improves the performance of the cross-lingual task by
leveraging multilingual representations. The results show that mBERT is able to perform
cross-lingual generalization well and achieves an almost comparable performance to
MT-based methods, which proves that multilingual representations are also effective for
cross-lingual tasks. AmBERT leverage the addition of a language-adversarial task during
fine-tuning mBERT and achieved an improvement of 1.2% (Accuracy) and 3.1% (F1) in
EN-SP, 2.0% (Accuracy) and 2.4% (F1) in EN-RU, 3.4% (Accuracy) and 3.3% (F1) in EN-
CH. ADAN also leverages the adversarial language discriminator to achieve a significant
improvement compared with MT-DAN. Different from language adversarial learning, we
propose target-sensitive adversarial learning to alleviate a distribution mismatch between
the target and translation. SL-mBERT offers a robust self-learning framework to include
target-language samples in the fine-tuning process of mBERT. Based on the cross-lingual
prediction ability of mBERT, this elegantly simple framework had the best performance of
all cross-lingual transfer baselines.

We can also see that the performance of above the baselines varies on different target
languages, especially the cross-lingual transfer baselines. A possible explanation for this
is typological similarity. English and Chinese have a different order of subject, verb and
object, while English and Spanish have similar orders, and mBERT may have trouble
generalizing across different orderings.

4.4. Ablation Studies

In this section, we ablate important components in our model to explicitly demonstrate
its effectiveness. The ablation results are depicted in Table 3. As we can see that, RTCLD
w/o Adv reduces the performance without target-sensitive adversarial learning, suggesting
that it is beneficial to alleviate the distribution mismatch between the translation and target.
RTCLD w/o CLD which removes cross-lingual distillation also harms overall performance,
demonstrating that aspect-aware knowledge extracted from the source language can im-
prove the performance of the target classifier. Besides, RTCLD w/o RATS degrades the
performance significantly without a reinforced token selector, which means discarding
redundant token representations is beneficial to model aspect-aware representations.

To verify the effect of noise tokens on CLASC tasks, we conducted further experiments
and the results are shown in Figure 4. Most previous works (Sun et al. [25], Xu et al. [3] and
so on) treat aspect sentiment classification as a sentence-pair classification task. However,
when the sentence contains noise tokens, the performance of this approach will degrade
significantly. To illustrate this, we compared the results of two approaches, one of which
directly calculates sentence-pair representations and the other one calculates the represen-
tations of aspect and sentence separately, and then they adopt the transformer block and
pooling layer to generate the final vector representation. The results show that the latter
has better performance, which means that premature interactions between the aspect and
sentence will reduce the quality of token representations because of the noise tokens in
the sentence.

Table 3. The results of ablation studies. The best scores are shown in bold.

Approaches
EN-SP EN-RU EN-CH

Acc F1 Acc F1 Acc F1

RTCLD 87.8 83.8 82.2 79.8 80.3 79.9
RTCLD w/o Adv 85.6 (−2.2) 82.1 (−1.7) 80.6 (−1.6) 78.7 (−1.1) 78.1 (−2.2) 77.7 (−2.2)
RTCLD w/o CLD 86.2 (−1.6) 83.2 (−0.6) 81.2 (−0.1) 79.0 (−0.8) 78.7 (−1.6) 78.4 (−1.5)
RTCLD w/o RATS 85.8 (−2.0) 82.0 (−1.8) 81.8 (−0.4) 79.0 (−0.8) 77.8 (−2.5) 77.6 (−2.3)



Electronics 2021, 10, 270 12 of 14
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Figure 4. Comparison of models trained on sentence-pair input, separate input, and separate input
with RATS.

4.5. Error Analysis

We randomly analyze 100 error cases in the experiments, which can be roughly
categorized into 5 types. (1) 27% errors are because of the differences in expression. An
example is “太坑了(so bad)”. Our approach fails to understand “坑” means bad. (2) 24%
errors were due to negation words. An example is “the price is not cheap”. Our approach
failed to select the word “not” and incorrectly predicted positive polarity. This inspires us
to optimize our approach so as to capture the negation scope better in the future. (3) 21%
errors were due to implicit opinion words. An example is “I spent 2200 dollars on a “top of
the line laptop””. Our approach incorrectly predicted positive for aspect “price”. (4) 19%
errors were due to the wrong prediction for recognizing neutral instances. The shortage of
neutral training examples made the prediction of neutral instances very difficult. (5) Finally,
9% errors were due to the sentence being too long and the opinion word was truncated
when constructing the input.

5. Conclusions

In this study, we proposed a Reinforced Transformer with Cross-Lingual Distillation,
i.e., RTCLD approach for the CLASC task. Specifically, we adopted target-sensitive adver-
sarial learning to adapt target encoder to alleviate distribution mismatch and Reinforced
Aspect-guided Token Selector (i.e., RATS) to discard redundant token representations.
On the basis of RATS, we adopt the transformer block with cross-lingual distillation to
generate an aspect-aware representation. The experimental results show that our proposed
method outperforms several state-of-the-art baselines. To date, there are few studies that
focus on CLASC tasks, the main limitations for cross-lingual tasks are the scarce resources.
In fact, a large number of parallel corpora without annotations or a small number of
target language corpora with annotations are all beneficial to cross-lingual tasks. Unlike
document-level or sentence-level annotation, aspect-level annotation work is more difficult
and time-consuming, and detailed annotation specifications need to be developed. In our
future work, we intend to solve other challenges in aspect-level cross-lingual sentiment
analysis such as term-based cross-lingual sentiment classification and cross-lingual aspect
term extraction.
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