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Abstract: Point matching in multiple images is an open problem in computer vision because of
the numerous geometric transformations and photometric conditions that a pixel or point might
exhibit in the set of images. Over the last two decades, different techniques have been proposed
to address this problem. The most relevant are those that explore the analysis of invariant features.
Nonetheless, their main limitation is that invariant analysis all alone cannot reduce false alarms.
This paper introduces an efficient point-matching method for two and three views, based on the
combined use of two techniques: (1) the correspondence analysis extracted from the similarity of
invariant features and (2) the integration of multiple partial solutions obtained from 2D and 3D
geometry. The main strength and novelty of this method is the determination of the point-to-point
geometric correspondence through the intersection of multiple geometrical hypotheses weighted by
the maximum likelihood estimation sample consensus (MLESAC) algorithm. The proposal not only
extends the methods based on invariant descriptors but also generalizes the correspondence problem
to a perspective projection model in multiple views. The developed method has been evaluated on
three types of image sequences: outdoor, indoor, and industrial. Our developed strategy discards
most of the wrong matches and achieves remarkable F-scores of 97%, 87%, and 97% for the outdoor,
indoor, and industrial sequences, respectively.

Keywords: computer vision; correspondence problem; fundamental matrix; multiple view geometry;
point matching; trifocal tensor

1. Introduction

Point matching in two or more images is a very relevant and complex problem
in computer vision. It finds applications in robot navigation, 3D object reconstruction,
multiple-view tracking, and homography, among others. It basically consists of identifying
a set of points across several images. The problem definition is shown in Figure 1.

Due to the different points of view from which the images were captured, the corre-
sponding points might exhibit differences across the images. Such differences are mainly
due to the geometric transformations and photometric conditions determined by the con-
tinuous motion of both object and cameras [1]. In addition, it is possible to have different
textures and colors among the points whose correspondence is trying to be established.
Therefore, wrong matches are likely to arise and degrade the correspondence results.
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Figure 1. The point-matching problem in multiple views: determined a point r in I1, then we have to find the corre-
spondences in I2 and I3. 

The analysis of the invariant descriptors is considered the general approach to find 
point correspondence. By using invariant descriptors, you can resolve the 
point-matching problem by extending the methods commonly used in stereovision. 
Normally, the correspondence is determined from the points of interest (PoI) previously 
obtained by an algorithm able to detect the regions of interest (RoI) [2–4]. However, when 
the current saliency techniques [5–8] cannot detect the PoI, determining its matching pair 
or triplet into other images becomes a difficult task. In this case, the previously proposed 
methods cannot ensure proper correspondence because they are able to maximize their 
performance solely in the detected RoIs and not perforce in other regions. In addition, for 
image sequences exhibiting low signal to noise ratio (SNR), they will not work very well 
because of the false alarms [9]. For the above reasons, the problem of finding correct (or 
incorrect) matches is still an open problem in computer vision. 

This paper introduces an efficient point-matching method capable of filtering most 
of the wrong correspondences. In order to achieve this task, a proper combination of 
multiple partial solutions by means of an invariant and a geometrical analysis is pro-
posed. Graphically, once a point r in the image I1 has been determined, then the aim is to 
find the corresponding point in the image I2; indeed, only one possibility is correct. 
However, when an analysis of the characteristics is employed, other regions can also be 
candidates for such correspondence, for example, when the corresponding point is not 
appearing due to an occlusion. Before using a third image I3, to solve the problem it is 
necessary to consider that the correspondence for the first two images has been already 
solved. Since the method uses a perspective projection model that is object-independent, 
it is possible to determine the corresponding point’s position also in those views where it 
is occluded [10]. Most of the research in this area is focused on reducing the general error 
of control points, and selecting a stable subset of points, discarding a large part of partial 
solutions, which, although correct, are discarded in the final solution. Our proposal uses 
each of the partial solutions in a way that considers the error within the final solution. 
The main advantage of our proposal is to take advantage of partial solutions and weight 
them according to the error they have. The smaller the estimation error, the greater its 
final weight in the reprojection estimate. A preliminary version of this idea was pre-
sented in [11] but only for two views. In this paper, we generalize the problem by ana-
lyzing up to three images (Figure 1). 

The remainder of the paper is structured in five sections. Section 2 overviews the 
main concepts related to the multiple view analysis. Section 3 provides a comprehensive 
description of the proposed method. Section 4 presents the experiments and results ob-
tained. Finally, Section 5 concludes the paper and gives future work perspectives. 

  

Figure 1. The point-matching problem in multiple views: determined a point r in I1, then we have to find the correspon-
dences in I2 and I3.

The analysis of the invariant descriptors is considered the general approach to find
point correspondence. By using invariant descriptors, you can resolve the point-matching
problem by extending the methods commonly used in stereovision. Normally, the cor-
respondence is determined from the points of interest (PoI) previously obtained by an
algorithm able to detect the regions of interest (RoI) [2–4]. However, when the current
saliency techniques [5–8] cannot detect the PoI, determining its matching pair or triplet into
other images becomes a difficult task. In this case, the previously proposed methods cannot
ensure proper correspondence because they are able to maximize their performance solely
in the detected RoIs and not perforce in other regions. In addition, for image sequences
exhibiting low signal to noise ratio (SNR), they will not work very well because of the false
alarms [9]. For the above reasons, the problem of finding correct (or incorrect) matches is
still an open problem in computer vision.

This paper introduces an efficient point-matching method capable of filtering most
of the wrong correspondences. In order to achieve this task, a proper combination of
multiple partial solutions by means of an invariant and a geometrical analysis is proposed.
Graphically, once a point r in the image I1 has been determined, then the aim is to find the
corresponding point in the image I2; indeed, only one possibility is correct. However, when
an analysis of the characteristics is employed, other regions can also be candidates for such
correspondence, for example, when the corresponding point is not appearing due to an
occlusion. Before using a third image I3, to solve the problem it is necessary to consider
that the correspondence for the first two images has been already solved. Since the method
uses a perspective projection model that is object-independent, it is possible to determine
the corresponding point’s position also in those views where it is occluded [10]. Most of the
research in this area is focused on reducing the general error of control points, and selecting
a stable subset of points, discarding a large part of partial solutions, which, although
correct, are discarded in the final solution. Our proposal uses each of the partial solutions
in a way that considers the error within the final solution. The main advantage of our
proposal is to take advantage of partial solutions and weight them according to the error
they have. The smaller the estimation error, the greater its final weight in the reprojection
estimate. A preliminary version of this idea was presented in [11] but only for two views.
In this paper, we generalize the problem by analyzing up to three images (Figure 1).

The remainder of the paper is structured in five sections. Section 2 overviews the
main concepts related to the multiple view analysis. Section 3 provides a comprehensive
description of the proposed method. Section 4 presents the experiments and results
obtained. Finally, Section 5 concludes the paper and gives future work perspectives.

2. Background

Over the last 20 years, different methods for addressing the point-matching problem
have been proposed. Methods and techniques based on the analysis and optimization of the
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invariant descriptors [12–14], estimation of affine transformations/homographies/perspective
transformations [15–17], epipolar geometry analysis [18–20], optical flow-based methods [21,22],
and methods based on geometric and photometric constraints [4,23] are some of the approaches
already explored.

Overall, the abovementioned methods’ performance relates to the type of motion
the objects exhibit in a video sequence. For static scenes without any camera motion,
the problem is basically reduced to analyzing the epipolar geometry of the two images
using stereovision [24]. For dynamic images, if the objects are subjected to small displace-
ments, optical flow-based techniques have shown to be efficient at determining corre-
spondences [25]. However, if the objects undergo large displacements, the same optical
flow-based techniques will not perform well as they were not designed for such cases.

2.1. Problem Definition for Two Views

The geometric relationship between the two corresponding images is one of the most
studied topics in computer vision. The purpose is to determine correctly the geometric
relations of a point in the 3D space as well as its projections on the 2D planes (Figure 2).
The first step to be executed towards a solution is to find a set of point-correspondences
that represent the geometric relationships between the images [26].
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Figure 2. The epipolar geometry of an object in the 3D space and its projections in 2D planes.

Let P be a 3D point located at the upper corner of the 3D cube (Figure 2). We indicate
with C1 and C2 the optical centers of the cameras providing the two different viewpoints.
Let us assume that two images were captured from the optical centers C1 and C2 generating
images I1 and I2, respectively. Accordingly, if two rays are projected from points C1 and C2
to point P, two new points (indicated as r and m in Figure 2) are generated on the 2D plane of
images I1 and I2, respectively. This relationship determines that both rays intersect at point
P and that their projections can be safely placed on the I1 and I2 planes. In this way, r and
m belong to a projection of the point P generated from the optical centers (C1, C2). Ideally,
since both points were generated from point P, they are corresponding. On the contrary, if
the existence of point P is unknown, the existence of the correspondence cannot be assured.
This last situation usually happens in the point-to-point correspondence problems.

The fundamental matrix F is a conventional way to demonstrate the relationship
between r and m [18,27]. F contains the intrinsic geometry of the two views, named the
epipolar geometry. To determine F, certain knowledge on a minimum set of matching
points in both views is required [28,29]. This could be done with the NNDR (nearest
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neighbor distance ratio) algorithm for analyzing each feature descriptor for every point [30].
Formally, given a pair {r ←→ m }, where←→ indicates matching points, it always satisfies
the following epipolar restriction: mT·F·r = 0, where r = [x1, y1, 1]T and m = [x2, y2, 1]T

are in homogeneous coordinates. Nevertheless, this relation stands true for all the points
located at the intersection of the projection plane of C2 and I2 (Figure 2). Such intersection
generates a line called epipolar line [26]. Since point m belongs to the plane of C2, it can
be said that the epipolar line, in the second view I2, corresponds to the point r in the first
view I1. Accordingly, a bi-univocal relationship between the points r and m cannot be
determined using only one epipolar line, i.e., the position of m from r cannot be determined;
therefore, {r 7→ m}, where 7→ indicates a hypothetical match, that at least does fulfill the
epipolar restriction.

Let us now assume that r and m are corresponding points. As they belong to the
same plane, they are therefore located on the epipolar lines lr and lm. That is, lm·r = 0 and
lr·m = 0. In practice, both views’ measurements are not very precise, implying that the
epipolar lines and the corresponding points do not necessarily intersect. Mathematically,
this means that lm·r 6= 0 and lr·m 6= 0 [26]. The Euclidian distances, called dr and dm, in
which dr > 0 and dm > 0, reflect such error (see Figure 2).

To obtain correct projections, both distances dr and dm, should be minimal. For this
purpose, the distance between the real position of the point and the projected epipolar
line’s position should be minimized. In some cases, the error is caused by the optical
distortions related to the camera’s lenses or by additive Gaussian noise generated during
the acquisition step of the coordinates in correspondence, resulting in slight matching
errors that reduce the accuracy of the geometric projection model.

2.2. Problem Definition for Three Views

A three-view analysis allows the modelling of the geometric relations that take place in
the 3D space [31]. Figure 3 shows an example. Here, the relationship between the projection
of a 3D point and the three bi-dimensional projection planes is illustrated. The projection
of the point P on the I1, I2, and I3 planes produces the corresponding r, m, and s projections
in each image. The perspective projection model is valid for the point even in situations in
which the projection is not visible, either because the point is blocked or it is located out
of the field of view of the camera. The use of the matrix tensor called Trifocal tensor [26]
is thus needed to perform an estimation. One of the Trifocal tensor’s main advantages
is that it depends solely on the motion between the views and on the cameras’ internal
parameters. It is completely defined by the projection matrices of which it is constituted.
Moreover, the Trifocal tensors can be calculated by means of the correspondences of images
without any prior knowledge of the under-analysis object. Hence, the analysis can be
reduced to estimate the projection matrices error by using the set of correspondences in the
three views.

Formally, the trifocal tensor T = Trs
t is a 3 × 3 × 3 matrix comprising the relative

motion between the three views I1, I2, and I3 (see some examples in [26,32]). As mentioned
above, one of its most significant features is that, upon its estimation, it is possible to find the
position of a point s in the I3 plane by using the positions of the correspondences {r 7→ m}
of the first and second views, respectively, as depicted in Figure 3. The re-projection is
defined in terms of the r and m positions in homogeneous coordinates and of T, derived
from the first two tri-linearities of Shashua [33]. For such purpose, let s̃ be the Trifocal
tensor projection in the third view; s̃ is defined as s̃ = [x3, y3, 1] in homogenous coordinates.
Unfortunately, the estimation of s̃ is subject to an error determined by two causal factors:
(1) an incorrect choice relative to the set of correspondences or (2) a correspondence error
between the r and m pairs. Figure 3 does not illustrate the latter case; however, most of
the correspondences encompass that type of error. Even if the tensors are relatively stable
in the image sequences, as happens in the ideal case, however, there is always an error
between the hypothetical correspondence s and the re-projected point s̃. For simplicity, let
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us define the distance between these points as the Euclidian distance of the point, indicated
as ds and calculated as follows: ds = s̃− s.
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The process of estimating T ends typically with the reduction of some error metrics,
such as minimizing the distance ds from multiple random solutions or modelling the
error as a probability distribution. Anyway, for each estimation of T, there is only one
possible projection associated with each pair of correspondences {r 7→ m}. Assuming that
other random solutions are also valid, the ultimate goal will be to correctly estimate each
re-projection’s error. The error associated with each selection of T will be employed, later
in the process, in order to re-estimate the re-projection distances of point s in the third view,
similarly to the determined error of the distance to the epipolar line.

2.3. Research Justification

So far, methods for obtaining F and T have focused on using an error minimization
process to determine the best model as generated from a set of random pairs in correspon-
dence [34–37]. Such a minimization process normally takes place by using a consensus
sampling technique known as random sample consensus (RANSAC) [34], MLESAC’s
likelihood maximization by random sampling [35], and more recently by the ARSAC
method [36]. All these proposed methods, as well as the obtained improvements reported
in [37,38], have demonstrated to be efficient at finding the fundamental matrices and
trifocal tensors in computer vision problems.

In two views, the main purpose of the minimization process is to correctly determine a
single epipolar line with the aim of finding an optimum epipole [18,39]. Proposed methods
have been developed for situations in which there is an important number of wrong
correspondences. To reduce the selection of wrong correspondences, the random search for
hypotheses aims to determine the quality of each selected hypothesis [40,41].

A similar idea suggested by Sur et al. [23] proposes a point-matching method based
on the proper combination of photometry and camera geometry estimates in two views.
Nonetheless, the main difference with our method is that Sur’s is designed to find the
most consistent set and then estimate camera motion geometry in a way that improves the
RANSAC algorithm.

What happens when it is found a high number of correctly estimated correspondences
has not been addressed. Whether or not the best hypothesis can be considered, the only
solution has not been answered either. This work presents a new innovative method to
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determine the point-to-point correspondence in two and three views, so addressing these
two open questions.

3. Point-Matching Method Based on Multiple Geometrical Hypotheses

The estimation of F is strongly dependent on the set of correspondences employed.
For every set of correspondences, a new F is determined. Each set requires a minimum
number of corresponding points in the two views. Even if the fundamental matrices are
different, they all remain valid for |F| ∼= 0. The employment of multiple fundamental
matrices exhibits two main advantages: (1) every new F defines a new epipole position in
the planes I1 and I2. (2) The intersection between the epipole and the hypothetical point in
correspondence, r or m, creates a new epipolar line.

Considering these properties, the method herein presented proposes to select k subsets
extracted from the input matches. Formally, for each i ∈ [1, · · · , k], the i-th subset is defined
by the random choice of n corresponding points. According to Figure 4, the e12

i and e21
i

epipoles are defined as the intersection points between the baseline of optical centers C1
i

and C2
i and the I1 and I2 planes, respectively. Thus, for every image, there is an epipole

(not necessarily visible) in the plane. For the proposed model, as shown in Figure 4, it is
assumed that the point P is fixed.
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To illustrate the correspondence estimation process in two views, it will be further assumed
that there is always a corresponding point in the second view, once defined a point r in the
first view. Since such correspondence is unknown, it will be assumed that there are three
hypothetical corresponding points: m, n, and p. Figure 5 shows the first set of correspondences
in which the epipolar line lr1 intersects the points m, n, and p, in the plane I2.

Let Φ = {{r 7→ m}, {r 7→ n}, {r 7→ p}} be the set of known hypothetical correspon-
dences in the two views. If we intersect lr1 and lr2, both generated by two sub-sets of
correspondences different from each other, it can be clearly seen that the line lr

2 is con-
siderably far away from the correspondences n and p. Likewise, a third epipolar line lr

3
intersects the two previous ones at the point m, because the set of projected epipolar lines
of point r intersects only one corresponding point in the second view, which in this case is
the point m, thus generating a point pincel, namely, a point where multiple lines intersect
among them. Both images exhibit that effect, as shown in Figure 4.
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Although it seems that every new epipolar line determines an increase of the corre-
sponding point’s precision, actually there is no single intersection point due to the nature
of the corresponding points employed to formulate the perspective projection model, re-
sulting in an error in the estimation of each fundamental matrix. The main inconvenient
of estimating epipolar lines is the need to determine their error level. The error is clearly
not the same in all epipolar lines; hence, a method is required to determine the errors
associated with the Euclidian distance of each epipolar line.

Let define dm
i as the Euclidian distance between the m-th point of the second view and

the epipolar line lr
i , with r representing the r-th point of the first view for all i ∈ [1, · · · , k]

subset. The distance dm
i can be expressed by Equation (1):

dm
i =

∣∣mTFir
∣∣√

(Fir)
2
1 + (Fir)

2
2

(1)

where (Fir)c is the c-th component of the vector Fir. The primary goal is to determine
the correct pair of the set Φ or in plain words, so that to select the {r←→ m} pair and
consequently to discard the incorrect pairs {r 7→ n} and {r 7→ p}. Still, the estimation
error related to each epipolar line is unknown. To perform such estimation, the MLESAC
algorithm can be used [35]. The purpose of this method is to recalculate the Euclidian
distances dm

1 , dm
2 , and dm

3 weighting the error of each epipolar line. This procedure will be
described in the next section.

3.1. Multiple Trifocal Tensors

This section presents a similar analysis now considering three views. The use of four
or even more views does not necessarily increase the method’s performance, as it depends
on the application type in which the matching procedure is framed. Our belief is that
a third view is able to reduce the remaining false alarms since the probability that they
remain in their relative position in all three views is very low.

Again, the proposed framework uses the re-projection from the multiple projections’
estimation of potential matching features in two perspectives. We estimated the error to
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properly weigh the re-projected point’s distances in the third sight compared to the posi-
tions of hypothetical correspondences. A selection of random sets of corresponding features
is employed again to calculate each trifocal tensor’s solution. The RANSAC framework
would generally reject the intermediate results and consider a group featured by slightest
re-projection error. In this problem, a reduced estimation error is produced by the group of
corresponding random features. Hence, the algorithm can employ multiple valid set of
correspondences, obtained similarly to the estimation of several fundamental matrices.

Next, the estimation of the perspective projection model with three views is briefly
discussed. In the following Section 3.2, Figures 6 and 7 illustrate an application example
of the technique. Three sets of independent correspondences are considered. Each of
which produces the re-projection of the tensor in the third view (i.e., in the ŝ1, ŝ2, and ŝ3
positions). By extending the above example, for each i subset, the trifocal tensor Ti, for
all i ∈ [1, · · · , k] is estimated [26,28,42]. The univocal tensors, independent of each other,
are obtained, due to differences in the subsets’ selection. Assuming that the i-sets are
independent, the ŝi position is the re-projection of the Ti tensor obtained by re-projecting
the r and m correspondences’ positions.
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3.2. Error Compensation Using the MLESAC Algorithm

This section introduces the MLESAC algorithm [38] to calculate the error estimation
related to each fundamental matrix or trifocal tensor. MLESAC algorithm can reliably
determine the correspondences’ positions in multiple views. According to [35], MLESAC
works better than RANSAC, since it minimizes the likelihood error rather than maximizes
the correspondences number.

MLESAC represents an intermediate step in error estimation in our proposal, weight-
ing each error. The main advantage of MLESAC in error estimation is that the correct
correspondences are featured by high weight, unlike the RANSAC algorithm, which in-
cludes only the outliers in the cost function. MLESAC is designed to consider that the error
Li is a mixture of Gaussian and uniform distribution, where di represents the estimation
error of the fundamental matrix or trifocal tensor, for all i ∈ [1, · · · , k] subset such that
(Equation (2)):

Li =

(
γ

(
1√

2πσ2

)
exp

(
− (di)

2

2σ2

)
+ (1− γ)

1
ν

)
(2)

where γ is an adjusting parameter, ν is the deduced diameter of the search window used to
manage the false matches, and σ represents the standard deviation on the different coordi-
nates of the estimation error. Parameters γ and ν are unknown, but they can be calculated
using the E.M. algorithm [43], which estimates the parameters and the probability of a
putative selection to be either an inlier or an outlier.

Accordingly, the objective function minimizes the error log-likelihood, representing
the distance di of a point from the epipolar line (Figure 6) or between a subset of trifocal
re-projections (Figure 7). Three iterations are typically needed for the convergence. As
aforementioned, the MLESAC relies on the arbitrary selection of random solutions. Thus,
the estimation of the log-likelihood of the i-th hypothesis of each partial solution for
correctly weighting the real distance di. To perform this task, the values contained in the
log-likelihood vector L for all i ∈ [1, · · · , k] have to be re-scaled according to Equation (3):

S = |max(L)− Li|+ 1 (3)

where S is the vector that assigns more relevance to the lower values of the log-likelihood
vector L; for instance, when Li is a maximum, the result is one.

Conversely, when Li is a minimum, the result is a maximum. Partial log-likelihood
(Li) values are used in this estimate so that di is weighted according to the Equation (4):

d̃i = di

(
Si

∑k
i=1 Si

)
(4)

where d̃i is a weighted distance considering the error associated with each i-fundamental
matrix or trifocal tensor. Equation (4) allows weighting and re-estimating the distance from
the epipolar lines taking into account the log-likelihood of projection error compared to a
group of supposed points in the second or third view.

The error estimation allows suitably weighing the di distances, increasing or decreas-
ing it as a function of the error magnitude. Hence, to detect a correspondence, it is needed
to obtain the distance to the set Φ. In the end, for determining a correspondence of point r
belonging to the second view (as shown in Figure 5), Equation (5) must be satisfied:

{r↔ ∗} =
{

m i f d̃i < ε

@ otherwise
(5)
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where {∗} ∈ Φ = {n, m, p}. For three views, Equation (6) must be satisfied:

{r↔ m↔ ∗} =
{

si i f d̃i < ε

@ otherwise
(6)

where {∗} ∈ Φ = {s1, s2, s3} and ε is a length expressed in pixels. The final result
determines the points that must be discarded and thus, obtains the corresponding points.
Figure 5 shows an example of the error estimation discard procedure. Note how points n
and p are discarded from the correspondences set (Φ). Specifically, the multiple geometric
correspondence (MGC) filter block is responsible for re-estimating the distances. For
instance, once point m has been chosen, only the {r↔ m} combination is possible. The
resulting pair of correspondence represents the starting point for the elaborations in the
third view for correspondence detection.

The proposed methodologies, named Bifocal Geometric Correspondence (BIGC) for
two perspectives detection and Trifocal Geometric Correspondence (TRIGC) for three
perspectives detection, are described below in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Bifocal Geometric Correspondence (BIGC) algorithm

Input: Set the matching candidates in two views
Output: Set the wrong matches filtered out in two views

1. Determine n corresponding points in two views. Pairs are estimated either manually or
automatically using correspondences’ analysis, such as the Scale Invariant Feature
Transform (SIFT) [13] or Speeded Up Robust Features (SURF) [12] methods.

2. Determine k fundamental matrices Fi, from k subsets of corresponding points, where
i ∈ [1, · · · , k]. Each i subset is composed of multiple corresponding points depending
on the algorithm used to estimate F.

3. Determine the epipolar line lr
i passing for point r inside the second view.

4. Using MLESAC, determine the error associated with each epipolar line lr
i and

re-estimate the real distance d̃m
i of supposed correspondence from the epipolar line.

5. Set the correspondence to the point m subject to d̃m
i < ε for all m ∈ Φ, where Φ is the

set of hypothetical correspondences.

Algorithm 2: Trifocal Geometric Correspondence (TRIGC) algorithm

Input: Set the matching candidates in three views
Output: Set the wrong matches filtered out in three views

1. Determine n corresponding points in three views. Triplets are estimated either off-line
or automatically using correspondences’ analysis; for instance, with SIFT [13] or
SURF [12] methods.

2. For the first and second views, use the BIGC algorithm for determining the pairs of
point-to-point correspondence.

3. Determine k trifocal tensors Ti, where i ∈ [1, · · · , k]. Each i-subset encompasses
multiple corresponding points depending on the algorithm used to estimate T.

4. Determine the re-projection of Ti for each pair resulting from step 2.
5. Using MLESAC, the error related to each trifocal tensor is determined, and the distance

d̃
s
i between the supposed correspondence and the projected position is re-estimated.

6. Set the correspondence to the point s provided that the restriction d̃s
i < ε is fulfilled for

every pair {r↔ m↔ ∗}.

3.3. Criterion Discussion

The proposed method encompasses two steps: (1) correspondence based on invariant
descriptors in multiple views, and (2) point-to-point correspondence using epipolar geom-
etry and trifocal tensors relying on the correspondences identified in the first step. Both
techniques are well known for their high performance. Step (1) is needed to describe the
perspective projection model of the step (2). Therefore, the procedure is to use previously
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detected corresponding points to produce the geometric transfer model without knowing
the camera’s parameters. Such estimation normally employs a reliable correspondence
detection method for minimizing the re-projection error in the subsequent views [34,35,44].

Overall, most methods reported in the literature attempt to find the correspondence
subset generating the smallest re-projection error. Such methods determine each random
subset’s error and select the one obtaining the slightest error of all the analyzed subsets
after a given iterations number. Multiple intermediate solutions containing errors over the
set minimum are naturally discarded. This condition is reasonable in situations in which
many incorrect correspondences, and thus large errors are present. However, supposing a
high percentage of the correspondences, intermediate errors can exhibit values near the
minimum error and, thus, there is no justification for rejecting those solutions.

Therefore, our method uses the best solutions, namely, the best solution and subse-
quent solutions (featured by errors very close to the minimum), improving the geometric
projection model’s performance. The set of best solutions improve the main constraint of
epipolar geometry and the trifocal tensor in two and three views, respectively.

4. Experimental Results

The present section presents a set of experimental results obtained with sequences of
images in two and three sights for demonstrating the feasibility of the proposed method [45].
The carried-out experiments were divided into three categories: outdoor, indoor, and in-
dustrial pictures. The first category included a group of 10 stereo images, mainly involving
landscapes and walls. For the second, a set of nine stereo images depicting sample objects
under ideal illumination conditions generated in [46] were analyzed. For the latter, a set of
120 images of bottlenecks with manufacturing faults generated in [47,48] were used.

Two standard indicators, recall r and precision p, were considered for the experi-
ments [49], defined as reported in the Equation (7):

r =
TP

TP + FN
p =

TP
TP + FP

(7)

where TP represents the true positives number (i.e., the correctly classified correspon-
dences), whereas FN is the false negatives number (i.e., the real correspondences not
identified by the method), and FP is the number of the false positives (i.e., the correspon-
dences incorrectly classified). These two indicators were integrated into a single measure,
the F-score, [49] (Equation (8)). Even when there are different types of performance score,
we consider that the F-score is the most robust for this type of analysis, since it allows us
to evaluate the combination of a correct prediction, and at the same time to introduce the
errors made by a poor projection. For this reason, finding a value close to the optimum is
generally difficult to obtain, which is effective for our analysis.

F_score =
2·p·r
p + r

(8)

Ideal results should exhibit r = 100%, p = 100%, and F-score = 1.
According to the method introduced in Section 3, we first evaluated the influence of

parameter i, where i ∈ [1, · · · , k], when the solutions number is changed. Next, we assessed
the influence of the Euclidian distance ε. Both parameters can be modified in combination.
For such purpose, we separated the analysis by independently varying each one of them.
As described above, the number of fundamental matrices F is increased by the parameter
i changes, along with the trifocal tensors T for two and three perspectives, respectively.
In addition, the Euclidian distance of the fundamental matrix from the position of the
corresponding hypothetical point is determined by the parameter ε (the case of two views,
Figure 6) as well as the re-projection of the T tensor and the hypothesized correspondence
(the case of three-pictures detection, Figure 7). As determined identifying a novel solution
of the resulting geometric problem of the two and three sights involves redefining a new
geometric solution, thus shrinking the research space for a correspondence.
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Different results were obtained for two and three views due to two reasons: (1) in two
perspectives, the distance of each epipolar line from the supposed point was determined. (2)
In three sights detection, the distance ε from the point re-projected by the tensor was defined.
Recall that, for the latter case, the re-projection on the third sight requires correspondence
in the first two views.

The mean performance of the image set was considered for all the experiments.

4.1. Outdoor Image Set

This set encompasses ten image pairs with a resolution of 1200 × 800 pixels. They are
obtained by common geometric transformations, such as perspective, translation, rotation,
and different degree scale (Figure 8). The set includes walls and landscapes in natural
lighting settings exhibiting many regions of correspondence.
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In Algorithm 1, the first step determines the k-sets of corresponding pairs. This process
was carried out using the SURF algorithm [12], from which the best i-sets with the minimum
projection error in accordance with the MLESAC estimator were selected. To properly
evaluate the algorithm performance, 300 corresponding points in multiple locations inside
each pair of images were selected. The accuracy of the algorithm at determining the
correspondence upon the variation of the i ∈ [1, · · · , 14] and the ε ∈ [0, · · · , 10] parameters
were then assessed. For the latter, values were rounded. The results of the above-described
analysis are presented below.

In the first case, the influence of parameter i while keeping ε fixed was analyzed.
Figure 9a shows that the best performance achieves an F-score = 0.97 at a discretized
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distance ε = 0 by intersecting three fundamental matrices, that is i equal to 3. Note that,
as ε increases, performance drops. This result is a clear indication that the method is
particularly accurate, because there is a significant number of correspondences that have
a low error, and the combination of these allows obtaining a corresponding point with
high precision.
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In the second case, the influence of parameter ε while keeping the number of solutions
i fixed was analyzed. Results show a maximum performance at i = 3. Conversely,
an increase in this value determines the projection error’s growth, thus decreasing the
method performance.

Remember that numerous correspondences are detected in the analyzed sequence
despite the geometric transformations in them. Therefore, the results show the proposed
model can use and estimate the perspective projection model in two sights with high
precision with subpixel resolution. According to the performance shown in Figure 9b, after
i = 4, it is evident that no improvements in the performance are obtained for ε > 4.

4.2. Indoor Image Set

The second test considers a set of nine stereo sample images featured by 600 × 900
pixels resolution, generated in [46] (Figure 10). This set resulted by changing the points of
view, rotating each object on its vertical axis. Therefore, the number of detected elemental
correspondences is reduced, and also, these lasts are more closely distributed in each pair
of pictures. As in the outdoor image set, 300 corresponding points in multiple locations in
each image couple were detected using the SURF algorithm.

The same procedure was followed: the results for the variations of parameters i and ε
were determined. In the first case, the influence of parameter i while keeping ε fixed was
analyzed. Figure 11a shows that the method produces a maximum for i = 11; however,
from i = 4, the performance tends to stabilize considering a value ε > 0. Figure 11b
indicates that using a single fundamental matrix (i = 1) causes low performance (60%).
In contrast, using multiple solutions, an improvement in performance from 20% to 25%
is achieved.
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4.3. Industrial Image Set

The third and last set includes 120 sequences of faulty bottlenecks images with low
SNR generated in [47] (Figure 12). Each sequence comprises three pictures with an axial
angle of rotation α = 15◦. From the captured images, 1000 × 250 pixels sub-images were
extracted. The elemental correspondence was detected employing markers outside the
object in accordance with the object’s motion. Point-to-point correspondence detection
aimed to identify the trajectory of multiple errors in the sequence, for determining the
bottle quality in an inspection process featured by multiple views.
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4.3.1. Evaluation According to the Number of Partial Solutions

Now, we consider the results of two and three views separately, shown in Figure 13a
and Figure 13b, respectively.

(1) Two views: Results indicate that the F-score directly depends on the increase of param-
eter i, becoming stable at i = 9. Regarding the influence of parameter ε on the F-score,
an improvement of performance is achieved as the distance between the epipolar line
and the corresponding point increases. Further, note that the performance stabilizes
after ε = 3. These results imply that a better performance can be obtained when the
i = 9 combination is used and when the distance to the corresponding point is ε = 4.

(2) Three views: Unlike the two-view case, the best performance was obtained when
a discretized distance ε = 0 was employed. Similarly, to the two views, the i = 9
combination is repeated. Results indicate that at ε = 0 a trifocal correspondence
with an F-score = 0.97 is obtained. Note that the method performance decreases as
the parameter ε increases. This behaviour is in antithesis with that obtained in the
two-view case. This is because the method in three views does not use the intersection
of lines, but the reprojection of a coordinate in a third view. For this reason, the greater
the distance ε, the performance decreases, since the precision of the reprojection
method is high.
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4.3.2. Evaluation According to the Re-Projection Distance

In the previous evaluation, parameter i was varied to determine its influence on the
performance of the system of correspondences. In this case, the influence of the distance ε
while keeping parameter i fixed was evaluated. Due to the significant number of resulting
curves, Figure 14 shows only the odd numbers of parameter i. Results for two (Figure 14a)
and three views (Figure 14b) are summarized as follows:

(1) Two views: the obtained results agree with the discussion above reported concerning
the number of intermediate solutions. For i = 1, i.e., only one epipolar line is used, a
maximum F-score of 0.78 is obtained for a distance of four pixels. For ε = 4 and i = 5,
performance increases to an F-score = 0.87. Taking ε = 4 and using i = 5 combination,
allows a performance increase to an F-score = 0.87. Finally, for nine combinations, the
maximum performance, corresponding to an F-score = 0.91, is obtained.

(2) Three views: a significant difference between using single trifocal tensor respect to the
multiple trifocal tensors is observed. For instance, considering a single trifocal tensor
(i = 1), the maximum performance is achieved for a distance of six pixels resulting
in an F score equal to 0.95. Conversely, when using nine combinations, an F-score =
0.97 at a discretized distance ε = 4 is obtained. The latter result indicates the validity
of the proposed method by using a combination of multiple intermediate solutions.
The more significant false alarms number is ascribable to the discrepancy of the
performance between two and three-sights detection. Two views detection achieves
a greater false alarms number compared to the three views detection. This occurs
because, in two views, the process requires the intersection of multiple epipolar lines.
In the case of three views, a reprojection is carried out, which uses more information
from the control points, and thus its estimation error is lower.
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4.3.3. Results Discussion and Performance Comparison of the Developed
Point-Matching Methods

A popular way to find correspondences is utilizing similarity over a set of feature
descriptors. The NNDR criterion [13] is commonly used for such purpose. The idea behind
NNDR is that each invariant descriptor can be found in other perspectives with high
probability. Its main limitation is that it can filter out many potential matches; some of
them correct matches. For most applications, this limitation is acceptable. However, to
fairly compare our algorithm with NNDR, we evaluated the universe of matches filtered
out versus the set of real ones.
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Table 1 compares the performances obtained between NNDR, and the proposed BIGC
and TRIGC. Note that NNDR achieves the lowest performance as it filters out many correct
matches. Our proposed BIGC and TRIGC methods outperform NNDR using a combination
of feature descriptors and geometrical analysis.

Table 1. Performance comparison between NNDR, BIGC, and TRIGC methods: real matching set.

Method Indoor [%] Outdoor [%] Industrial [%]

NNDR 77 75 82
BIGC 87 97 91

TRIGC N/A N/A 97

It can be therefore concluded that the use of multiple hypotheses improves the original
matching criterion reducing the set of false alarms. As we mentioned in the previous
discussion, the advantage of our proposal lies in the use of multiple partial solutions,
which in combination allow to obtain a significant improvement in the correspondence
of multiple points. This is especially reflected in images of the outdoor and industrial
scenarios, obtaining 97% and 91% in a sequence of two images, respectively, by means of
developed BIGC algorithm (Table 1). In the case of three images, the method uses as input
the matching between pairs of images. Given that high performance obtained with the
BIGC algorithm, we have obtained an F-score equals to 97%.

Figure 15 shows the method’s best performance using the optimum value of ε as
function of the parameter i. Note that from five combinations (i = 5) using three views,
zero pixels remain the optimal distance. This plot’s results agree with those previously
presented; both for two and three views, the best performance is reached for i = 9.
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5. Conclusions

This paper has reported a new method for detecting point matching based on the
intersection of different geometric hypothesized solutions in two and three perspectives.
A major contribution of the proposal is that, for each perspective projection model, it
determines the real distance from the corresponding point using the MLESAC estimator,
weighting the error associated to each intermediate solution.
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The main novelty of the proposed approach is the geometric methodology to deter-
mine the point-to-point correspondence regardless of (1) the viewpoint differences of the
objects present in the images and (2) the geometric/photometric transformations in them.
The proposed algorithms are named Bifocal Geometric Correspondence BIGC and Trifocal
Geometric Correspondence TRIGC for the correspondence detection in two and three
sights, respectively.

The developed method has experimentally demonstrated the feasibility of using
fundamental matrices to find corresponding points in two views. For points that can
be occluded in subsequent views, the method shows that their positions remain valid.
The method suggests that the proper use of multiple random solutions improves the
correspondence performance. Taking the set of points of a previous correspondence,
the method calculates fundamental matrices Fi and trifocal tensors Ti to maximize the
correspondences in specific regions of each image.

For experimental validation, three sets of images were used: indoor, outdoor, and
industrial images. For outdoor and indoor images, we have used a correspondence through
the SURF’s invariant features with the purpose of obtaining multiple geometric solutions in
two views [10]. The experimental results obtained with these sets have demonstrated that
the BIGC algorithm allowed to determine the point-to-point correspondence very precisely:

(1) For outdoor images, with a performance F-score = 97% in stereo images and at a
discretized distance ε = 0 pixel.

(2) For indoor images, with a performance F-score = 87% with i = 11 by using a distance
of ε = 2. The lower F-score in indoor images is partially resulting from the lower
dispersion of correspondences in the pairs of images.

For the industrial images, the base correspondence was established according to the
relation of external markers that comply properly with the object motion. The TRIGC
algorithm exhibited the best performance with an F-score = 97% at a discretized distance
of ε = 0 pixel in a sequence of three views implying that the correspondence has a
subpixel resolution.

For all the images considered in this scientific article, it was demonstrated that the
point-to-point correspondence could be obtained through a multiple geometric relation
between two or three views, regardless of the base method of correspondence used.

An interesting feature of our proposal is that it can be used in sequences of images
exhibiting low SNR. Traditional invariant algorithms do not achieve good performance
in these cases due to the appearance of many false alarms. Our method can actually
solve this problem thanks to its geometric background, as widely illustrated in the set of
industrial images.

Future work is related to this last point. Our method is currently being adapted to
serve as a support tool for industrial control in the mining industry [50,51], especially in
the inspection and follow-up of faults in image sequences.
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