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Abstract: While digital predistortion (DPD) usually targets only the linearity performance of the
radio–frequency (RF) power amplifier (PA), this work addresses more than a single PA performance
metric exploiting a multi-objective optimization approach. We present a predistorer learning pro-
cedure based on a constrained optimization algorithm that maximizes the RF output power, while
guaranteeing a prescribed linearity level, i.e., a maximum normalized mean square error (NMSE) or
adjacent-channel power ratio (ACPR). Experimental results on a Gallium Nitride (GaN) PA show
that the proposed approach outperforms the classical indirect learning architecture (ILA), yet using
the same predistorter structure with predetermined nonlinearity and memory orders.

Keywords: digital predistortion; multi-objective optimization; power amplifier; linearization techniques

1. Introduction

Digital predistortion (DPD) is a widely used technique to improve the linearity perfor-
mance of a power amplifier (PA) at radio–frequency (RF), and it is increasingly becoming a
fundamental part of the RF transmitting system. In recent years, more advanced PA topolo-
gies are being adopted for improved power efficiency, e.g., load- and supply-modulated
PAs, or PA arrays, which inevitably introduce higher levels of distortion [1–6]. More-
over, PAs for microwave and millimeter-wave applications are nowadays implemented
in Gallium Nitride (GaN) technology, which is affected by spurious dispersive phenom-
ena causing peculiar behaviors like soft compression and long-term memory effects [7–9].
Indeed, the continuous push for broadband operation will incrementally expose to the
presence of nonlinear dynamic effects [10]. Hence, novel PA modeling and linearization
approaches must be envisioned [11–15].

In particular, DPD model formulation and coefficient identification techniques play a
key role in the overall performance of the transmitter. Two main measurement-based iden-
tification methods are commonly adopted: the indirect learning architecture (ILA) [16,17]
and the direct learning architecture (DLA) [18]. In the ILA, shown in Figure 1a, a postin-
verse model of the PA is identified, and its coefficients are then copied for the predistorter.
This method, which leverages on a straightforward linear least-square estimation, is based
on the assumption that the postinverse model of the PA is identical to its preinverse [19].
In the DLA, shown in Figure 1b, the predistorter is directly identified from PA stimulus–
response pairs. In this case, the identification of the preinverse is obtained from a prelimi-
nary identification of the forward PA model, and from the subsequent model inversion.
However, given the presence of nonlinear dynamic effects, such identification is often not
trivial. In fact, the forward model inversion is usually achieved by means of nonlinear
optimization algorithms [18].
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Figure 1. Block diagram for digital predistortion using (a) Iterative Learning Architecture (ILA) and
(b) Direct Learning Architecture (DLA).

Both DLA and ILA architectures can also be implemented using adaptive iterative
procedures involving multiple acquisitions, which might allow for the convergence to
an improved set of DPD coefficients [20,21]. In this context, it is worth mentioning an
alternative architecture referred to as iterative learning control (ILC) [22,23]. With ILC,
the optimum predistorted signal is obtained at first (Figure 2a), while the identification of
the actual parametric predistorter is performed in a subsequent step (Figure 2b). The first
step involves the iterative identification of the predistorted signal in a non-parametric
way, meaning that the algorithm does not directly target the DPD coefficients but the
optimum input signal realizing the desired output. Despite requiring an increased number
of measurements (one for each iteration), this approach allows for a model-independent
solution. In the second step, the DPD coefficients can be eventually identified from the
optimal input signal.

Figure 2. Block diagrams for DPD by Iterative Learning Control (ILC). (a) Identification of the pre-
distorted signal (non-parametric) through iterative optimization; (b) DPD coefficients identification
(parametric) using the optimum predistorted signal.
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For all the mentioned architectures, the learning procedure only accounts for one
single figure-of-merit (FoM), i.e., a linearity FoM, usually the time-domain normalized
mean squared error (NMSE) between the actual and desired output signals. Indeed, these
architectures can be generally seen as implementing unconstrained optimization, NMSE
minimization being the only target. Indeed, this classical approach allows for operating lin-
early yet under deeper compression (i.e., with higher power efficiency), already enhancing
the overall PA behavior with respect to the un-predistorted case. However, there is no
guarantee that DPD will actually result in the best global PA performance achievable for
the specifications of a given modulation standard. For example, there is no controlled way
to limit the linearity performance up to a prescribed and sufficient level, although such a
control would be useful to make room for maximizing another PA FoM of interest, e.g., the
RF output power or power efficiency. In this context, it is reasonable to assume that multi-
objective optimization approaches could deliver a better compromise among the conflicting
PA specifications.

In this work, we propose a novel DLA-based DPD identification approach aimed at
optimizing one (possibly, more than one) PA FoM, yet respecting a constraint. To this
aim, we adopt the general architecture in Figure 3, leveraging on an iterative optimization
routine. In particular, we implement a flexible constrained optimization algorithm capable
of steering the learning process towards the desired joint optimum. This work is among
the first ones [24–26] using multi-objective optimization for coefficients identification,
while keeping a predetermined pre-inverse formulation and fixed model order.

Figure 3. Block diagram for DLA-based DPD using an iterative nonlinear optimization.

The article is organized as follows: Section 2 describes in detail the proposed multi-
objective algorithm. Section 3 reports the implementation of the algorithm in the case
of a constrained optimization, showing the linearization of a GaN PA by maximizing
the RF output power (hence, efficiency), yet respecting a prescribed linearity constraint.
Conclusions are drawn in Section 4.

2. Multi-Objective DPD Optimization

Let us consider a predistorter to be implemented with a generic linear-in-the-parameters
model. Labeling ỹ(n) and x(n) as the input and output respectively (Figure 3), the generic
predistorter structure can be expressed as

x(n) =
P

∑
p=1

φphp[ỹ(n), ỹ(n− 1), . . . , ỹ(n−M)], (1)

where φp are the model coefficients and hp are suitable non-analytic functions of the past
values of the complex signal ỹ(n), up to a memory duration M. The specific form of each
function is fixed by the adopted model structure, with multivariate polynomials being
particularly used in DPD applications [17]. As the nonlinear functions are pre-determined,
the model can be fully identified once the coefficients φp are known. In this respect,
Equation (1) can be recast in matrix form as

x = Hφ, (2)
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where the following vector notation is introduced:

x def
=
[
x(n) x(n− 1) . . . x(n− N)

]T ; (3)

φ
def
=
[
φ1 φ2 . . . φP

]T ; (4)

H def
=
[
hk,l
]
= hl [ỹ(n− k), ỹ(n− k− 1), . . . , ỹ(n− k−M)];

k = 0, . . . , N
l = 1, . . . , P.

(5)

Differently from the ILA approach, in which Equation (2) is directly solved for the
coefficients of the postdistorter from the input–output measurements, the strategy adopted
in this work leverages on a DLA identification of the coefficients in order to jointly optimize
different performance metrics. Indeed, for the PA under test, all of the FoMs of interest
are a function of the applied input signal x(n) and, ultimately, for a fixed reference ỹ(n),
depend just on the predistortercoefficients φ through Equation (2).

Multi-objective optimization techniques have the goal of identifying Pareto-optimal
solutions for φ [24], in which no single objective can be improved without making at least
another objective worse. This type of trade-off is commonly encountered in PA design,
as an increase in linearity due to predistortion is usually accompanied by a reduction in
the output power.

In this framework, standard DPD approaches can be seen as optimization of just a
single linearity FoM, without taking explicitly into account output power or other (e.g.,
efficiency) metrics. Instead, in this work, we address the case where two objective functions
f and g correspond to two conflicting PA specifications which are to be jointly optimized.
In particular, we take g to represent a waveform linearity constraint while f corresponds to
another conflicting performance metric, such as output power.

The general multi-objective optimization problem can be equivalently recast as a series
of successive constrained optimizations [27], in which a single objective is maximized using
standard methods, while fixed constraints are imposed on all the other objectives. In this
case, f (φ) is taken to be the objective function to be maximized, and g(φ) as the constrained
one. Then, the following optimization problem must be solved:

max
φ

f (φ) subject to g(φ) < η (6)

where η is a scalar quantity, representing the maximum allowable value for the constraint g.
The solution to this problem explores just a single trade-off point between the two FoMs of
interest. The full Pareto front of optimal solutions can then be explored by increasing or
reducing the value of η and running the corresponding constrained optimization, in order
to reconstruct the compromise between the two metrics under examination.

The constrained optimization algorithm proposed in this work for the solution of (6)
is depicted in the flowchart in Figure 4. As a first step, if the constraint is not satisfied
(g(φi) < η), an optimization direction Dg (relevant to the constraint g) must be obtained
to resolve the next iteration.

In the proposed algorithm, the calculation of Dg follows the first step of the ILC
approach by minimizing the instantaneous complex error between the (scaled) desired
signal ỹ and the measured output signal y:

ei = ỹ
max{yi}
max{ỹ} − yi. (7)

Such a minimization can be achieved by an iterative procedure based on the Newton’s
method [22], where the optimized PA input at the ith iteration is found as:

xi+1 = xi + Γiei (8)
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where Γi is a matrix containing the values of the instantaneous gain for each acquired
sample Gi(n) =

yi(n)
xi(n)

:

Γi =


Gi(1) 0 0 0

0 Gi(2) 0 0

0 0
. . . 0

0 0 0 Gi(N)


−1

. (9)

Start

Evaluate f (φi), g(φi)

g(φi) < η

Calculate constraint descending direction Dg

Calculate next candidate φi+1 = φi + λgDg

Evaluate constraint g(φi+1)

g(φi+1) < g(φi)

λg = λg/2

Calculate objective ascending direction D f

Calculate next candidate φi+1 = φi + λ f D f

Evaluate f (φi+1) g(φi+1)

f (φi+1) > f (φi) & g(φi+1) < η

λ f = λ f /2

Exit conditions verified?

φi = φi+1

Stop

no
yes

no

yes

no

yes

no

yes

Figure 4. Flow chart of the constrained optimization algorithm exploited for DPD.

The gain matrix in (9) represents a first-order approximation of the Jacobian matrix as
required by the Newton’s method. However, other choices for Γ could also be adopted,
e.g., a fixed value matrix or a finite-difference approximation of the Jacobian. While the
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former could provide a more stable convergence of the iterative procedure, the latter
could speed-up the algorithm at the cost of an higher number of function evaluations (i.e.,
measurements) at each iteration, necessary for the calculation of the finite differences.

In this work, differently from the classical ILC, Dg should be defined with respect to
the coefficients φ. Then, we express the φ in terms of x and H by inverting the matrix form
in (2), obtaining

φ = H†x; with H† = (H+H)−1H+ (10)

H† being the pseudoinverse of H. By substituting this expression in (8), the formula for the
ith iteration and the relative direction results in:

φi+1 = φi + λgDg; Dg = H†Γiei, (11)

where the step size λg ∈ [0, 1] is bisected until the constraint function g is improved,
i.e., g(φi+1) < g(φi). The progressive reduction of λg avoids overshoots, while improving
the verification of the constraint. As soon as the constraint is satisfied, the next iteration
goes towards the maximization of f .

For this second function, the optimization is based on a gradient descent:

φi+1 = φi + λ f D f ; D f = ∇ f (φi), (12)

where the gradient, corresponding to the optimization direction D f , is obtained by mea-
suring a finite-differences approximation. The choice of a gradient-based approach for
targeting the optimum allows for the maximum convergence speed in terms of number
of iterations. However, it should be noted that estimating the partial derivatives requires
two function evaluations for each complex DPD coefficient to be optimized. Therefore,
an excessive number of DPD coefficient might offset the relatively low number of iterations.
In Equation (12), the step size λ f ∈ [0, 1] is bisected until f improves, i.e., f (φi+1) > f (φi),
provided that the constraint remains valid. Indeed, depending on the regularity of the
function to optimize, the gradient descent might not always identify the optimum direction.
Hence, the progressive reduction of λ f drives the method to a smoother convergence,
while avoiding excessive oscillating behavior.

As far as the practical evaluation of the achieved optimum is concerned, it should
be noted that the considered optimization aims at finding the maximum point of an
unknown, possibly non-convex function. In this case, the definition of the stopping criteria
is not trivial, considering that it is not possible to define a precise metric measuring
the degree of global optimality [28]. Given these premises, the following approach is
followed. As long as f is improved and g < η satisfied, the algorithm evaluates a tolerance
threshold | f (φi+1)− f (φi)| ≤ ftol. When exceeded, this threshold indicates that no further
improvement is available for f , triggering the exit condition. Possible additional exit
conditions, which can be combined with the main one, include reaching a maximum
number of iterations (Nmax

i ) or function evaluations (Nmax
f ).

3. Measurement Results

While many different trade-offs could be considered [24], in this work, we have chosen
the PA average RF output power and the linearity as conflicting FoMs. The average RF
output power will correspond to the function to be maximized ( f ):

P̄OUT =
∫

BW

|Y( f )|2
2RL

d f (13)

where BW is the signal bandwidth, Y( f ) is the spectrum of the measured output signal,
and RL = 50 Ω is the matched-PA load resistance. The linearity constraint (g) will be
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weighted by imposing a maximum limit to one of the following FoM, i.e., the Adjacent
Channel Power Ratio (ACPR), or the NMSE:

ACPR =

∫
SB |Y( f )|2d f∫
BW |Y( f )|2d f

; NMSE =
∑n |G̃ỹ(n)− y(n)|2

∑n |G̃ỹ(n)|2
; (14)

where SB stands for side-band, G̃ỹ(n) is the desired output, y(n) is the measured output,
and G̃ is the complex desired gain. Contrary to the ILA case, the proposed method does not
fix an a priori value for G̃, which remains a degree of freedom for the optimization method.

The approach has been applied by means of the remote setup in Landin et al. [29]. Such
a setup is based on a single benchtop instrument, the PXIe-5646R Vector Signal Transceiver
(VST) by NI, featuring 200-MHz instantaneous bandwidth. With this setup, whose block
diagram is shown in Figure 5, the user can set the baseband input signal using the vector
signal generator within the VST, and measure the baseband output signal from the VST
receiver, with a sample rate of fs = 200 MSa/s for both input and output. The DUT is
the cascade of a 40-dB linear driver amplifier and a GaN PA (Cree CGH40006-TB) biased
in class-AB at 100 mA, operating at 2-GHz carrier frequency. The output of the PA is
attenuated by 30 dB before reaching the VST receiver.

Figure 5. Measurement setup available at Chalmers University (RF WebLab) [29], used for the
demonstration of the multi-objective linearization procedure.

The adopted input signal is a random-phase 2 k-tone with 20-MHz bandwidth and
peak-to-average power ratio (PAPR) of '9 dB, resulting in N = 20 k samples for each
acquisition, while the predistorter is described by a classical MP model formulation:

x(n) =
M

∑
m=0

K

∑
k=1

φmk ỹ(n−m)|ỹ(n−m)|k−1, (15)

where φmk are the DPD coefficients, K is the nonlinearity order, and M is the memory
depth. The model in Equation (15) can be written in matrix form as in Equation (2), where
H corresponds to:

H =

 ỹ(n) . . . ỹ(n)|ỹ(n)|(K−1) . . . ỹ(n− (M− 1)) . . . ỹ(n− (M− 1))|ỹ(n− (M− 1))|(K−1)

ỹ(n− 1) . . . ỹ(n− 1)|ỹ(n− 1)|(K−1) . . . ỹ(n− 1− (M− 1)) . . . ỹ(n− 1− (M− 1))|ỹ(n− 1− (M− 1))|(K−1)

...
. . .

...
. . .

...
. . .

...
ỹ(n− N) . . . ỹ(n− N)|ỹ(n− N)|(K−1) . . . ỹ(n− N − (M− 1)) . . . ỹ(n− N − (M− 1))|ỹ(n− N − (M− 1))|(K−1)

, (16)

N being the total number of samples.
Throughout this work, K and M are predetermined and fixed values chosen as K = 5

and M = 3, which are not subject to optimization. This preliminary selection is performed
by successively increasing the model order until the DPD (using ILA) achieved a sufficiently



Electronics 2021, 10, 244 8 of 12

low NMSE ('−30 dB), resulting in a reasonable compromise between the necessary model
complexity and the avoidance of over-fitting issues.

In addition, the total number of coefficients (K × M = 15) is compatible with the
dimensionality to be managed by the optimization algorithm in Section 2. However,
the algorithm itself does not depend on the specific predistorter model, and it could
be seamlessly used with other linear-in-the-parameters formulations, provided that a
reasonably low number of DPD coefficients is considered.

Two separate datasets of signal realizations are acquired, one used for model coefficient
learning by means of the optimization algorithm in Figure 4, and the other for DPD
validation. Figures 6a,b report the linearization results when the ACPR (Figure 6a) and the
NMSE (Figure 6b) are used as constraints within the algorithm. The blue curves represent
the proposed multi-objective optimization results, obtained by sweeping the constraint
value (η) for the ACPR (Figure 6a) and the NMSE (Figure 6b). The curves for the ILA
case (red) are obtained by sweeping the target linearization gain, which is the only control
variable in the ILA architecture. The linearization gain is swept up to an input signal peak
power of −8 dBm, which corresponds to the maximum available power by the vector
signal generator within the VST [29]. The black curves correspond to the non-predistorted
case at different input powers.

Figure 6. DPD performance when P̄OUT is maximized and the ACPR (a) or the NMSE (b)
is a constraint.

For both cases, the curve obtained with the proposed multi-objective algorithm lays
closer to the P̄OUT—linearity optimum, substantially outperforming the classical ILA
architecture for intermediate linearity levels (i.e., −35 to −33 dB of ACPR, or −27.5 to
−23 dB of NMSE), yet using the same number of DPD coefficients. This demonstrates
that the classical ILA method, which only accounts for linearity by NSME minimization
and does not embed capabilities for Pareto front exploration, delivers inferior PA global
performance. At the same time, for small values of ACPR and NMSE (i.e., high-linearity),
the fundamental trade-off between linearity and RF output power gets increasingly narrow,
so that no space for improvement is left for the output power maximization capability of the
multi-objective approach. In this case, both methods will tend to show similar performance.

Figure 7a compares the acquired output spectra relative to the two different DPD
configurations, as well as the case of the un-predistorted PA, for the same level of ACPR
' −33 dB. It can be clearly seen that, while the linearity performance is nearly the same for
the three cases, the RF output power is maximum for the multi-objective DPD (correspond-
ing to an average RF output power of 0.8 W), providing up to 14% P̄OUT improvement
with respect to ILA (P̄OUT = 0.7 W), whereas it is much smaller for the un-predistorted PA.
In Figure 7b, instead, the three situations are shown for the same level of RF average output
power (P̄OUT = 0.7 W), showing a better linearity performance for the multi-objective case
(ACPR = −34 dB versus ACPR = −33 dB for ILA). For reference purposes, Figure 7 also
includes the maximum output power performance without DPD at −4 dB compression
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(P̄OUT ' 1.3 W, ACPR ' −26.5 dB). Given the high level of distortion involved, this case
falls out of the trade-off representation shown in Figure 6.

Figure 7. Spectra (not normalized) obtained with the proposed multi-objective optimization (blue),
compared with the classical ILA approach (red) and the case without DPD (black). (a) same level of
ACPR ' −33 dB, corresponding to the intercepts of the vertical dashed line in Figure 6a; (b) same
level of P̄OUT ' 0.7 W, corresponding to the intercepts of the horizontal dashed line in Figure 6a.
Green lines show the maximum output power performance without DPD at −4 dB compression
(P̄OUT ' 1.3 W, ACPR ' −27 dB).

The same performance can also be observed in the instantaneous gain characteristics
shown in Figure 8a,b, corresponding to Figure 7a,b, respectively. The PA is effectively
linearized at a 4-dB compression point, with the multi-objective optimization further
improving the performance in terms of RF output power. For completeness, Figure 9a,b
show the corresponding instantaneous AM/AM characteristics.

Figure 8. Instantaneous gain characteristics obtained with the proposed multi-objective optimization
(blue), compared with the classical ILA approach (red) and the case without DPD (black). (a) same
level of ACPR ' −33 dB, corresponding to the intercepts of the vertical dashed line in Figure 6a;
(b) same level of P̄OUT ' 0.7 W, corresponding to the intercepts of the horizontal dashed line in
Figure 6a. Green lines show the maximum output power performance without DPD at −4 dB
compression (P̄OUT ' 1.3 W, ACPR ' −27 dB).
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Figure 9. AM/AM characteristics obtained with the proposed multi-objective optimization (blue),
compared with the classical ILA approach (red) and the case without DPD (black). (a) same level of
ACPR ' −33 dB, corresponding to the intercepts of the vertical dashed line in Figure 6a; (b) same
level of P̄OUT ' 0.7 W, corresponding to the intercepts of the horizontal dashed line in Figure 6a.
Green lines show the maximum output power performance without DPD at −4 dB compression
(P̄OUT ' 1.3 W, ACPR ' −27 dB).

Finally, Figure 10a reports the iterative behavior of the algorithm, highlighting the
dynamic change of the optimization direction between the one kept to maintain the ACPR
below the limit (Dg), imposed using the instantaneous gain normalization, and the one for
maximizing P̄OUT (D f ) by gradient descent. Figure 10b reports the same iterative trajectory
of Figure 10a in the same domain as Figure 6. It can be seen that the found optimum can be
reached within a limited number of iterations.

Figure 10. (a) Iterative behavior of the algorithm, where the conflicting optimization directions Dg

(constraint) and D f (maximization) are indicated; (b) iterative optimization trajectory (iterations 1 to
17) of the proposed multi-objective algorithm on the same domain as Figure 6.

4. Conclusions

The proposed multi-objective optimization method allows for exploring the trade-off
between linearity and RF output power of a PA, resulting in a generalized DPD approach
that can better enhance the global performance with respect to the classical ILA-based
DPD. In particular, this is obtained by constraining one PA metric, and concurrently
maximizing another one in an iterative fashion, eventually resulting in a tailored control of
the predistorted input. Despite the impossibility to assess if the achieved maximization
actually intercepts the global optimum of the complex multidimensional object function
linking the FoMs with the DPD coefficients, the reached solution effectively delivers
improved performance with respect to the classical ILA-based, single-objective DPD.

It is worth highlighting that this improvement just derives from the application of
a different learning algorithm for the identification of the DPD coefficients, and that the
same fixed DPD model order is used in all cases. Therefore, adopting this technique does
not require any change in the DPD system configuration, nor any additional hardware.

The method should be seamlessly applicable in other test conditions and using differ-
ent FoMs. As an example, a preliminary simulation-based evaluation of the trade-off be-
tween linearity and efficiency in supply-modulated PAs is reported in Mengozzi et al. [30].
Moreover, the proposed optimization framework is promising for the synthesis of opti-
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mal input signals of next generation multiple-input transmitters, including PA arrays or
load-modulated amplifiers [5,11]. Indeed, when multiple digitally-controlled inputs are
involved, many different combinations of the inputs could reach a given performance met-
ric, implying non-trivial preinverse identification and, possibly, sub-optimal performance.
In this context, the proposed optimization framework can provide a useful numerical
solution to exploit the higher dimensionality of multi-input systems. Future work will
also include the enhancement of the method by combining PA incremental modeling
techniques [31] to minimize the measurement burden.
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