
electronics

Article

Reconfigurable Binary Neural Network Accelerator with
Adaptive Parallelism Scheme

Jaechan Cho 1 , Yongchul Jung 1 , Seongjoo Lee 2 and Yunho Jung 3,*

����������
�������

Citation: Cho, J.; Jung, Y.; Lee, S.;

Jung, Y. Reconfigurable Binary Neural

Network Accelerator with Adaptive

Parallelism Scheme. Electronics 2021,

10, 230. https://doi.org/10.3390/

electronics10030230

Academic Editor: Guido Masera

Received: 7 December 2020

Accepted: 19 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si 10540, Korea;
jccho@kau.kr (J.C.); ycjung@kau.kr (Y.J.)

2 The Department of Information and Communication Engineering and Convergence Engineering for
Intelligent Drone, Sejong University, Seoul 143-747, Korea; seongjoo@sejong.ac.kr

3 Department of Smart Drone Convergence, School of Electronics and Information Engineering,
Korea Aerospace University, Goyang-si 10540, Korea

* Correspondence: yjung@kau.ac.kr; Tel.: +82-2-300-0133

Abstract: Binary neural networks (BNNs) have attracted significant interest for the implementation
of deep neural networks (DNNs) on resource-constrained edge devices, and various BNN accelerator
architectures have been proposed to achieve higher efficiency. BNN accelerators can be divided
into two categories: streaming and layer accelerators. Although streaming accelerators designed for
a specific BNN network topology provide high throughput, they are infeasible for various sensor
applications in edge AI because of their complexity and inflexibility. In contrast, layer accelerators
with reasonable resources can support various network topologies, but they operate with the same
parallelism for all the layers of the BNN, which degrades throughput performance at certain layers.
To overcome this problem, we propose a BNN accelerator with adaptive parallelism that offers high
throughput performance in all layers. The proposed accelerator analyzes target layer parameters and
operates with optimal parallelism using reasonable resources. In addition, this architecture is able
to fully compute all types of BNN layers thanks to its reconfigurability, and it can achieve a higher
area–speed efficiency than existing accelerators. In performance evaluation using state-of-the-art
BNN topologies, the designed BNN accelerator achieved an area–speed efficiency 9.69 times higher
than previous FPGA implementations and 24% higher than existing VLSI implementations for BNNs.

Keywords: artificial intelligence (AI); binary neural network (BNN); FPGA; machine learning; pattern
recognition; VLSI

1. Introduction

Deep neural networks (DNNs) have exhibited state-of-the-art accuracy on a wide range
of AI tasks, such as image classification, radar signal processing, and object detection [1,2].
Recent DNN models have become even deeper to complete tasks with higher accuracy,
which requires a massive amount of computing resources and memory [3,4]. However,
many resource-restricted applications call for low-cost and low-power DNN designs, and
reaching a relatively lower level of accuracy is often sufficient [5]. Therefore, substantial
research has been conducted to run DNNs on low-power edge devices [6–21].

An emerging trend to reduce the amount of computing resources and memory re-
quired is the use of binary neural networks (BNNs), which drop the precision of weights
and activations to a single bit [15–21]. They are capable of achieving an accuracy that is on
par with that of condensed full-precision DNN models, such as MobileNet [21]. BNNs can
directly replace the multiply–accumulate operations by simple XNOR and popcount opera-
tions. Therefore, their greatly reduced computational workload enables the use of DNNs
on edge devices, and several accelerator designs for BNN have been proposed [22–38].

BNN accelerators can be divided into two categories: streaming and layer accelerators.
Streaming accelerators are designed for all or most layers in a target network [22–33]. Since

Electronics 2021, 10, 230. https://doi.org/10.3390/electronics10030230 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8208-0419
https://orcid.org/0000-0001-5332-8980
https://orcid.org/0000-0001-9344-7052
https://orcid.org/0000-0003-2299-9911
https://doi.org/10.3390/electronics10030230
https://doi.org/10.3390/electronics10030230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030230
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/230?type=check_update&version=2

Electronics 2021, 10, 230 2 of 13

optimized hardware is implemented for each layer, this type of architecture usually offers
reasonable latency. However, streaming accelerators require more resources than layer
accelerators, which are implemented for a specific target layer. In addition, they can only
support the network topology that is targeted prior to implementation. In other words, if a
network is optimized and implemented for a specific application, it needs to be structurally
changed and re-designed to use it in other applications. Therefore, BNNs with a streaming
architecture cannot always satisfy resource constraints and are thus infeasible for various
sensor applications in edge AI because of their complexity and inflexibility [20].

On the other hand, layer accelerators are designed to handle a target layer in BNN
topologies [34–38]. Therefore, these architectures require less resources than streaming
accelerators, which are designed for all or most of the layers of a target network topology.
In addition, since layer accelerators need to be able to cope with various types of layers,
that is layers with different input feature map (fmap) sizes and different numbers of in/out
channels, most layer accelerators have been designed with reconfigurable architectures that
can handle various network topologies. Therefore, this type of architecture can support
various sensor applications and is well suited for resource-constrained applications.

Conventional layer accelerator designs usually fall under one of two categories ac-
cording to how data scheduling is implemented: filter-level parallelism and fmap-level
parallelism. Accelerators with filter-level parallelism are designed with a line-buffer ar-
chitecture that stores the previous row of the input fmap for sliding operations [34–36].
Such architectures offer efficient data reuse and higher convolution throughput. They
have been used widely in convolution-based image processing applications. However,
typical network topologies consist of layers having varied structures ranging from an initial
convolutional (CONV) layer to deep fully connected (FC) layers, and each layer can have a
different architecture. In general, the number of in/out channels gradually increases in
the deeper layers, whereas the fmap size becomes smaller. Therefore, accelerators with
filter-level parallelism, which is optimized for CONV operations, cannot attain higher
utilization and throughput in deep layers that are similar to FC layers. In addition, these
accelerators require more resources than other types of architectures to store previous row
data and integer-scale intermediate values of the popcount operation.

On the other hand, several accelerators that introduce fmap-level parallelism have
been proposed [37,38]. Accelerators with fmap-level parallelism load and process data on
a per-channel basis, with 100% utilization and throughput at deeper layers exceeding a
certain number of input channels. In addition, these architectures require less resources
than those with filter-level parallelism because they can rapidly binarize intermediate
results via efficient data scheduling [37]. However, the throughput of these accelerators is
excessively degraded in the initial layers having a small number of channels.

In this paper, we propose a reconfigurable BNN accelerator with adaptive parallelism
that offers high throughput performance in all layers. The proposed accelerator analyzes
target layer parameters and adaptively applies parallelism schemes, which consist of
fmap-level parallelism combined with an advanced method. This architecture can perform
BNN operations with a reasonable amount of resources because the supported parallelism
schemes are based on the mechanisms of fmap-level parallelism. The design and imple-
mentation results of the proposed architecture are also presented. The remainder of this
paper is organized as follows. Section 2 briefly reviews BNNs and related works. Section 3
describes the proposed adaptive parallelism scheme and presents performance evaluation
results. Section 4 discusses the hardware architecture and implementation results. Finally,
Section 5 concludes the paper.

Electronics 2021, 10, 230 3 of 13

2. Background
2.1. Binary Neural Network

The basic computation at each layer of a convolutional neural network (CNN) can be
expressed as:

y(cout) = f

(
∑
cin

(W(cout, cin)⊗ x(cin)) + bcout

)
, (1)

where y, x, W, and b are the output, input fmaps, weights, and biases, respectively. cin and
cout are the number of in/out fmaps (in/out channels) in high-dimensional convolutions, as
shown in Figure 1. The output fmaps, which have a size of cout×hout×wout, can be obtained
through a convolution operation between the input fmaps and the filters, which is the set
of weights. f is a nonlinear activation function, which is typically applied after each CONV
layer or FC layer. These functions are usually conventional nonlinear functions, such as the
rectified linear unit (ReLU), sigmoid, and hyperbolic tangent [6].

Figure 1. High-dimensional convolutions in CNNs.

In addition, various optional layers can be found in the typical network topologies of
CNNs, such as the pooling and normalization layers. Pooling reduces the dimensionality
of the fmaps and is applied to each fmap separately. In batch normalization (BN), the
output of the activation function is further scaled and shifted as follows:

BN(k) = γ
k − µ

σ
+ β, (2)

where γ, β, µ, and σ are learned parameters and k is the input of the BN function.
In BNNs, f in (1) can be expressed as sign(BN(k)), which is the binarization of the BN

output [20]. Since the values of y, x, W, and b are +1 or −1, ⊗ can be reduced to bitwise
operations. If the binary values obtained from these operations are encoded with +1 as
a one-valued bit and −1 as a zero-valued bit, a multiplication operation is equivalent to
an XNOR logical operation on the binary values. The sum of XNOR operations can also
be calculated via a simple popcounting, that is counting the number of bits set to one. In
addition, the costly calculation of sign(BN(k))) can be reorganized into:

sign(BN(k)) =

{
1 if k ≥ σβ

/
γ − µ , else 0 (when σ

/
γ < 0)

1 if k ≤ σβ
/

γ − µ, else 0 (when σ
/

γ > 0)
. (3)

Multiplication and division in (2) can be replaced with a simple comparison with a thresh-
old τ

.
= σβ/γ − µ, defined for convenience.

Electronics 2021, 10, 230 4 of 13

In the training phase, the pooling layers in the BNNs are generally placed before the
activation layer because of their higher accuracy. However, in the inference of BNNs, there
is no loss of accuracy caused by the different ordering of these layers [20]. Since the max
pooling of encoded bits as one or zero can be achieved using simple OR logical operations,
placing the pooling layer after the activation layer is more efficient in the inference phase.

2.2. BNN Acceleration Hardware

BNNs have a greatly reduced computational workload and enable the use of DNNs
on edge devices. To reach higher efficiency, several accelerator designs for BNNs have been
proposed [22–38]. They can be divided into two categories: streaming and layer accelerators.
Streaming accelerators are designed for all or most layers in a target network [22–33]. One
of the earliest streaming architectures is FINN [22], which outperforms the conventional
FPGA based deep inference accelerators. FINN is also extended to FINN-R [23] and
BNNspli [24] to reach the higher performance of BNN inference. In [25,26], the FPGA
based streaming accelerators were designed and compared with an ASIC , CPU, and GPU.

The streaming architectures with advanced design methods were also
proposed [27–30]. SimBNN [27] analyses the data similarities to significantly reduce
the operational complexity, and ReBNet [28] uses residual binarizations for efficient hard-
ware implementation in ResNet architectures. LP-BNN [29] adopts layer parallelism and
supports nearly perfect load balancing for various types of BNNs. In [30], a fully digital
ASIC architecture with computation tightly coupled to the memory for aggressive data
reuse was proposed. In addition, several streaming accelerators [31–33] apply improved
learning schemes for BNNs. Streaming architectures can offer high throughput perfor-
mance because optimized hardware is implemented for each layer. However, this type of
architecture cannot always satisfy resource constraints and is thus infeasible for various
sensor applications in edge AI because of the complexity and inflexibility [20].

On the other hand, layer accelerators are designed to handle a target layer in BNN
topologies [34–38]. Conventional layer accelerator designs usually fall under one of two cat-
egories according to how data scheduling is implemented: filter-level parallelism and fmap-
level parallelism. Accelerators with filter-level parallelism are designed with a line-buffer
architecture that stores the previous row of the input fmap for sliding operations [34–36].
In [34], a batch normalization-free technique was proposed, which can use a simple compar-
ison instead of complex operations. FBNA[35] focuses on binarizing the first layer in BNNs
and reduces the processing time for the first layer. In [36], a BNN on FPGA was proposed,
which uses on-chip memories only. Although accelerators with filter-level parallelism offer
efficient data reuse and higher throughput for CONV layers, they cannot attain higher
utilization and throughput in deep layers such as FC layers. In addition, these accelerators
require more resources than other types of architectures to store the previous row of the
input fmap and integer-scale intermediate values of the popcount operation.

In contrast, several accelerators that introduce fmap-level parallelism have been
proposed [37,38]. Accelerators with fmap-level parallelism load and process data on a
per-channel basis, with 100% utilization and throughput at deeper layers exceeding a
certain number of input channels. In [37], the XNOR neural engine (XNE) was proposed,
which adopts fmap-level parallelism and a tightly coupled shared memory paradigm.
In [38], a design automation scheme for BNNs with fmap-level parallelism was proposed for
near-sensor processing. The accelerators with fmap-level parallelism require less resources
than those with filter-level parallelism because they can rapidly binarize intermediate
results via efficient data scheduling [37]. However, the throughput of these accelerators is
excessively degraded in the initial layers having a small number of channels.

3. Proposed Parallelism Scheme
3.1. Proposed Parallelism Scheme of the BNN Accelerator

The proposed BNN accelerator adaptively applies two parallelism schemes according
to the architectures of the target layer to offer high throughput in all layers. Our adaptive

Electronics 2021, 10, 230 5 of 13

parallelism scheme consists of a combination of fmap-level parallelism and an advanced
method that can efficiently cope with certain CONV layers that fmap-level parallelism
cannot handle with 100% utilization. To minimize resource requirements, the proposed
BNN accelerator is designed to operate with two parallelism schemes while using a similar
data path as in conventional architectures with fmap-level parallelism. In addition, the
proposed BNN accelerator is designed to make efficient use of the memory bandwidth al-
lowed in various SoC platforms by using the design parameter Phw, which is the maximum
number of operations that can be processed in one clock cycle. In other words, if Phw is
set according to the memory bandwidth allowed in each SoC, our architecture can load
Phw-size data in one clock cycle.

The first parallelism scheme (i.e., the advanced method) shown in Figure 2 is imple-
mented for the initial layers, which have a small number of channels. The data scheduling
of this scheme loads and processes ks×Pcin data bits per cycle, where ks is the kernel size
and Pcin is the number of fmaps that can be loaded and processed in one clock cycle.
Figure 3 shows how CONV layers are reorganized in the first parallelism mode, where
ic and oc mean the number of input and output channels, respectively. The loops are
reordered differently than in conventional BNN loops, bringing a kernel width loop and an
input fmap loop to the innermost position. These inner loops are computed in the proposed
BNN accelerator in one clock cycle. The in/out fmap loops split into an inner loop (com-
puting units on processing elements; Pcin for input and Phw for output fmaps) and an outer
loop (cycling iterations on network control unit; cin/Pcin for input and cout/Phw for output
fmaps). This scheme can efficiently cope with certain CONV layers in which utilization is
drastically degraded when using fmap-level parallelism, as detailed in Section 3.2.2.

Figure 2. Data scheduling example of the first parallelism scheme.

��� � �� �����	
� �
���

� �� ����� ������

��� � �� �����	
� �
���

� �� ����� �����

��� ��
�

�� �����	
� �
���

��
��

� �� ������ ����� ����������

��� �
�

�� �����	
� 	
� �� ������ ������

��� ��
�

�� �����	
� �
��

��
���

� �� ����� ����� ����� ����

��� ��
�

�� �����	
� �
��

� �� ������ ����� ����������

��� ��
�

�� �����	
� �
���

� �� ����� ����� ����� ����

��� �
	

�� �����	
� 	
� �� ������ �����

�� � ��
�

� �
��

 ��
�

�� � ��
�

� �
���

 ��
�

�!�
�

����" � #$�%	�!�
�

��
�

��
�

��
	

"�&!�
�

�� �
�

�� �
	

"�

Figure 3. BNN layers’ loop for the first parallelism scheme; the loops highlighted in light yellow are computed in one clock cycle.

Electronics 2021, 10, 230 6 of 13

The second parallelism scheme used in the proposed BNNs accelerator is described in
Figures 4 and 5. Similar to fmap-level parallelism, this scheme loads and processes data
on a per-channel basis, and it can achieve 100% utilization at deeper layers exceeding a
certain number of input channels. An overview of this parallelism scheme is shown in
Figure 5. The kernel width loop is moved outward, and the hardwired inner loop in the
accelerator is only focused on the fmap channels. The parallelism parameter Phw is used to
define the number of simultaneous XNOR operations in the processing elements (PEs) per
cycle. In other words, Phw input fmap channels can be loaded and processed in one clock
cycle. Therefore, the data scheduling of this scheme handles more channels per cycle than
other schemes in deeper layers.

Figure 4. Data scheduling example of the second parallelism scheme.

��� � �� �����	
� �
���

� �� ����� ������

��� � �� �����	
� �
���

� �� ����� �����

��� ��
�

�� �����	
� �
���

��
��

� �� ������ ����� ����������

��� �
�

�� �����	
� 	
� �� ������ ������

��� �
�

�� �����	
� 	
� �� ������ �����

��� ��
�

�� �����	
� �
��

��
��

� �� ����� ����� ����� ����

��� ��
�

�� �����	
� �
��

� �� ������ ����� ����������

��� ��
�

�� �����	
���
��

� �� ����� ����� ����� ����

�� � ��
�

� �
��

 ��
�

�� � ��
�

� �
��

 ��
�

�!�
	

����" � #$�%	�!�
	

��
	

��
�

��
�

"�&!�
	

�� �
�

�� �
�

"�

Figure 5. BNN layers’ loop for the second parallelism scheme; the loops highlighted in light yellow are computed in one
clock cycle.

The proposed BNN accelerator executes one of the two parallelism schemes depending
on the target layer as follows:

mt =

{
0 , cin < Phw

1 , cin ≥ Phw
, (4)

where mt is the parallelism mode at the current target layer. The accelerator performs each
parallelism scheme according to the value mt, as shown in Table 1. Considering that the

Electronics 2021, 10, 230 7 of 13

processor is designed with Phw = 256, if it targets a layer with respective cin and ks values
of 128 and three, the first parallelism is used, and the accelerator attains 75% utilization.
This is a utilization improvement of 25% compared with the 50% attained via fmap-level
parallelism. In contrast, if cin is 256 or more, the proposed accelerator operates based on
the second parallelism scheme, which can achieve 100% utilization.

Table 1. Supported parallelism schemes based on mt of the proposed BNN accelerator.

Mode Parallelism Scheme

mt = 0 First scheme introduced in Figure 2

mt = 1 Second scheme shown in Figure 4

3.2. Simulation Results
3.2.1. Target Network Topologies

To evaluate the efficiency of the proposed accelerator, common topologies of BNNs
were used to make performance comparisons [20], as listed in Table 2. The architectures
are described layer-by-layer using our own notation. Here, 2C128 and 2FC1024 refer to
two CONV layers and two FC layers, with 128 and 1024 output channels, respectively. All
max pooling (MP) layers have a size of 2 × 2 and a stride of two. The first topology is
the original BNN described by Courbariaux et al. [16] and is referred to as BNN-Cifar10
in this paper. It is a variation of the VGG-11 topology with six CONV layers and three
FC layers, as shown in Figure 6, and was used on the CIFAR-10 datasets. The CIFAR-10
dataset consists of 60,000 32 × 32 photos and contains 10 different classes, six different
animals and four different vehicles. BNN-Cifar10 delivers state-of-the-art accuracy on the
CIFAR-10 dataset. The second topology used for evaluation is the well-known VGG-16
model for the ImageNet dataset. The ImageNet dataset consists of 1.2 million images and
contains 1000 different classes.

Table 2. Architectures of the network topologies used to evaluate performance. MP, max pooling; C,
CONV.

Network Architecture Dataset Accuracy

BNN-Cifar10 2C128-MP-2C256-MP-2C512-MP-2FC1024-FC10 CIFAR-10 89.95%

VGG-16 2C64-MP-2C128-MP-3C256-MP-3C512-MP-
3C512-MP-2FC4096-FC1000 ImageNet 75.5%

Figure 6. Topology of the BNN designed for CIFAR-10.

3.2.2. Performance Evaluation Results

We used operations per cycle (ops/cycle) to compare the throughput performance
of our accelerator with that of existing BNN architectures. This parameter refers to the
number of operations the accelerator can process per clock cycle, and we counted XNOR
and popcount as separate operations [37]. In addition, ops/cycle can also represent the
memory access efficiency because the number of operations that can be processed in each

Electronics 2021, 10, 230 8 of 13

cycle is related to the number of data that can be loaded from memory in each cycle. To
evaluate performance, we compared efficient BNN layer accelerators targeted for a low-
power microcontroller [34–38]. To make a fair comparison, a similar number of operators
(XNOR gates and adders for popcounts) were assumed for each accelerator. In addition,
the first layer, whose fmaps are normally floating-point image data, was excluded in the
comparison.

First, our architecture was assumed to have Phw = 256, and Reference [34] assumed
having a similar number of operators (252). Moreover, Reference [34] adopted filter-level
parallelism, which significantly degrades throughput performance in deeper layers, as
shown in Figure 7. Although the work in [34] showed excellent peak performance (Gops/s,
giga operations per second), it used more resources than the proposed accelerators, as
detailed in Section 4.2.1, and the throughput decreased in other layers because it applied
an inflexible parallelism scheme. The proposed parallelism can provide higher throughput
performance in almost all layers (C4∼FC3), as shown in Figure 7. In addition, when
comparing at 150 MHz, which was the operating frequency of the work in [34], the proposed
accelerator operates with a lower latency of 1.57 ms for BNN-Cifar10 and of 30.92 ms for
VGG-16 compared with [34].

C2 C3 C4 C5 C6 FC1 FC2 FC3 Avg
0

100

200

300

400

500

600

o
p

s
/c

y
c
le

[34] Proposed

Figure 7. Comparison results of throughput performance for BNN-Cifar10. ops, operations.

On the other hand, the XNOR neural engine (XNE) [37] uses fmap-level parallelism
to achieve 100% efficiency in the deeper layers, but its performance decreases sharply in
the upper CONV layers, as shown in Figure 8. Our architecture and XNE were assumed
to have Phw = 256 to make a fair comparison. The proposed accelerator can achieve on
average ops/cycle 51.2 higher than XNE for VGG-16 and 32 higher for BNN-Cifar10. In
addition, it can process with a lower latency of 1.96 ms for BNN-Cifar10 and 120.42 ms for
VGG-16 compared with XNE when operating at a clock frequency of 300 MHz, which is
the operating frequency of [37].

Electronics 2021, 10, 230 9 of 13

2 4 6 8 10 12 14 16

Layer

100

150

200

250

300

350

400

450

500

550

o
p

s
/c

y
c

le

XNE

XNE-AVG

Proposed

Proposed-AVG

Figure 8. Comparison results of throughput performance for VGG-16. XNE, XNOR neural engine.

4. Design and Implementation Results
4.1. Hardware Architecture

Figure 9 shows the block diagram of the proposed BNN accelerator, including a
network control unit (NCU), processing elements (PEs), a popcount unit (PCU), an accumu-
lator, an activation unit, and a pooling unit. The PEs are composed of XNOR gates, AND
gates, and a sub-popcount unit for processing 8 bit words. The feature vector that is input
from the system is stored in a feature register for reuse. This feature vector is multiplied by
the weight stream by the Phw XNOR gates in the PEs. To allow the proposed processor to
operate with a smaller number of input features than Phw, the product vector is masked by
sum filter coefficients, in an array of AND gates.

Figure 9. Block diagram of the proposed BNN accelerator.

A popcount unit based on a simple combinational circuit is used to count the number
of “1s” in the unmasked vector. Each PE has a sub-popcount unit for 8 bit words, from
which a 4 bit output that ranges from zero to eight is extracted. These output components
are merged in the main popcount unit. The final count is accumulated with the output
of the current register in the accumulator. The accumulator consists of adder and Phw

Electronics 2021, 10, 230 10 of 13

registers, and each register stores one output computed in a full accumulation cycle.
The accumulated values are binarized in the activation unit with the thresholding phase
defined in (3). This simple comparison involves batch normalization and binarization,
as mentioned in Section 2.1. The max pooling of binarized values is computed using OR
logical operations in the pooling unit when a target layer has a pooling phase. Otherwise,
the binarized values bypass the pooling unit for flexibility.

The NCU is designed to execute the proposed parallelism schemes. It has R/Wregisters
for loading the parameters of the target layer (e.g., cout, hout, wout, ks, etc.), a simple finite-
state machine (FSM) to iterate the loop execution, and address calculators. The main FSM
orchestrates the operation of the proposed accelerator and communicates with the micro-
controller unit (MCU). By analyzing the layer parameters and selecting an appropriate
parallelism scheme, the NCU controls the data loading phase and generates a memory
address. It loads the data until the operation required for the current operation is completed,
and the intermediate results during each iteration are stored in the accumulator. After
these phases are completed, the threshold values from (3) are loaded and compared with
the accumulated values in the activation unit. Then, the final outputs are streamed out to
the bus interface.

4.2. Implementation Results
4.2.1. FPGA Implementation Results

The proposed BNN accelerator was designed using the Verilog hardware Description
Language (HDL) and implemented on an XCZU7EV FPGA targeting the Xilinx ZYNQ
Ultrascale+ ZCU-104 evaluation board. The proposed architecture with Phw = 256 requires
1050 configurable logic blocks (CLBs), 4816 CLB LUTs, and 2 DSPs, as shown in Table 3. In
addition, the accelerator with the proposed parallelism schemes can process at an operating
frequency of 371.6 MHz. To evaluate the efficiency of our architecture, we compared
it with previous BNN implementations targeted at FPGA devices [34,35]. As shown in
Table 3, although the proposed accelerator exhibits a lower peak performance than previous
designs, it offers higher efficiency in terms of area (Gops/s/KLUT, Gops/s/KCLB) and
power (Gops/s/W). The accelerators with filter-level parallelism [34,35] require more
resources than the proposed accelerator because they need to store the previous row data
and integer-scale intermediate values of the popcount operation.

Table 3. Comparison of the FPGA implementation results of our accelerator with previous works.
CLB, configurable logic block.

[34] [35] Proposed (Phw = 256)

FPGA XCZU9EG XC7Z020 XCZU7EV

Target Network VGG-16 BNN-Cifar10 VGG-16

Parallelism Filter-level Proposed

Operating Frequency 150 MHz 143 MHz 371 MHz

CLB (Slice) 47,946 N.A. 1050

LUT N.A. 34.9 K 4.8 K

DSP 4 0 2

BRAM 1367 103 89

Peak Performance 460.8 Gops/s 722.8 Gops/s 177.68 Gops/s

Area Efficiency
Gops/s/KLUT N.A. 21 37.02

Gops/s/KCLB 9.61 N.A. 169.22

Power Efficiency (Gops/s/W) 20.94 219 250

Electronics 2021, 10, 230 11 of 13

4.2.2. VLSI Implementation Results

The proposed BNN accelerator was also synthesized to gate-level circuits using a
40 nm CMOS standard cell library. The key features of the proposed BNN accelerator
are summarized in Table 4. It can be seen that the proposed architecture requires 23.37 K
logic gates with a total die size of 0.016 mm2. This system can operate at an operating
frequency of 450 MHz, and real-time processing is possible. To evaluate the efficiency of
our architecture, we compared it with XNE [37] and XNORBIN [30], which represent the
VLSI implementation results for the BNNs. To make a fair comparison, our architecture
and XNE were assumed to have Phw = 128, and we normalized the area as:

Anorm =
Area

(Tech/ 40 nm)2 , (5)

where Tech is the process technology expressed in nanometers [39]. As shown in Table 4,
the proposed accelerator exhibited an average area-speed efficiency (Gops/s/Anorm) 24%
higher than XNE with fmap-level parallelism when operating at 300 MHz. In addition, our
architecture can offer an area-speed efficiency 3.77 times higher than XNORBIN, which
presents the streaming accelerator.

Table 4. Comparison results of the VLSI implementations.

[30] [37] Proposed (Phw = 128)

Technology 65 nm 65 nm 22 nm 40 nm

Area (103 µm2) 540 41.2 7.6 16.49

Normalized Area 204.49 15.60 25.12 16.49

Operating
Frequency 156 MHz 300 MHz 300 MHz

Peak Performance 244 Gops/s 66 Gops/s 74 Gops/s

Area Efficiency
(Gops/s/Anorm) 1.19 4.23 2.63 4.49

5. Conclusions

In this paper, we proposed a reconfigurable BNN accelerator with an adaptive par-
allelism scheme. Existing BNN layer accelerators suffer from throughput performance
degradation at certain layers in BNN topologies because of their constant data scheduling
schemes. On the other hand, streaming architectures, which provide parallelism schemes
optimized for each layer, require a large amount of resources and are thus not suitable
for edge devices. To overcome such problems, the proposed accelerator analyzes target
layer parameters and performs operations with optimal parallelism using reasonable re-
sources. The proposed parallelism schemes consist of fmap-level parallelism combined
with an advanced method, which can efficiently cope with certain layers that fmap-level
parallelism cannot handle with 100% utilization. In our performance evaluation for state-of-
the-art BNN topologies, accelerators with the proposed parallelism schemes showed good
throughput performance in terms of ops/cycle and low latency compared with existing
BNN accelerators. The proposed processor was implemented with 1050 CLBs, 4816 CLB
LUTs, and two DSPs on a Xilinx XCZU7EV FPGA device. It offered an area-speed efficiency
9.69 times higher than previous FPGA implementations for BNNs. In addition, it had
a logic gate count of 23.37 K with a die size of 0.016 mm2, and it offered an area-speed
efficiency 24% higher than existing VLSI implementations when operating at 300 MHz.

Electronics 2021, 10, 230 12 of 13

Author Contributions: J.C. designed the accelerator, performed the simulation and experiment,
and wrote the paper. Y.J. (Yongchul Jung) and S.L. implemented the processor and revision of this
manuscript. Y.J. (Yunho Jung) conceived of and led the research, analyzed the experimental results,
and wrote the paper. All authors read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.
2019-0-00056, 2020-0-00201), and the CAD tools were supported by IDEC.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiao, L.; Zhao, J. A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access 2019, 7, 172231–172263.

[CrossRef]
2. Alom, M.; Tha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; Hasan, M.; Essen, B.; Awwal, A.; Asari, V. A State-of-the-Art

Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]
3. Hu, R.; Peng, Z.; Ma, J.; Li, W. CNN-Based Vehicle Target Recognition with Residual Compensation for Circular SAR Imaging.

Electronics 2020, 9, 555. [CrossRef]
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
6. Sze, V.; Chen, Y.; Yang, T.; Ember, J. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017, 105,

2295–2329. [CrossRef]
7. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with

Low Bitwidth Gradients. arXiv 2016, arXiv:1606.06160.
8. Cho, J.; Jung, Y.C.; Lee, S.; Jung, Y.H. VLSI Implementation of Restricted Coulomb Energy Neural Network with Improved

Learning Scheme. Electronics 2019, 8, 563. [CrossRef]
9. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision

Weights. arXiv 2017, arXiv:1702.03044.
10. Lee, E.H.; Miyashita, D.; Chai, E.; Murmann, B.; Wong, S. LogNet: Energy-efficient neural networks using logarithmic computation.

In Proceedings of the IEEE ICASSP, New Orleans, LA, USA, 5–9 March 2017; pp. 5900–5904.
11. Li, F.; Zhang, B.; Liu, B. Ternary Weight Networks. In Proceedings of the NIPS Workshop Efficient Methods Deep Neural

Networks, Barcelona, Spain, 8 December 2016.
12. Jiao, L.; Luo, C.; Cao, W.; Zhou, X.; Wang, L. Accelerating Low bit-width Convolutional Neural Networks with Embedded FPGA.

In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium,
4–8 September 2017.

13. Vita, A.D.; Pau, D.; Benedetto, L.D.; Rubino, A.; Petro, F.; Licciardo, G.D. Low Power Tiny Binary Neural Network with improved
accuracy in Human Recognition Systems. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD),
Kranj, Slovenia, 26–28 August 2020.

14. Vita, A.D.; Russo, A.; Pau, D.; Benedetto, L.D.; Rubino, A.; Licciardo, G.D. A Partially Binarized Hybrid Neural Network System
for Low-Power and Resource Constrained Human Activity Recognition. IEEE Trans. CAS 1 2020, 67, 3893–3904.

15. Courbariaux, M.; Bengio, Y.; David, J. BinaryConnect: Training Deep Neural Networks with Binary Weights during propagations.
In Proceedings of the NIPS, Montreal, QC, Canada, 7–12 December 2015.

16. Courbariaux, M.; Hubara, I.; Soudry, D.; EI-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

17. Rastegary, M.; Ordonez, V.; Redon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks. arXiv 2016, arXiv:1603.05279.

18. Lin, X.; Zhao, C.; Pan, W. Towards Accurate Binary Convolutional Neural Networks. In Proceedings of the Advances in Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

19. Darabi, S.; Belbahri, M.; Courbariaux, M.; Nia, V.P. BNN+: Improved Binary Network Training. In Proceedings of the Learning
Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–10.

20. Simons, T.; Lee, D. A Review of Binarized Networks. Electronics 2019, 8, 661. [CrossRef]
21. Bethge, J.; Bartz, C.; Yang, H.; Chen, Y.; Meinel, C. MeliusNet: Can Binary Neural Networks Achieve MobileNet-level Accuracy?

arXiv 2020, arXiv:2001.05936.
22. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN. In Proceedings of the ACM/SIGDA

International Symposium on FPGA, Monterey, CA, USA, 22–24 February 2017; ACM Press: New York, NY, USA, 2017; pp. 65–74.

http://doi.org/10.1109/ACCESS.2019.2956508
http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.3390/electronics9040555
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.3390/electronics8050563
http://dx.doi.org/10.3390/electronics8060661

Electronics 2021, 10, 230 13 of 13

23. BloTT, M.; Preuber, T.B.; Frased, N.J.; Gambardella, G.; O’brien, K.; Umuroglu, Y.; Leeser, M.; Vissers, K. FINN-R: An End-to-End
Deep-Learning Framework for Fast Exploration of Quantized Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 2018, 11,
1–23. [CrossRef]

24. Fiscaletti, G.; Speziali, M.; Stornaiuolo, L.; Santambrogio, M.D.; Sciuto, D. BNNsplit: Binarized Neural Networks for Embedded
Distributed FPGA-based Computing Systems. In Proceedings of the 2020 DATE, Grenoble, France, 9–13 March 2020; pp. 975–978.

25. Nurvitadhi, E.; Sheffield, D.; Sim, J.; Mishra, A.; Venkatesh, G.; Marr, D. Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC. In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT),
Xi’an, China, 7–9 December 2016; pp. 77–84.

26. Liang, S.; Yin, S.; Liu, L.; Luk, W.; Wei, S. FP-BNN: Binarized Neural Network on FPGA. Neurocomputing 2012, 275, 1072–1086.
[CrossRef]

27. Fu, C.; Zhu, S.; Chen, H.; Koushanfar, F.; Su, H.; Zhao, J. SimBNN: A Similarity-Aware Binarized Neural Network Acceleration
Framework. In Proceedings of the IEEE FCCM, San Diego, CA, USA, 28 April–1 May 2019; p. 319.

28. Ghasemzadeh, M.; Samragh, M.; Koushanfar, F. ReBNet: Residual Binarized Neural Network. In Proceedings of the IEEE FCCM,
Boulder, CO, USA, 29 April–1 May 2018; pp. 57–64.

29. Geng, T.; Wang, T.; Wu, C.; Yang, C.; Song, S.; Li, A.; Herbordt, M. LP-BNN: Ultra-low-latency BNN Inference with Layer
Parallelism. In Proceedings of the 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), New York, NY, USA, 15–17 July 2019; pp. 9–16.

30. Bahou, A.A.; Karunaratne, G.; Andri, R.; Cavigelli, L.; Benini, L. XNORBIN: A 95 TOp/s/W Hardware Accelerator for Binary
Convolutional Neural Networks. In Proceedings of the IEEE Symp. COOL CHIPS, Yokohama, Japan, 18–20 April 2018; pp. 1–3.

31. Lin, J.; Xing, T.; Zhao, R.; Zhang, Z.; Srivastava, M.; Tu, Z.; Gupta, R.K. Binarized Convolutional Neural Networks with Separable
Filters for Efficient Hardware Acceleration. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 27–35.

32. Wang, E.; Davis, J.J.; Cheung, P.Y.K.; Constantinides, G.A. LUTNet: Learning FPGA Configurations for Highly Efficient Neural
Network Inference. IEEE Trans. Comput. 2020, 69, 1795–1808. [CrossRef]

33. Lammie, C.; Xiang, W.; Azghadi, M.R. Training Progressively Binarizing Deep Networks using FPGAs. In Proceedings of the
IEEE ISCAS, Sevilla, Spain, 12–14 October 2020; pp. 1–5.

34. Yonekawa, H.; Nakahara, H. On-Chip Memory Based Binarized Convolutional Deep Neural Network Applying Batch Normal-
ization Free Technique on an FPGA. In Proceedings of the IEEE IPDPSW, Orlando, FL, USA, 29 May–2 June 2017; pp. 98–105.

35. Gu, P.; Ma, H.; Chen, R.; Li, P.; Xie, S.; Wang, D. FBNA: A Fully Binarized Neural Network Accelerator. In Proceedings of the
2018 28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018;
pp. 51–54.

36. Zhou, Y.; Redkar, S.; Huang, X. Deep Learning Binary Neural Network on an FPGA. In Proceedings of the IEEE MWSCAS,
Boston, MA, USA, 6–9 August 2017; pp. 281–284.

37. Conti, F.; Schiavone, D.; Benini, L. XNOR Neural Engine: A Hardware Accelerator IP for 21.6fj/op Binary Neural Network
Inference. IEEE Trans. CAD 2018, 37, 2940–2951. [CrossRef]

38. Rusci, M.; Cavigelli, L.; Benini, L. Design Automation for Binarized Neural Networks: A Quantum Leap Opportunity? In
Proceedings of the IEEE ISCAS, Florence, Italy, 27–30 May 2018.

39. Jung, Y.C.; Cho, J.; Lee, S.; Jung, Y.H. Area-Efficient Pipelined FFT Processor for Zero-Padded Signals. Electronics 2019, 8, 1397.
[CrossRef]

http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1016/j.neucom.2017.09.046
http://dx.doi.org/10.1109/TC.2020.2978817
http://dx.doi.org/10.1109/TCAD.2018.2857019
http://dx.doi.org/10.3390/electronics8121397

	Introduction
	Background
	Binary Neural Network
	BNN Acceleration Hardware

	Proposed Parallelism Scheme
	Proposed Parallelism Scheme of the BNN Accelerator
	Simulation Results
	Target Network Topologies
	Performance Evaluation Results

	Design and Implementation Results
	Hardware Architecture
	Implementation Results
	FPGA Implementation Results
	VLSI Implementation Results

	Conclusions
	References

