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Abstract: Co-speech gestures are a crucial, non-verbal modality for humans to communicate. Social
agents also need this capability to be more human-like and comprehensive. This study aims to model
the distribution of gestures conditioned on human speech features. Unlike previous studies that try
to find injective functions that map speech to gestures, we propose a novel, conditional GAN-based
generative model to not only convert speech into gestures but also to approximate the distribution
of gestures conditioned on speech through parameterization. An objective evaluation and user
study show that the proposed model outperformed the existing deterministic model, indicating
that generative models can approximate real patterns of co-speech gestures better than the existing
deterministic model. Our results suggest that it is critical to consider the nature of randomness when
modeling co-speech gestures.

Keywords: gesture generation; social robots; generative model; neural network; deep learning

1. Introduction

Human-like robots and virtual agents have human appearances, and they are ex-
pected to use both verbal and non-verbal behaviors to communicate, like humans do when
interacting with others. One crucial non-verbal behavior is the use of hand gestures [1,2].
These spontaneous hand movements accompany speech to complement or even supple-
ment the information relayed by a speaker [3]. The modeling of the relationship between
gestures and speech can be incorporated in human-like agents to express themselves
comprehensively.

Recently, machine learning and deep learning have achieved great success in generat-
ing gestures. The related studies mainly aim at optimizing the parameters of a model to
convert speech features into gesture sequences. For instance, the effect of recurrent models
such as gated recurrent unit (GRU) and long-short term memory (LSTM) on mapping mel-
frequency cepstrum coefficient (MFCC) features of speech to gestures has been analyzed in
a study in which a bi-directional LSTM network learned how to map MFCC features to 3D
joint coordinates on a skeleton from a dataset collected using motion capture (MOCAP)
hardware and software [4]. However, these generation methods are based on a strong
assumption: the mapping from speech to gesture is injective, i.e., only one gesture can
be generated by these models for one speech segment. In reality, there are alternatives to
almost any gesture. Numerous examples help to explain this phenomenon, such as using
left, right, or both hands, hands at different heights and radii, and so forth. Additionally,
a human may perform new gestures that have never been performed before. We consider
this randomness to be an essential part of co-speech gestures and thus aim to design a
generative model to incorporate the randomness of co-speech gestures.
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Inspired by the success of generative adversarial nets (GANs) for image generation,
we propose a GAN-based generative model that can convert speech into gestures while
preserving randomness. To optimize the model, we used a discriminator to give dynamic
feedback on the generator results. Furthermore, the effect of mode collapse, which is a
common type of failure in GAN training, is minimized by using the unrolled generative
adversarial net (Unrolled-GAN) algorithm. We experimented with our model on a Japanese
speech/gesture dataset. The evaluation shows that the proposed model can approximate
real gesture distributions better than baseline could. User studies also confirm the proposed
model is effective, showing a significant difference between the results generated by the
proposed model and that of the baseline.

The contribution of this work is three-fold: (1) We propose a novel deep-learning-
based generative model to generate co-speech gestures. (2) We propose a strategy for
changing gesture patterns by manipulating the randomly sampled vector, and we improve
the performance. (3) We confirmed that the proposed model outperformed the existing
deterministic model through objective and subjective experiments.

The rest of this article is organized as follows: In Section 2, we discuss the research
related to the present study. Section 3 briefly mentions the existing methods that are
substantial to our work and describes the details of the proposed model and implementa-
tion. In Section 4, the objective evaluation metrics and user study are explained, and the
obtained results and interpretation are presented. In Section 5, we discuss observations
made during our experiment and the limitations and future directions of our approach.
Our implementation is available at https://github.com/wubowen416/co-speech-gesture-
generation-using-CGAN.

2. Related Work
2.1. Generative Adversarial Nets (GAN)

The essence of GAN is a min–max game between a generator and a discriminator.
While the discriminator is optimized to recognize whether its inputs are sampled from
real data or are fake data generated by the generator, the generator tries to deceive the
discriminator by learning how to generate data that resembles real data. This adversarial
system will reach a Nash equilibrium once the generator learns to generate real data.
Intuitively, this is equivalent to the generator approximating the real data distribution.
Refrerence [5] confirmed this hypothesis by proving that the generator tries to minimize
the Jensen–Shannon divergence between the generated distribution and the real data
distribution when the discriminator is optimal.

Conditional generative adversarial nets (CGAN) can generate an entity in a specific
category [6]. It adds the same conditional labels to both the generator and discriminator.
Mathematically, the distribution to which the GAN’s generator is trying to approximate is
replaced by the conditional distribution conditioned on a specific category. Reference [7]
used CGAN to model head motion with speech as the conditional input.

Mode collapse is a common failure in GAN training, i.e., the generator outputs
identical results for any noise vector from the prior. By unrolling the discriminator, unrolled-
GAN allows the generator to “look into the future” to prevent the discriminator from
overfitting on a specific training sample, thereby reducing the effect of mode collapse [8].

2.2. Gesture Generation

Studies on the generation of human-like gestures for robots started years ago. Early on,
robot gestures were only designed for a few pre-defined scenarios [9]. The first automatic
method was the so-called ruled-based method. A set of human gesture patterns was
recorded as sequences of joint data, and their occurrences were statistically studied in
relation with the lexicon. These results were then summarized as a number of rules to
decide which gesture to select from the recorded database [10]. An advanced rule-based
method was proposed to separately model different parts of the human body to generate
different combinations as a whole [11].

https://github.com/wubowen416/co-speech-gesture-generation-using-CGAN
https://github.com/wubowen416/co-speech-gesture-generation-using-CGAN
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Beyond writing rules, statistical models were also adopted. These models learn co-
occurrences between pre-defined high-level speech features and gesture features from
the collected data. In [12], for example, abstract concepts were selected from speech
text using WordNet. Then, the extracted concepts were mapped to a gesture sample
cluster based on gesture functions (i.e., iconic, metaphoric, and so forth) using data-driven
probabilistic modeling. The prosody peak of the speech was automatically analyzed
to indicate timing and perform a pre-defined beat gesture. The relationship between
iconic gestures and lexicon was automatically learned from the corpus using a Bayesian
decision network [13]. A dynamic Bayesian network was also utilized to model several
meaningful behaviors (e.g., nod) while considering synchronization with speech [14].
The relationship between the prosodic features of speech and rhythmic gestures was
modeled using modified hierarchical factored conditional restricted Boltzmann machines
(HFCRBMs) [15]. Various characteristics of natural language were analyzed to determine
gesture type and posture by using conditional random fields [16]. However, the methods
proposed in these studies require elaborate feature engineering of the data collected from
humans. The shape of the gesture was constrained to those appearing in the collected data
in these studies.

Since data analysis is tedious and time-consuming, machine learning and deep learn-
ing approaches have been utilized to automatically map speech to gestures. A hidden
Markov model was used to generate pointing gestures from audio features [17]. The effect
of recurrent models, such as gated recurrent unit (GRU) and long-short term memory
(LSTM), on mapping Mel-frequency cepstrum coefficient (MFCC) features of speech to
gestures has been analyzed [4,18]. Text has also been used as input to generate meaningful
gestures using sequence-to-sequence neural networks [19]. In [20], text was encoded using
bidirectional encoder representations from transformers (BERT) in order to be concatenated
with audio features to generate gesture sequences. Due to the high dimensionality charac-
teristic of human motion, a denoising autoencoder (DAE) was used to reduce the number
of dimensions of motion to help the neural network to generalize [21]. Reference [22]
made use of labeled gesture phase information to constrain the dynamics of the generated
gestures. The individual style was concerned with separately training different neural
networks with the L1 distance and discriminative loss on a particular person’s data [23].
A style transfer model aimed at generating gestures with a personal style from the voices
of others was also proposed [24]. Relatively few studies have dealt with probabilistic
generation. Reference [25] used MoGlow to generate gestures while controlling the height,
radius, or speed by inputting a control variable. However, this work uses mel-frequency
power spectrograms as speech features, we use solely prosodic features of speech as the
input to the model.

The premise of the above studies is that correlations exist between speech and gesture.
In this study, we generate multiple gesture sequences for one utterance. By treating speech
features as conditional input, we utilized the concept of CGAN, through which a Gaussian
distribution is mapped to the gesture distribution conditioned on the speech features,
and realized a one-to-many mapping from speech to gesture.

3. Materials and Methods
3.1. Problem Formulation

The notation used in the rest of this article is as follows: for a speech segment of
length T, the features extracted from the audio signal are s = [st]t=1:T . The sequence of
absolute positions of each joint in three-dimensional (3D) space is j = [jt]t=1:T , where
jt = [xi

t, yi
t, zi

t]i=1:K , and K is the total number of joints. The problem of generating gesture
from speech can then be defined as to parameterize a model G by a parameter set θ such
that j(m) = Gθ(s(m)). Furthermore, we aim to model the conditional distribution Xj condi-
tioned on the distribution Xs. To achieve this, the model takes a random variable z sampled
from a normal distribution N(0, 1). Thus, the problem becomes one of finding a parameter
set θ such that p(j|s) = Gθ(z|s), j ∼ XG, s ∼ Xs, z ∼ N(0, 1). The error between the param-
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eterized distribution and the real distribution is defined as dist(p(j|s)j∼XG , p(j|s)j∼Xj) to
optimize Gθ . A discriminator parameterized by φ is optimized to be the measurement of
this error. The method of optimizing Dφ and Gθ is discussed in Section 3.3.

3.2. Feature Extraction

The motion data in the corpus is composed of joint rotations and offsets of each joint.
We used the protocol provided in [21] to convert the joint’s rotation values into absolute
position values (APV) in 3D space, which is how our problem is posed in Section 3.1. As the
active movements are mostly of the upper body, we used only the upper body’s APVs as
the training labels.

The speech features used in this study are prosodic features. Prosodic features include
fundamental frequency (f0), intensity, and their first and second derivatives; they reflect
the rhythm of speech. Although MFCC features are frequently used in automatic speech
recognition (ASR), they are not preferred here because the extracted features are used as
conditions in model D. Low-dimensional features are expected to yield better results than
high-dimensional ones, since high-dimensionality conditions will drastically reduce the
number of samples included in that condition. An opensource audio signal processing
package, Parselmouth, was used to extract the intensity and fundamental frequency from
the speech signal. First, 200 frames of every second feature were extracted by using a
window size of 40 milliseconds and hop length of 5 ms. Then, the features are averaged
every ten frames to be 20 frames per second (fps) to match the frame rate of the motion data.

3.3. Methodology

Our model utilizes the architecture of CGAN, where speech features are used as a
condition. An overview is shown in Figure 1.

Figure 1. An overview of the proposed model. For the generator, the output of FC2 is replicated to
have the same time steps with s, and then be concatenated. For the discriminator, the outputs of FC4
are of the same length as s. The concatenation follows the order of the sequence.

During the generating phase, a randomly sampled vector (noise vector) z from the
Gaussian prior is replicated to have the same length as the speech features. Next, z and
speech features are processed by fully-connected layers (FC1 and FC2), respectively; then
they are concatenated and fed into a two-layer bidirectional long-short term memory
(bi-LSTM) [26]. A sequence-wise fully-connected layer then takes the output of the pre-
vious layers and outputs a sequence of vectors indicating each joint’s absolute positions
in 3D space. The reason for replicating a fixed-length random vector instead of sampling
a sequence length wise random vector is that we want to maintain the output motion’s
consistency along the entire sequence. To optimize the generator, we optimize the dis-
criminator simultaneously to compute the error between the generated distribution and
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the real distribution conditioned on speech features. The vector of motion sequence and
the corresponding speech features are concatenated and fed into a two-layer bi-LSTM
layer. The output is squashed between 0 and 1 by using a sigmoid function, and the value
indicates whether the input motion is real and corresponding with the speech features.
Instead of outputting only one scalar for the whole sequence by the discriminator, we prefer
to output one scalar for each time step. The reason for doing so is that although LSTM is
claimed to be capable of capturing long-term dependencies, in practice, its effectiveness
decreases when the sequence grows relatively long. The equation for optimizing generator
and discriminator is

max
D

min
G

1
m

m

∑
i=1

log(D(j(i), s(i)))− log(D(G(z, s(i)), s(i))) (1)

where m is the number of samples, G is the generator, and D is the discriminator, j is the
value of the joint positions, s is the speech features, and z is the noise vector.

In our experiment, we found that each noise vector corresponds with a particular
pattern of motion, i.e., motions with the same pattern are generated when using the same
noise vector throughout the sequence, a result that is not desirable. To increase variations
of the generated motions, we proposed a strategy of generating variating noise vectors for
a certain length of speech sequence. Specifically, multiple independently sampled noise
vectors with the same length are concatenated to be the noise vector input to the model.
The length of the concatenated noise vector is the same as the length of the speech feature
input. The algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm for variating noise vectors.

Require: T, time steps of speech features. F, time of replicating the same noise vector.
1: K ← ceil(T/F) //Compute the number of chunks
2: zs← [z, ..., z]F ∼ N(0, 1) //Sample first chunk of noise vector
3: for 0 to K do //Concatenate sampled noise vector to the first one
4: Sample P ∼ Uni f orm(0, 1)
5: if P > 0.5 then //Replicate the previous noise vector
6: append zs:−F to zs
7: else //Sample another noise vector
8: zs1 ← [z1, ..., z1]F ∼ N(0, 1)
9: append zs1 to zs

10: end if
11: end for

On the other hand, a common failure during GAN training is mode collapse, i.e., the
generator outputs identical results for any noise vector from the prior. In practice, we
found that the algorithm for unrolled-GAN reduced the effect of mode collapse that
appeared in our experiment setting. However, since we used the LSTM layer, the original
unrolled-GAN algorithm will tremendously increase the training time. To avoid this
problem, we simplified the algorithm and found in our experiment that a similar result
was achieved with a shorter training time. Note that we are not claiming that the original
algorithm is replaceable by this simplified version. The proposed algorithm is shown in
Algorithm 2. As a brief explanation, in every iteration, the discriminator is trained once,
and the parameters of the discriminator are stored. Then, the discriminator is trained
multiple times; then, it is used as the loss function of the generator to train the generator
once. Finally, before the iteration ends, the parameters of the discriminator are restored to
the previously stored discriminator parameters.
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Algorithm 2 Algorithm for training the proposed model.

Require: α, the learning rate. kunroll , the unrolling steps. m, the batch size. iteration,
the number of training iterations.

Require: φ0, initial discriminator parameters. θ0, initial generator parameters.
Require: (Xj, Xs), pairs of value of joint positions and speech features.

1: for 0 to iteration do
2: Sample {j(i), s(i)}m

i=1 ∼ (Xj, Xs) a batch from the real data
3: Sample {z(i)}m

i=1 ∼ N(0, 1) a batch from the prior
4: gφ ← ∇φ[

1
m ∑m

i=1 log(Dφ(j(i)|s(i)))− log(Dφ(Gθ(z(i), s(i))|s(i)))]
5: φ← φ + α · gφ //Update discriminator
6: backupφ ← φ //Store this discriminator
7: for 0 to kunroll do //Update discriminator kunroll times
8: Sample {j(i), s(i)}m

i=1 ∼ (Xj, Xs) a batch from the real data
9: Sample {z(i)}m

i=1 ∼ N(0, 1) a batch from the prior
10: gφ ← ∇φ[

1
m ∑m

i=1 log(Dφ(j(i)|s(i)))− log(Dφ(Gθ(z(i), s(i))|s(i)))]
11: φ← φ + α · gφ

12: end for
13: Sample {s(i)}m

i=1 ∼ Xs a batch from the real data
14: Sample {z(i)}m

i=1 ∼ N(0, 1) a batch from the prior
15: gθ ← ∇θ [

1
m ∑m

i=1 log(Dφ(Gθ(z(i), s(i))|s(i)))]
16: θ ← θ − α · gθ //Update generator
17: φ← backupφ //Restore the discriminator before unrolling
18: end for

3.4. Corpus

We evaluated our model on the dataset proposed in [27], in which pairs of recorded
audio and motion are provided. The content is an undergraduate student answering
questions in Japanese like in an interview while standing and gesturing. The motion data
were recorded using a motion capture studio. The motion data files contain information
on the offset and rotation of each joint, from which each joint’s absolute position can be
derived. The audio is saved as WAV files (sampling rate 22,050 Hz, 16 bits). There are
1049 sentences in this dataset: 68.41% are metaphoric gestures, 23.73% are beat gestures,
and others are iconic and deictic gestures. The dataset is 298 minutes long.

3.5. Implementation

Since the motions are represented as absolute positions in 3D space, the means and
variances of each joint’s values are considerably different, which can drastically decrease
the model’s performance. Therefore, we performed a min–max scaling strategy on the
motion features by using Equations (3) and (4) to squash the feature within the range of
−1 to 1. The speech features were also scaled using Equations (3) and (4) to be compatible
with the motion features in terms of the values’ size. Note that the scaling was performed
using parameters calculated only from the data in the training set.

Xstd = (X− Xmin)/(Xmax − Xmin) (2)

where Xmin and Xmax are calculated from the split training set.

Xscaled = Xstd × 2− 1 (3)

Numerous studies on gesture generation cut the gesture sequence into several slices
to approximate the effect of data augmentation. Instead, we used the entire sequence of
speech and motion as samples. The hyper-parameters for training the proposed model
used in our experiment are listed in Table 1. The number of nodes of the proposed model
is detailed in Table 2. The Adam optimizer was used to update the parameters. The initial
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parameters of all layers were drawn from a Gaussian distribution with 0 mean and 1
variance. We saved the trained model every ten iterations and generated samples using
speech utterances in the test set. After assessing the quality of these generated results, we
chose the generator of the 1000 iteration.

Table 1. Hyper-parameter settings of training.

Hyper-Praram Value

Iterations 2000
Batch size 32

Learning rate for G 10−4

Learning rate for D 10−4

Unrolling steps 10
Beta for optimizer (0.9, 0.999)

Table 2. Number of nodes of the proposed model.

Layer Number of Nodes

FC1 64
FC2 64

2 layer bi-LSTM(G) 128
FC3 33
FC4 64
FC5 64

2 layer bi-LSTM(D) 128
FC6 1

4. Results
4.1. Baseline

To compare the proposed model with the deterministic generation method, the model
proposed in [21] was selected as a baseline. We used the protocol provided by the authors
and reproduced the reported results. We cut the upper body motion generated using the
baseline model in order to make the comparison. Since the dataset for the baseline model
is already split into training, development, and test sets, we used the split test set for the
evaluation. There are 45 samples in the test set.

4.2. Quantitative Evaluation

It is common for a deterministic model to use the L1 distance or average position error
(APE) to evaluate the generated results. Since our motivation is to model the distribution
of gestures, it is not appropriate to evaluate the precision of generated key points in
comparison with the ground truth. Instead, kernel density estimation (KDE) is a useful
tool for approximating the distribution of the data; it was used in [5] for image generation
and in [7] for head motion generation. The output of KDE is the log-likelihood of the input
samples based on the fitted density function using reference samples. In this study, we
used the generated gesture sequences from the speech input in the test set to fit the density
function and used the ground truth as the input of KDE. Therefore, as the output value
tends to 0, the generator better fits the real data distribution.

We used Algorithm 1 to generate one motion sequence for every speech sample in the
test set. The generated motions were used to fit a distribution. The optimal bandwidth in
the KDE model was obtained using a grid search with 3-fold cross-validation. Then, the log-
likelihood of the real motions in the test set was calculated using the fitted distribution.
We also studied how F in Algorithm 1 affects the results. The results are shown in Table 3.
The values are the average of five calculations.
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Table 3. Quantitative comparison between models. Ground truth is the log-likelihood of real motions
in the test set in the kernel density estimation (KDE) distribution fitted using the ground truth itself,
indicating the best results that can be expected. * uses replicated noise vectors to generate motions.
** jointly uses the proposed model and the proposed Algorithm 1.

Model Log-Likelihood Standard Error

Ground Truth −29.98 1.03

Baseline [21] −508.82 87.61
CGAN * −245.67 44.72

Unrolled-CGAN * −118.91 17.03

Proposed (F = 20) ** −177.86 29.36
Proposed (F = 30) ** −161.30 26.78
Proposed (F = 40) ** −107.58 15.21
Proposed (F = 50) ** −107.98 15.77
Proposed (F = 60) ** −126.20 19.01

4.3. Motion Dynamics Distribution

Motion dynamics (i.e., velocity) are imperative to human perception. As we aim to
model the distribution of human gestures, one reason that the proposed model outperforms
the baseline model is assumed to be that the velocity distribution of the motion generated
by the proposed model is more similar to the ground truth than the baseline model is. We
confirmed this assumption by plotting the histogram of the average velocity of all joints,
shoulder, wrist, and hand: the histograms of the proposed model were more similar to
the ground truth than those of the baseline, while the hand velocity distributions of both
methods were comparable to the ground truth (Figure 2).

(a) (b)

(c) (d)

Figure 2. (a) Histogram of average velocity over all joints. (b) Histogram of velocity of shoulders.
(c) Histogram of velocity of elbows. (d) Histogram of velocity of hands.
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4.4. User Study

The ultimate goal of gesture generation is to generate human-like motions. Here, we
conducted a user study to subjectively evaluate the motions generated by the baseline and
the proposed model against the ground truth. The Likert scale in the baseline paper was
used to evaluate motions on three different scales based on three specific statements for
each (Table 4).

Table 4. Likert scale used in the user study.

Scale Statements (Translated from Japanese)

Gesture was natural
Naturalness Gesture was smooth

Gesture was comfortable

Time Gesture timing was matched to speech
Consistency Gesture speed was matched to speech

Gesture pace was matched to speech

Gesture was matched to speech content
Semantics Gesture well described speech content

Gesture helped me understand the content

Before the evaluation, participants viewed three ground-truth videos to help them
understand the real motions that would be played. The first part of the questionnaire
was a ranking task. We prepared 12 sets, three videos within each set. There were four
sets for ranking (1) the baseline and full proposed model, (2) CGAN with or without
unrolling, and (3) the ground truth, baseline, and full proposed model. After watching a
set of videos, participants were asked to rank the gesture depicted in the videos in order
of naturalness. The second part was to assign a score to each statement within each scale.
This part compared the baseline, ground truth, and the proposed model. After watching
each video, participants were asked to assign a score to each statement. The value ranged
from (0) to (7), where (0) indicates strongly disagree and (7) indicates strongly agree. There
were five videos for the baseline, ground truth, and the proposed model, and the score for
each scale was the average of three scores of the statements. As a result, five scores for each
subject were obtained on each scale in Table 4 from one participant. Proposed (F = 40) was
used to generate videos for the full proposed model.

(a) (b)

Figure 3. (a) Age distribution of participants. (b) Scores of each scale for different models. **: p < 0.002.

We recruited 38 participants (19 male, 19 female, all native Japanese speakers, average
34 years old) through a cloud sourcing service. Analysis of variance (ANOVA) was
conducted to test the difference between the three groups’ scores. All three scales passed
the ANOVA test with p < 0.001. Tukey’s honestly significant difference test (Tukey HSD)
was conducted to test if there was a significant difference pairwisely. For the naturalness
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scale, there was a significant difference between the baseline (M = 3.51, SE = 0.09) and the
full proposed model (M = 4.41, 0.08), p < 0.002, and between the baseline and the ground
truth (M = 4.27, SE = 0.08), p < 0.002. There was no significant difference between the full
proposed model and the ground truth, p = 0.46. For the time consistency scale, there was
a significant difference between the baseline (M = 3.82, SE = 0.08) and the full proposed
model (M = 4.28, 0.08), p < 0.002, and between the baseline and the ground truth (M = 4.38,
SE = 0.08), p < 0.002. There was no significant difference between the full proposed model
and ground truth, p = 0.65. For the semantics scale, there was a significant difference
between the baseline (M = 3.64, SE = 0.08) and the full proposed model (M = 4.23, 0.08),
p < 0.002, and between the baseline and the ground truth (M = 4.33, SE = 0.08), p < 0.002.
There was no significant difference between the full proposed model and the ground truth,
p = 0.68. The age distribution and scores on the scales are shown in Figure 3. These results
indicate that the motions generated by the full proposed model were perceived as more
natural than those of the baseline and were similar to the ground truth. The ranking tasks
revealed similar results (Figure 4).

(a)

(b)
Figure 4. (a) Ranking of results of baseline and proposed model with two different noises. (b) Ranking
of baseline, proposed model, and ground truth.

5. Discussion
5.1. Inappropriateness of Using Euclidean Distance as a Loss Function

There are mainly two reasons that the Euclidean distance, i.e., L1-distance or L2-
distance, is not suitable for the gesture generation task. Firstly, motion may be realistic
even though the Euclidean distance gives a large error; for example, suppose that the
ground truth is a gesture with the left hand and the generated gesture is a mirror symmetry
of the ground truth performed by the right hand. It is not reasonable to punish such
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realistic motions simply because they are not identical to the ground truth because of the
randomness of human gestures. Secondly, the Euclidean distance tends to ignore small
unrealistic parts of motions, underestimating the error. For example, even if one frame is
modified to be unrealistic for a real motion sequence, the Euclidean distance will still give
a relatively low error since most of the sequence is correct. This is inconsistent with human
perception because humans immediately notice unrealistic motions.

Instead of using the Euclidean distance as the loss function, the GAN architecture gives
the error by looking at a low-dimensional manifold, i.e., the output of the last hidden layer
of the discriminator. Specifically, the discriminator judges whether the low-dimensional
manifold of the generated samples is similar to that of the real samples, thus preventing
the motion from being unrealistic while allowing more variation in the generated motion.
Another benefit of this approach is that by interpolating on a low-dimensional manifold,
realistic motions that are not in the dataset can be generated.

5.2. Unrolling for More Variation

Since we input a noise vector, by manipulating it, we can interpolate among motions
and thereby generate new gestures that are not in the dataset. However, the ranking results
shown in Figure 5 indicate that the CGAN without unrolling was as natural as CGAN with
unrolling, and better than not using prosody input in the discriminator. This similarity is
probably because the generated results of CGAN are already human-like compared with
the proposed model, even though the generated motions of CGAN without unrolling are
all the same pattern. The ranking task designed in the questionnaire cannot discriminate
between performing the same pattern all the time and changing patterns occasionally.
Intuitively, always performing the same pattern is not human-like while occasionally
changing patterns is human-like.

Figure 5. Ranking of the results of the proposed model, the conditional generative adversarial nets
(CGAN) model, and model without prosody input for the discriminator.

5.3. The Role of the Noise Vector

To investigate the effect of changing the noise vector, we input a 5-second-long sinu-
soidal wave to the proposed model. Through the prosodic feature extraction, there were a
total of 139 frames of speech features, as well as the generated motions.

The noise vector controls the motion pattern. The results in Figure 6 show that the
proposed model can be a controller of the movement pattern. Although we have not
investigated much on this topic, disentanglement of the noise vector in the proposed model
is worthy of future investigation.
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Figure 6. Motions generated using different noise vectors on the same utterance.

We expect that noise can maintain gesture patterns across the whole utterance, i.e., the
same pattern shifts according to the prosodic peak in the utterance. By shifting the phase
of the sinusoidal signal and plotting the generated results, shifting effects appear as the
shifts in the apex of a gesture as the prosodic peak shifts, as shown in Figure 7.

Figure 7. Results generated from shifting speech inputs. The y-axis is two generated results. For the
first row, the signal starts at 1 s and ends at 4 s. For the second row, the signal starts at 3 s and ends at 6 s.

5.4. The Role of Prosody as a Condition

Since the prosodic features we used are the fundamental frequency and intensity, we
generated motions with different f0 and intensity condition inputs to investigate their effect
on the generated gesture. According to [28,29], f0 and intensity are correlated with the
heights of the hands and size of the motion. Thus, here, we focused on the heights of the
hands and the size of the motion.

The reference values of f0 were set to 100, 150, 200, and 250 Hz. First, a sinusoidal
wave signal of a certain f0 was generated. Then, using the trained model, motion sequences
were generated. The corresponding results are shown in Figure 8. It is clear that the size
becomes larger and the height of the hand becomes higher as f0 increases. Correlations
were also observed between intensity and the heights of hands and the size of motion
(Figure 9).
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Figure 8. Results generated from different f0s. The x-axis is the time step of the generated frames (1,
15, 30, 45, 60, 75, 90, and 105 from left to right). The y-axis corresponds to different f0s, i.e., 100, 150,
200, and 150 Hz.

Figure 9. Results generated from different intensities. The x-axis is the time step of the generated
frames (1, 15, 30, 45, 60, 75, 90, and 105 from left to right). The y-axis corresponds to the amplitude of
the sinusoidal signal, i.e., 40, 60, 75, and 90 dB.

6. Conclusions

Human-like agents play an important role in human–computer interaction, and it
is crucial to equip them with the capability of gesturing so that they can be expressive.
We presented a model for producing co-speech gestures by modeling the conditional
distribution of gestures conditioned on speech features. Incorporating unrolled-GAN and
our proposed algorithm, our model outperformed the existing deterministic model in
objective and subjective evaluations. Our work provides a powerful tool for human-like
agents to express thoughts, thereby enhancing human–computer interactions. Moreover,
the success of the distributional modeling revealed that future research in this field should
focus more on gesture distribution. Human-like agents should be widely used in HCI.
However, without the ability to gesture well, they are too inexpressive to be understood or
empathized with by humans. Though our gesture generation model performs better in
terms of naturalness and time consistency, the lack of semantics (i.e., meaningful gestures)
is still a considerable obstacle to perfect modeling of human gestures; further research
should focus on developing a model with semantically meaningful gestures.
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