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Abstract: In CMOS integrated circuit (IC) design, operational amplifiers are one of the most useful
active devices to enhance applications in analog signal processing, signal conditioning and so on.
However, due to the CMOS technology downscaling, along the very large number of design variables
and their trade-offs, it results difficult to reach target specifications without the application of opti-
mization methods. For this reason, this work shows the advantages of performing many-objective
optimization and this algorithm is compared to the well-known mono- and multi-objective meta-
heuristics, which have demonstrated their usefulness in sizing CMOS ICs. Three CMOS operational
transconductance amplifiers are the case study in this work; they were sized by applying mono-,
multi- and many-objective algorithms. The well-known non-dominated sorting genetic algorithm
version 3 (NSGA-III) and the many-objective metaheuristic-based on the R2 indicator (MOMBI-II)
were applied to size CMOS amplifiers and their sized solutions were compared to mono- and multi-
objective algorithms. The CMOS amplifiers were optimized considering five targets, associated to
a figure of merit (FoM), differential gain, power consumption, common-mode rejection ratio and
total silicon area. The designs were performed using UMC 180 nm CMOS technology. To show
the advantage of applying many-objective optimization algorithms to size CMOS amplifiers, the
amplifier with the best performance was used to design a fractional-order integrator based on OTA-C
filters. A variation analysis considering the process, the voltage and temperature (PVT) and a Monte
Carlo analysis were performed to verify design robustness. Finally, the OTA-based fractional-order
integrator was used to design a fractional-order chaotic oscillator, showing good agreement between
numerical and SPICE simulations.

Keywords: CMOS operational transconductance amplifier; Monte Carlo; PVT analyses; fractional-
order integrator; fractional-order chaotic oscillator; particle swarm optimization; many optimizing
liaison; differential evolution; non-dominated sorting genetic algorithm; many-objective metaheuris-
tic based on the R2 indicator; multi-objective evolutionary algorithm with decomposition

1. Introduction

In terms of the optimal sizing of CMOS analog integrated circuits (ICs), it remains a
challenge to accomplish target specifications and, during recent years, metaheuristics have
shown their usefulness in this task. For instance, some recent mono-objective metaheuris-
tics applied in the optimization of analog ICs can be found in [1–5] and some multi-objective
metaheuristics can be found in [6–9]. Nevertheless, the design of ICs using CMOS technol-
ogy, especially in the analog domain, remains a complex process due to the many design
variables, constraints and trade-offs among them. For that reason, this work shows the
appropriateness of applying many-objective optimization algorithms to improve both
fitness functions and trade-offs and the sized solutions are compared with those obtained
with mono-objective and multi-objective optimization methods.
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Metaheuristics, as optimization algorithms, have demonstrated to be a good option
to size CMOS analog ICs, because they are suitable for global optimization; in addition,
they support circuit simulators such as SPICE (simulation program with integrated circuit
emphasis) within their optimization loop, to evaluate the circuit’s electrical character-
istics. Due to these advantages, some researchers have implemented metaheuristics to
enhance the performance of CMOS analog ICs. For instance, the authors in [10] applied the
mono-objective metaheuristics known as ant colony optimization (ACO) and the artificial
bee colony (ABC) algorithms to size a CMOS cascode short-channel low-noise amplifier;
in [11], the authors applied the gray wolf optimization (GWO) algorithm and the well-
known particle swarm optimization (PSO) to improve the yield of an active analog filter
and, in [1], the authors applied a PSO algorithm and many optimizing liaisons (MOLs) to
size CMOS transconductance operational amplifiers (OTAs). On the side of multi-objective
optimization, the representative algorithms are known as the non-dominated sorting ge-
netic algorithm version two (NSGA-II) and the multi-objective evolutionary algorithm
with decomposition (MOEA/D), which have been the most widely applied to size CMOS
amplifiers [12], to minimize layout parasitics [13,14], to size oscillators [15] and, as applied
by some authors, to modify the handling of constraints [16].

Although multi-objective metaheuristics have shown their usefulness by optimizing
two or three objectives simultaneously, they have many difficulties in finding feasible
solutions when the number of target specifications or objectives increase [17]. In addition,
on similar optimization problems, usually they fail when trying to take full advantage on
the knowledge transfer in order to accelerate convergence for the search process, or they
may easily get trapped in a solution that is a local optimum [18]. To cope with these
problems, this work shows the appropriateness of applying many-objective metaheuristics
to size CMOS OTAs considering more than four objectives. More specifically, we show the
application of NSGA-III and the many-objective metaheuristic based on the R2 Indicator
(MOMBI-II) for the optimal sizing of three OTAs, taken as a case study, considering a figure
of merit (FoM) [19,20]. In this work, we show that many-objective metaheuristics provided
better sizing solutions than the mono-objective and multi-objective algorithms. Herein,
the mono-objective optimization was performed by applying PSO, MOL and differential
evolution (DE). The objective function considers an FoM that associates several target
specifications and other parameters, such as differential gain (DCGain), phase margin
(PM), common-mode gain, common-mode rejection ratio (CMRR), slew rate (SR), power
supply rejection ratio (PSRR), power consumption, silicon area and output swing voltage,
which are handled as constraints. The multi-objective sizing optimization was performed
by applying NSGA-II and MOEA/D and considering three objective functions, namely,
FoM, DCGain and power consumption. Finally, the many-objective sizing optimization
was performed by applying NSGA-III and MOMBI-II and considering five objectives, such
as FoM, DCGain, power consumption, silicon area and CMRR.

This paper is divided in nine sections whose contents include the following: Section 2
is devoted to show the three OTAs taken as a case study, the problem formulation and
the constraints for each OTA. The main aspects of the mono-, multi- and many-objective
algorithms are detailed in Sections 3–5, respectively. The handling of the design variables
and constraints of the OTAs are described in Section 6, where we provide the pseudo-codes
of NSGA-III, MOMBI-II and MOEA/D. The sized solutions provided by the metaheuristics
for the three CMOS OTAs are listed in Section 7. In Section 8, the best-sized OTA is used
in the CMOS design of a fractional-order chaotic oscillator (FOCO), where we highlight
the good agreement between SPICE and MatLab simulations. This work summarizes the
conclusions in Section 9.

2. Formulation of the Sizing Problem

As already discussed in [21], CMOS OTAs have demonstrated their usefulness in the
design of analog signal processing systems. However, due to the growing advancement
in the architecture of analog designs, the target specifications have become more difficult
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to achieve; therefore, the analog IC design problem is quite suitable for applying meta-
heuristics. Recent OTA design issues include requirements such as low power [22], low
voltage [23], improved linearity, high CMRR, high gain, high GBW and robustness to varia-
tions to enhance applications in active filters [24], sensor conditioning [25], bio-medical
signal amplification [26] and radio frequency (RF) [27].

Among the currently available OTA topologies, this work is focused on sizing the
CMOS ones shown in Figure 1. The topology given in Figure 1a shows a simple differential
amplifier. Figure 1b shows a single-stage OTA and Figure 1c shows the recycled folded-
cascode (RFC) OTA proposed in [28], which is a modification from [29], to double the slew
rate (SR). All the OTAs have a differential input stage with source degeneration, which
allows us to adjust the transconductance (gm) and improve linearity [30], which is required
to design an FOCO by using biquadratic OTA-filters. The variable resistors shown in
Figure 1 were designed using two P-MOS transistors connected by their gates, as shown in
Figure 2.

(a) Differential pair.
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(b) One-stage OTA.

(c) Recycled folded cascode OTA.

Figure 1. CMOS OTAs with source degeneration to improve linearity and allow gm to be programmed.
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Figure 2. P-type MOS transistors used to design the variable resistors shown in Figure 1.

CMOS OTAs are characterized using an FoM, while other performances and con-
straints are included according to the application of mono-, multi- and many-objective
metaheuristics. The FoM that is considered in this work is given in (1), where the subindex
s means small signal. For the many-objective optimization FoMs, DCGain and CMRR were
maximized and power consumption and total silicon area were minimized. During the
sizing optimization process, the design variables were the channel width (W) and length
(L) of all transistors and the value of the bias current (Ib), which were updated within a
SPICE netlist-file. These design variables and the control voltage (Vc) were encoded into a
vector x ∈ Rn, where n represents the problem’s dimension. The vector was defined by
x = [a1, a2, ..., an] and each design variable was bounded to the values ai ∈ [2 µm, 1000 µm]
for Wi, ai ∈ [2 µm, 10 µm] for Li, ai ∈ [10 µA, 100 µA] for Ibi

and ai ∈ [−0.9 v, 0.9 v] for Vci .
Finally, each constraint was handled as g(x) ≥ 0.

FoMs =
GBW × CL

Ib
(1)

The sizing optimization problem for the OTAs can then be defined as follows:

Search: Widths (Wi) and lengths (Li) of each MOS transistor and bias current (Ibi
)

of a CMOS OTA in order to:
Maximize: FoMs(x), DCGain(x), CMRR(x), -Powerconsumption(x),
-TotalMOSarea(x).
Subject to: DC gain ≥ 60 dB, PM ≥ 45◦, CMRR ≥ 60 dB, PSRR ≥ 60 dB,
SR ≥ 1 V/µs, VDS ≥ 3(VGS −VTH) for each MOS transistor and power consump-
tion ≤ 5 mW.

Other inherent constraints that depend on the circuit’s topology were considered, such
as, in a differential pair, the W/L sizes of both transistors were equal, as well as some MOS
transistors had to be equal when they were part of a current mirror with unity gain.

3. Mono-Objective Algorithms

Mono-objective optimization metaheuristics have the goal of finding the best mini-
mum or maximum value, which corresponds to the solution of a single objective function.
The sizing of an analog IC by a mono-objective algorithm provides information on the
nature of the optimization problem, but, generally, the algorithm does not provide a set
of workarounds that interchange different objectives with each other. However, it is well
known that a single-objective metaheuristic provides a final solution or a set of solutions
that are really good [31]. In this paper, we applied mono-objective metaheuristics, such as
PSO, MOL and DE, to size the OTAs given in Figure 1.

3.1. PSO Algorithm

PSO is a metaheuristic that performs an iterative optimization based on the social
behavior of birds or fishes and it is based on the mathematical models given in (2) and (3) [32].
PSO’s behavior is based on a random initialization of a set of particles whose search space was
defined and bounded in this work. This process is intended to give favorable initial position
and velocity to the particles. The random initialization and the mathematical models given
in (2) and (3) allow to change the particles’ position at every iteration and depending on the
value of some random parameters, the velocity is adjusted. In this manner, both the position



Electronics 2021, 10, 3148 5 of 23

pi and velocity vi are updated until a stop criterion is met. In the updating equations pbest
and gbest provide information on the particle’s best position and best global position that
is measured among all particles. The parameter rand() returns a random and uniform real
value between 0 and 1. The constant parameter c1 denotes the confidence of a particle and c2
denotes its confidence in the swarm. In this paper, we set the constant parameter c1 and c2
equal to 2, as recommended in [33].

vi = vi + c1rand()(pbest − pi) + c2rand()(gbest − pi) (2)

pi = pi + vi (3)

3.2. MOL Algorithm

Basically, the MOL algorithm is a simplified version of PSO. It is derived from the
original behavior of PSO, but, in this case, MOL neglects the best position of a particle [34].
This is conducted by eliminating pbest in (2), which updates to (4), meaning that there
is more communication among the particles [35]. Therefore, the MOL algorithm tends
to have a purely social behavior, since each particle follows the best among all without
looking for another solution on its own. In addition, having a simplified model makes it
easier to select the parameters in MOL, which is not easy in PSO. One of these parameters
is the inertia weight (w), which is related to facilitating the particles to find better solutions
by exploring different directions throughout the values in the search space. In this paper,
the parameters in MOL were set to w = 0.95 and c2 = 2.

vi = wvi + c2rand()(gbest − pi) (4)

3.3. DE Algorithm

DE belongs to the class of evolutionary algorithms (EA) that are based on the concepts
of the theory of evolution of species proposed by Darwin. DE has two main steps [36], ini-
tialization and evolution. In the initialization phase, the population is randomly generated
within a determined search space. In the evolution phase, the current population is handled
by performing genetic operations, such as mutation, crossover and selection processes,
that are executed in the optimization loop until a determined number of generations or
a stop criterium is met. Some of the most important advantages of DE are: its simplicity
of programming, versus other EAs; its much better performance, considering correctness,
speed of convergence and robustness; and the fact that the script can be coded in relatively
few lines and that the complexity of the search space is low, considering similar EAs [37].

After the initialization of the population, each individual is mutated and then a new
solution vij is generated from three randomly selected parents, as given in (5). Thereafter,
the crossover operation is executed to create a new solution considered as a trial solution,
as described in (6). This crossover operation is executed taking a target xij and a mutant
vector vij, with a probability value Pc between 0 and 1. The weighting factors Pm and Pc
are the mutant and crossover probability, respectively. Finally, a replacement is carried
out by elitist selection, in which the target and trial vectors are compared considering the
fitness values. The individual with better fitness is taken and it survives to perform the
same optimization process that follows in the next generation, as described in (7). In DE
the mutation, crossover and selection process are executed at each generation until a stop
criterion is met.

vj = xr3j + Pm(xr1j − xr2j) (5)

uj =

{
vj if rand() < Pc or j = jrand
xj otherwise

(6)

xi =

{
ui if f (ui) < f (xi)
xi otherwise

(7)
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4. Multi-Objective Algorithms

In a given optimization problem, if one can observe that the targets are in conflict
with each other, then the solution can be obtained by applying multi-objective metaheuris-
tics. That is, if one objective improves, the other deteriorates and vice versa. The most
representative multi-objective metaheuristics are NSGA-II and MOEA/D.

4.1. NSGA-II Algorithm

NSGA-II was proposed by Kalyanmoy Deb in 2002 [38], as a version that improved the
original NSGA proposed by Goldberg [39], in which an initial population is partitioned into
fronts according to a non-dominance criterion. NSGA-II performs an iterative optimization
process, starting from an initial population or a set of individuals; after an evaluation,
the individuals with better fitness are selected as parents and evolve according to the
concept of natural selection applying genetic operators, such as crossover, mutation and
selection, to generate new offsprings. This process is called generation and is repeated until
a stop criterion is met.

Its main characteristics are fast non-dominated sorting, computational complexity in
the order of O(MN2), fast ranking function, crowding distance assignment and elitism.
It determines a rank value that considers the number of individuals that dominates each
solution. NSGA-II performs crowding distance to keep the solution’s diversity in the Pareto
front to ensure that each feasible solution is kept at a good crowding distance. The elitism
is an operator that executes the fast non-dominated sort approach and crowding distance
and selects the individual with the highest ranking.

4.2. MOEA/D Algorithm

MOEA/D is an EA introduced in 2006 [40]. It transforms a multi-objective optimiza-
tion problem into a set of single optimization problems. Each subproblem is associated
to an individual solution and all of them are simultaneously optimized and quantified
using utility functions, weight vectors and a reference point. In general, each subproblem
is evaluated using only the information of its neighbors as a mechanism of elitism. This
characteristic allows us to reduce the computational complexity without affecting the
performance and even outperforms NSGA-II.

5. Many-Objective Algorithms

The optimization of problems with more than three objectives is an open research
area and shows a great opportunity to improve its performance. The definition of many-
objective optimization was introduced by Purshouse and Fleming [41] after observing that
multi-objective algorithms based on Pareto optimality presented serious problems as the
number of objectives increased.

5.1. NSGA-III Algorithm

NSGA-III is a many-objective metaheuristic proposed in 2013 [42], where, unlike
NSGA-II, the solution’s diversity among all individuals in the population is enhanced by
supplying and adaptively updating a number of well-spread reference points. According
to [43], NSGA-III has a similar framework to NSGA-II, the only difference being the
inclusion of representative changes in the selection process. The operations are executed
as follows: First, the parent population is randomly initialized; afterwards, the binary
tournament selection, crossover and mutation genetic operations take place to generate
an offspring population. In the next step, both populations are combined to duplicate the
number of individuals that are sorted taking into account their domination level. Half of
the best individuals in the combined population are selected to update the population that
becomes parent one, ready to execute the same genetic operations in the next generation.
The selection process starts with a set of reference points, which are generated by spanning
a hyperplane with unit intercepts associated to the objective axis by applying the method
for normal boundary intersection, as detailed in [44].
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5.2. MOMBI-II Algorithm

MOMBI-II was proposed by Raquel Hernández in [45] and performs a hierarchical
ranking of the individuals of a population. MOMBI-II is a metaheuristic capable of handling
two or more objectives, since it uses indicators as a selection mechanism to keep the
solution’s diversity and also serves, during the optimization process, as a guide for the
search or as a stopping criterion. The R2 indicator is a very reliable approach that is
useful for problems formulated with multi- and many-objective metaheuristics. It is also
suitable to compare approximations of different multi-objective optimizers by means of
utility functions. One of the main advantages of the R2 indicator is the low computational
cost and the compatibility with the Pareto front. Therefore, MOMBI-II has the advantage
to optimize problems formulated with objectives higher than three and without having
problems with Pareto dominance.

6. Sizing OTAs by NSGA-III, MOMBI-II and MOEA/D

The pseudo-codes provided in [46] were modified to maximize FoMs, differential
mode gain and CMRR and minimize the power consumption and the total MOS area.
In Algorithms 1–3, the adaptations of the NSGA-III, MOMBI-II and MOEA/D algorithms
are shown, respectively. All the algorithms linked SPICE to evaluate the circuit characteris-
tics related to the objective functions, taken from the ∗.lis output file generated by SPICE,
and, to reduce execution time, the command .MEASUREMENT was used within the input
file ∗.sp.

The ∗.sp SPICE input file was encoded by means of subcircuits to perform a direct
current (.DC), alternating current (.AC) and transient (.TRAN) analyses. In addition,
to avoid modifying this file at each generation, a ∗.lib file was linked with the original
netlist. This ∗.lib file had the design variables W, L, Ib and Vc. Therefore, the variables
obtained from the NSGA-III, MOMBI and MOEAD algorithms were replaced within the
∗.lib file without compromising any analysis in the ∗.sp file.

Algorithm 1 NSGA-III.
procedure NSGA-III(P, Gen, Pc, Pm)

Create an SPICE netlist of the OTA being optimized

for i = 1 : P do

Initialize the variables of design W, L, Ib and voltage control (Vc), in a random fashion.

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Normalize objectives and create reference

Compute niche count of reference point

Assign rank based on non-dominated sort

end for
for it = 1 : Gen do

for i = 1 : P do

Perform binary tournament selection

Produce offspring using crossover (Pc) and mutation (Pm) genetic operators

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Normalize objectives and create reference

Compute niche count of reference point

Perform a fast non-dominated sorting ranking and crowding distance assignment

Select and update the best individuals

end for
end for

end procedure
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Algorithm 2 MOMBI-II.
procedure MOMBI(P, Gen, Pc, Pm)

Create an SPICE netlist of the OTA being optimized

for i = 1 : P do

Initialize the variables of design W, L, Ib and voltage control (Vc), in a random fashion.

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Calculate L1 and L2 norms

Execute R2 ranking indicator

end for
for it = 1 : Gen do

for i = 1 : P do

Perform tournament selection

Produce offspring using crossover (Pc) and mutation (Pm) genetic operators

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Execute R2 ranking indicator

Reduce and update the population

end for
end for

end procedure

Algorithm 3 MOEA/D.

procedure MOEA/D(P, Gen, Pc, Pm)

Create an SPICE netlist of the OTA being optimized

for i = 1 : P do

Initialize the variables of design W, L, Ib and voltage control (Vc), in a random fashion.

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Calculate the nearest neighbor and the reference point

end for
for it = 1 : Gen do

for i = 1 : P do

Produce offspring using crossover (Pc) and mutation (Pm) genetic operators.

Update the design variables values in the SPICE netlist ∗.lib
Evaluate the electrical characteristics of the OTAi that are saved in the SPICE file (∗.lis)

Update the reference point

Select the individual with better fitness

end for
end for

end procedure

The optimization process is generally the same for each algorithm; for all of them,
it is necessary to specify the number of individuals (P), generations (Gen), crossover
constant (Pc), mutation constant (Pm), number of design variables, restrictions and limits
for each design variable. However, each algorithm has its own method of sorting, ranking
and selecting the best individuals.

7. Optimal Solutions Applying Mono-, Multi- and Many-Objective Metaheuristics

A sized solution provided by a metaheuristic is said to be feasible when it achieves all
the target specifications. This section summarizes the sizing of the OTAs applying PSO,
MOL and DE as mono-objective; NSGA-II and MOEA/D as multi-objective; and NSGA-III,
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MOEA/D and MOMBI-II as many-objective metaheuristics. The mono-objective sizing
optimization considered the FoM described in Section 2 as the single objective function,
with the other electrical characteristics as constraints. The multi-objective sizing considered
the optimization of three objectives simultaneously, namely, FoM, DC Gain and power
consumption. The many-objective optimization process included five objectives: FoM, DC
Gain, power consumption, CMRR and the total MOS area. For each metaheuristic 10 runs
were executed, with 100 generations and a population equal to 70 individuals/particles to
size the OTAs shown in Figure 1. The target specifications are listed in Table 1.

Table 1. Target specifications for the sizing of the OTAs shown in Figure 1.

Topology Differential Pair One-Stage OTA RFC OTA

UMC CMOS technology 0.18 µm 0.18 µm 0.18 µm
Voltage supply (V) ±0.9 ±0.9 ±0.9

CL (pF) ≥5 ≥5 ≥5
DC Gain (dB) ≥60 ≥60 ≥60
GBW (MHz) ≥10 ≥10 ≥10

PM (º) ≥50 ≥50 ≥50
CMRR (dB) ≥60 ≥60 ≥60
SR+ (V/µs) ≥5 ≥5 ≥5
SR− (V/µs) ≥5 ≥5 ≥5
PSRR+ (dB) ≥60 ≥60 ≥60
PSRR− (dB) ≥60 ≥60 ≥60

Power consumption (mW) ≤5 ≤5 ≤5
Vmax (V) ≥0.5 ≥0.5 ≥0.5
Vmin (V) ≤−0.5 ≤−0.5 ≤−0.5

Although the optimization process is similar for each metaheuristic, the behavior is
quite different. In PSO, the particles search in their vicinity both individually and as a
group in order to find better positions according to their updating equations defined in
(2) and (3), while, the behavior of MOL, despite being a variation of PSO, is purely social,
that is, all the particles search together for the global best position. DE is an evolution-based
algorithm, finding better solutions through genetic processes such as mutation, crossover
and selection. The main advantage of applying mono-objective optimization such as PSO,
MOL and DE is that the cost of the objective function is taken to the limit. This means
that they are capable of reaching very good values; however, their great disadvantage
is that the other characteristics are under a threshold, defined as constraints, limiting
their performance. In multi- and many-objective algorithms, the main goal is devoted
to enhancing the trade-off among different objectives. The most popular multi-objective
algorithm in recent decades is the NSGA-II, whose main characteristics are the diversity,
the convergence and the robustness given to the solutions that can be sketched in the Pareto
front. However, its performance is limited by the number of objectives. For this reason,
this work highlights the advantages of the many-objective metaheuristics to size CMOS
amplifiers, which have a huge number of target specifications. The main characteristics
of the many-objective algorithms applied herein are: NSGA-III is a variation of the well-
known NSGA-II; MOEA/D is a decomposition algorithm with the advantage of handling
more than three objectives at the same time; and MOMBI-II has the advantage of using
performance indicators as a selection mechanism.

The best solutions of 10 runs for each metaheuristic are shown in Tables 2–4, for sizing
the differential pair, one-stage and RFC OTA, respectively. The five objectives functions
FoM, DC gain, CMRR, power consumption and total MOS area values are listed in the first
five lines. The first three characteristics are maximized while the other two are minimized.
The other performances, such as GBW, phase margin, PSRR±, SR± and the maximum and
minimum output voltage, were handled as constraints. Below Vmin, we list the best sizes
of the MOS transistors for each metaheuristic, the bias current and voltage control. In each
Table, the best solution values are given in bold face.
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Table 2. Best solutions (in boldface) obtained by applying mono-, multi- and many-objective algorithms to size the
differential pair shown in Figure 1a.

Mono-Objective Multi-Objective Many-Objective

PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

FoMs 1569 1625 1671 1622 1700 1615 1610 1637
DCGain (dB) 35 30 33 33 32 36 36 35
CMRR (dB) 56 59 56 62 60 64 64 65

Power consumption (µW) 625 863 832 782 818 773 787 751
MOS Area (µm2) 1568.3 1550.9 1659.8 1762.6 1797.7 1439 1442.5 1679.2

GBW (MHz) 12.55 17.87 17.72 16.21 17.68 15.82 16.1 15.71
PM (º) 88 89 89 85 89 87 87 88

PSRR+ (dB) 42 41 40 45 41 50 50 47
PSRR− (dB) 62 68 62 67 63 83 81 75
SR+ (V/µs) 7 10 10 10 10 10 10 9
SR− (V/µs) 6 8 8 7 8 8 8 7

Vmax (V) 0.7 0.7 0.8 0.7 0.7 0.6 0.6 0.6
Vmin (V) −0.3 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

W1 [M1,M2] (µm) 76.68 90 84.96 88.92 89.91 55.08 52.02 89.46
W2 [Mb,M3] (µm) 38.88 49.95 56.79 85.5 87.3 62.28 63 72.99
W3 [M4,M5] (µm) 32.85 7.29 29.79 23.49 15.48 11.79 12.59 7.83

W4 [Mp1-Mp4] (µm) 88.74 90 90 72.45 90 81.91 86.04 85.32
L1 [M1,M2] (µm) 0.81 0.9 0.9 1.17 0.81 0.54 0.81 0.99
L2 [Mb,M3] (µm) 0.99 0.9 0.81 1.17 1.17 0.9 0.9 1.08
L3 [M4,M5] (µm) 0.63 0.18 0.27 1.08 0.27 0.9 0.9 0.54

L4 [Mp1-Mp4] (µm) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Ib (µA) 40 55 53 50 52 49 50 48

Vctrl (V) −5 −5 −5 −5 −5 −4 −3 −4

Table 3. Best solutions (in boldface) obtained by applying mono-, multi- and many-objective algorithms to size the one-stage
OTA shown in Figure 1b.

Mono-Objective Multi-Objective Many-Objective

PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

FoMs 1613 1664 1621 1670 1675 1639 1701 1664
DCGain (dB) 60.75 60.27 68 71.13 66 72 60.78 61.20
CMRR (dB) 89.75 88.27 95 99 95 95 90 81

Power consumption (mW) 3.07 3.03 2.2 2 2.2 1.94 1.97 1.96
MOS Area (µm2) 3183 3681.6 3993.4 3302.6 3400.9 3151.2 3242.5 3233.1

GBW (MHz) 25.17 26.29 19.13 17.04 19.10 16.39 17.35 16.97
PM (º) 81 82 81 80 83 81 83 81

PSRR+ (dB) 77 77 93 89 87 88 76 76
PSRR− (dB) 62 61 70 72 67 73 62 62
SR+ (V/µs) 5 6 5 4 4 4 3 4
SR− (V/µs) 5 5 3 3 3 3 3 3

Vmax (V) 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5
Vmin (V) −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

W1 [M1,M2] (µm) 180 180 127.17 124.11 142.65 96.75 141.12 101.7
W2 [M3,M12-M16,Mb] (µm) 20.97 31.32 35.73 17.01 33.57 26.82 27.27 32.94

W3 [M4-M11,M17] (µm) 26.37 24.93 47.7 29.43 18.81 32.94 12.33 17.46
W4 [Mp1-Mp4] (µm) 126.45 180 175.59 178.2 179.91 170.73 179.28 178.92

L1 [M1,M2] (µ m) 1.71 1.53 1.44 1.62 1.71 1.35 1.8 1.35
L2 [M3,M12-M16,Mb] (µm) 1.08 0.72 0.72 0.99 0.54 1.53 0.81 1.62

L3 [M4-M11,M17] (µm) 0.18 0.18 0.36 0.27 0.27 0.27 0.18 0.18
L4 [Mp1-Mp4] (µm) 0.18 0.18 0.36 0.18 0.18 0.18 0.18 0.18

Ib (µA) 78 79 59 51 57 50 51 51
Vc (V) −3 −5 −5 −5 −5 −5 −5 −5
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Table 4. Best solutions (in boldface) obtained by applying mono-, multi- and many-objective algorithms to size the RFC
OTA shown in Figure 1c.

Mono-Objective Multi-Objective Many-Objective

PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

FoMs 2544 3987 3987 3431 3838 3475 4190 3564
DCGain (dB) 72 74 69 74 68 73 66 74
CMRR (dB) 98 101 95 110 98 108 94 108

Power consumption (mW) 3.6 3.19 4.11 2.85 4.33 2.84 4.12 2.23
MOS Area (µm2) 4133.1 3788 4231.7 1822.4 4467.8 2601.75 3808.53 3829.37

GBW (MHz) 24.93 27.14 39.87 24.71 41.45 25.02 40.22 20.67
PM (º) 62 62 70 80 70 75 73 71

PSRR+ (dB) 72 74 69 74 67 72 65 75
PSRR− (dB) 113 108 116 110 95 120 87 105
SR+ (V/µs) 9 7 11 7 11 7 11 7
SR− (V/µs) 26 20 33 22 30 20 20 10

Vmax (V) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Vmin (V) −0.8 −0.8 −0.8 −0.8 −0.8 −0.8 −0.8 −0.8

W1 [M1-M3,Mb] (µm) 50.94 6.21 54.09 17.64 74.7 38.52 36.72 58.05
W2 [M4-M8] (µm) 56.7 25.56 70.65 28.62 90 29.88 89.01 59.76

W3 [M1a,M1b.M2a,M2b] (µm) 90 90 89.19 47.16 90 47.34 69.66 82.71
W4 [M3a,M3b.M4a,M4b] (µm) 12.69 12.24 15.84 1.62 17.46 7.2 16.83 3.69

W5 [M3c,M4c] (µm) 18.9 0.9 0.9 1.44 0.9 5.76 0.9 8.73
W6 [M9,M10] (µm) 34.83 39.96 38.43 14.13 42.84 14.04 45.99 33.03

W7 [M11,M12] (µm) 77.76 90 68.4 27.18 42.03 34.11 37.62 46.35
W8 [M13,M14] (µm) 90 90 51.66 20.7 38.52 20.52 28.71 39.24
W9 [M13,M14] (µm) 43.47 90 90 45 90 89.1 89.73 81.27
L1 [M1-M3,Mb] (µm) 0.9 0.18 0.45 0.36 0.54 0.45 0.36 0.81

L2 [M4-M8] (µm) 0.27 0.18 0.36 0.27 0.36 0.27 0.36 0.45
L3 [M1a,M1b.M2a,M2b] (µm) 0.63 0.9 0.54 0.45 0.54 0.45 0.45 0.81
L4 [M3a,M3b.M4a,M4b] (µm) 0.72 0.9 0.45 0.63 0.45 0.72 0.45 0.63

L5 [M3c,M4c] (µm) 0.9 0.9 0.9 0.54 0.72 0.54 0.9 0.72
L6 [M9,M10] (µm) 0.9 0.9 0.54 0.72 0.54 0.81 0.54 0.81

L7 [M11,M12] (µm) 0.36 0.9 0.9 0.54 0.72 0.45 0.54 0.54
L8 [M13,M14] (µm) 0.72 0.45 0.27 0.27 0.27 0.27 0.18 0.45
L9 [M13,M14] (µm) 0.9 0.18 0.18 0.36 0.18 0.36 0.18 0.18

Ib (µA) 49 34 50 36 54 36 48 29
Vctrl (V) −5 −5 −5 −5 −3 −5 −5 −3

As it can be seen, after analyzing these solutions, the metaheuristics with the best
performance were, in general, the many-objective ones, since at least one improved the
performance of the mono- and multi-objective metaheuristics. They also improved the
trade-offs among the five objectives. It can also be pointed out that the mono-objective
metaheuristics had a better performance than the multi-objective ones and even their
solutions were quite close to the solutions found by the many-objective metaheuristics.

The execution times of the three types of optimization algorithms, known as mono-,
multi- and many-objective, are given in Tables 5–7 for the differential pair, one-stage OTA
and RFC-OTA, respectively.
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Table 5. Execution time for the optimization of the CMOS differential pair applying mono-, multi- and many-objective meta-
heuristics.

RUN PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

1 3993.06 4072.61 4132.43 3999.83 4024.54 3849.46 4076.67 4103.54
2 4012.32 4126.72 4345.43 4014.54 4084.33 3934.54 4054.65 4204.6
3 4023.34 4092.3 4276.65 4037.83 4025.25 4054.34 4076.87 4112.43
4 4087.75 4152.54 4185.54 4048.54 4075.63 3945.67 4023.43 4165.73
5 TIME (s) 3996.54 4083.43 4099.54 4083.83 4083.37 3975.54 4103.43 4183.54
6 4011.23 4078.54 4113.43 4085.63 4130.68 3945.76 4098.76 4192.04
7 4085.65 4118.20 4056.65 4053.89 4120.20 4001.2 4034.54 4095.94
8 4123.43 4112.32 4184.54 4011.37 4234.04 3854.65 4076.54 4099.01
9 3999.43 4091.37 4234.54 4140.91 4092.39 4012.04 4011.02 4111.49

10 4023.87 4080.32 4096.23 4026.41 4040.55 4011.23 4023.46 4125.85

Table 6. Execution time for the optimization of the CMOS One-stage OTA applying mono-, multi- and many-objective meta-
heuristics.

RUN PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

1 4465.97 4619.33 4865.65 4356.78 4463.37 4482.75 4462.87 4515.42
2 4487.65 4608.82 4794.56 4457.83 4469.42 4479.13 4470.85 4535.48
3 4356.76 4650.51 4732.45 4430.5 4502.08 4481.45 4476.88 4489.93
4 4443.33 4614.17 4765.76 4395.67 4423.88 4496.56 4509.89 4485.52
5 TIME (s) 4565.65 4621.69 4723.54 4321.83 4422.46 4503.54 4469.99 4478.65
6 4506.54 4615.45 4798.76 4440.02 4503.48 4476.75 4495.9 4500.06
7 4546.04 4619.58 4876.04 4523.82 4437.80 4341.21 4501.62 4475.89
8 4596.49 4621.72 4865.76 4407.52 4473.64 4337.42 4483.24 4445.69
9 4610.43 4654.85 4852.32 4402.02 4510.33 4339.46 4469.87 4440.81

10 4587.49 4647.79 4796.76 4327.84 4426.63 4345.94 4494.58 4458.78

Table 7. Execution time for the optimization of the CMOS RFC OTA applying mono-, multi- and many-objective metaheuristics.

RUN PSO MOL DE NSGA-II MOEA/D NSGA-III MOEA/D MOMBI-II

1 6055.67 6178.39 6257.65 4385.11 4383.46 4432.76 4326.04 4348.96
2 5179.69 5094.2 6198.54 4384.37 4395.71 4356.76 4356.93 4335.78
3 5167.54 5151.41 6247.04 4363.75 4379.29 4387.59 4331.31 4322.6
4 5134.35 5134.54 6199.54 4430.54 4401.43 4486.8 4361.43 4389.57
5 TIME (s) 5219.43 5101.06 6232.43 4404.72 4411.41 4369.42 4329.26 4343.17
6 5037.33 4963.97 6190.02 4369.20 4330.41 4346.49 4330.38 4272.7
7 7093.37 4930.22 6274.54 4399.44 4303.9 4340.29 4362.76 4253.35
8 7207.78 4909.35 6345.79 4345.93 4401.47 4393.82 4305.92 4230.98
9 5132.1 4959.62 6324.65 4492.46 4376.38 4347.56 4325.97 4241.51

10 5099.69 4955.7 6290.08 4412.42 4401.47 4346.15 4324.21 4346.89

8. OTA-Based Fractional-Order Chaotic Oscillator

The usefulness of sizing OTAs by many-objective metaheuristics is demonstrated
herein by selecting an optimized OTA to design a fractional-order integrator, whose design
robustness is verified by performing process, voltage and temperature (PVT) variations and
Monte Carlo analysis. The robust OTA-based fractional-order integrator was employed
in the design of a fractional-order chaotic oscillator (FOCO) taken from [47] and given
in (8). This FOCO had chaotic oscillation when a = 2.05, b = 1.12 and c = 0.42, with initial
conditions x0 = 0.1 and y0 = z0 = 0. Figure 3 shows the portraits of (8), in which the state
variables are plotted against each other to generate the attractors. It can be appreciated
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that the amplitudes of the state variables are below 1, so that it is suitable for CMOS design
using a UMC technology at 180 nm.

s0.9X(s) = Y(s)
s0.9Y(s) = Z(s)
s0.9Z(s) = −aX(s)− bY(s)− cZ(s)− 3X(s) ∗ X(s)

(8)

Figure 3. Portraits of the attractors of the FOCO given in (8).

Considering the system of equations from (8), one can see that the electronic imple-
mentation can be performed using amplifiers, adders/subtractors and one multiplier to
evaluate X(s) ∗ X(s). In addition, a fractional-order integrator is also necessary, which,
according to [48], can be approximated by H(s) = 1/s0.9, which is modeled by (9).

H(s) =
1

s0.9 ≈
2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
(9)

8.1. Building Blocks

Figure 4 shows the block diagram description to implement (8), where the blocks

labeled as H(s) describe the fractional-order integrator H(s) =
1

s0.9 , given in (9). The blocks
labeled a, b and c represent the constants of the system in (8). These blocks could be replaced
with OTAs, which converted an input voltage into an output current; these currents, in
turn, were added to the currents of the other blocks and converted back to voltage at the
adder block output. Most of the blocks needed to design the FOCO could be implemented
using an OTA with adjustable gm [49]. In this section, we use the one-stage OTA depicted
in Figure 1b. The convolution X(s) ∗ X(s) observed in the state variable Z(s) could be
evaluated by the CMOS four-quadrant multiplier designed in [49] and is shown in Figure 5.
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Figure 4. Block design of the FOCO given in (8). H(s) denotes the fractional-order integrator
H(s) = 1/s0.9, approximated by (9).

M1
M2

M5 M6

M4
M3

M8M7

R1 R2

in1 in2

in3 in3

in4

VDD

VSS

out1
out2

Figure 5. Fully differential four-quadrant multiplier taken from [49].

8.2. Fractional-Order Integrator Design Using an OTA-C Biquadratic Filter and an OTA-C
Low-Pass Filter

To carry out the design of the fractional-order integrator, the transfer function in (9)
was decomposed into two functions, to have H(s) = H1(s)H2(s), one of second-order and
one of first-order, as given in (10) and (11), respectively. These functions were designed
using an OTA-C biquadratic and first-order active filters, as shown in Figure 6, whose
topologies were taken from [21]. The circuit transfer functions are given in (12) for the
biquadratic and in (13) for the low-pass filters.

H1(s) =
s2 + 216.6920s + 278.2968
s2 + 361.5540s + 774.1476

(10)

H2(s) =
2.2675

s + 0.01292
(11)

Vo =

gm1gm2

C1C2
V1 + s

gm2

C2
V2 +

gb0gm2

C1C2
V3 + s2V4 + s

gb1

C2
V5

s2 +
gm2

C2
s +

gm1gm2

C1C2

(12)

Vo =
gm1/C

s + gm2/C
Vi (13)

From H1(s) and (12) and by setting V1 = V2 = 0 and V3 = V4 = V5 = Vi, the transfer
function of the OTA-based circuit shown in Figure 6a was rewritten as given in (14).

H1(s) =
s2 +

gb1

C2
s +

gb0gm2

C1C2

s2 +
gm2

C2
s +

gm1gm2

C1C2

=
s2 + 216.6920s + 278.2968
s2 + 361.5540s + 774.1476

(14)

The design of the biquadratic filter was performed as follows: If gb0 = 500 µA/V,
the capacitor values are obtained as C2 = gb1/216.6920 = 2.3 µF and C1 = gb0gm2/
278.2968C2 = 650 µF. In this manner, gm2 = 361.5540C2 = 830 µA/V and gm1 =
774.1476C1C2/gm2 = 1.4 m A/V. For the low-pass filter shown in Figure 6b, if gm1 =
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500 µA/V, the capacitor value is C1 = gm1/2.2675 = 220 µF; therefore, R1 = 1/0.01292C =
350 KΩ. In order to achieve a high resistance value, the resistor shown in Figure 7 was
implemented [50]. The main advantage of this resistor relies on reaching high resistance
values with a good linearity range. In practice, the value of R in Figure 8 was adjusted to
400 KΩ to adjust the frequency response of the fractional-order integrator.

(a) Biquadratic filter. (b) Low-pass filter.

Figure 6. OTA-based active filters to design the biquadratic and first-order low pass filters.

Figure 7. Pseudo-resistor taken from [50].

We propose the OTA-based design of the fractional-order integrator shown in Figure 9.
It includes a biquadratic OTA-C filter in cascade connection with the low-pass OTA filter.
As mentioned in [49], it was necessary to consider that the input port had to include the
filter embedding the largest zero and the largest pole.

Figure 8. Proposed OTA design for
1

s0.9 using a biquadratic and a low-pass filter.

The frequency response of the fractional-order integrator is sketched in Figure 9, which
shows the comparison between the ideal response simulated in MatLab of the transfer
function given in (9) and its CMOS design using 180 nm UMC technology using the three
OTA topologies shown in Figure 1. The sizes of the OTA were taken for the one-stage
OTA applying MOEA/D for five objectives. To measure the symmetry of the output
signal of the OTA, we used the methodology proposed in [51], in which the output signal
must have an absolute minimum value higher than 90% of the absolute maximum signal.
In Figure 9, the good agreement between the MatLab and the CMOS implementations of
the fractional-order integrator can be appreciated.
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Figure 9. Frequency response of the fractional-order integrator, considering ideal transfer function
approximation in MatLab, macro-modeling and HSPICE simulation using the CMOS differential
pair (DP), one-stage and RFC OTAs.

8.3. PVT and Monte Carlo Analysis of the Fractional-Order Integrator

The robustness of the fractional-order integrator was verified by performing a PVT
analysis in the five corners: typical–typical (TT), fast–fast (FF), slow–slow (SS), slowN–fastP
(SNFP) and fastN–slowP (FNSP). These corner analyses were simulated for the three OTAs
and their results are shown in Figure 10 for the differential pair, Figure 11 for the one-stage
OTA and Figure 12 for the RFC OTA. For each corner, the voltage supply was varied by
±10%. Likewise, the temperature was varied with values of 20 (T−), 60 (T) and 120 (T+).
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Figure 10. Cont.
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Figure 10. PVT simulations of the CMOS fractional-order integrator given in Figure 8 using the
differential pair amplifier shown in Figure 1.

TT

 
(
d

e
g

)

-100.0

-50.0

0.0

 
(
d

B
V

)

-200.0

-100.0

0.0

100.0

 f(Hz)

1u 10u 100u 1.0m 10.0m 0.1 1.0 10.0 100.0 1.0k 10.0k 100.0k 1meg

(deg) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(dBV) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(a) TT.

SS

 
(
d

e
g

)

-100.0

-50.0

0.0

 
(
d

B
V

)

-200.0

-100.0

0.0

100.0

 f(Hz)

1u 10u 100u 1.0m 10.0m 0.1 1.0 10.0 100.0 1.0k 10.0k 100.0k 1meg

(deg) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(dBV) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(b) SS.

SNFP

 
(
d

e
g

)

-100.0

-50.0

0.0

 
(
d

B
V

)

-200.0

-100.0

0.0

100.0

 f(Hz)

1u 10u 100u 1.0m 10.0m 0.1 1.0 10.0 100.0 1.0k 10.0k 100.0k 1meg

(deg) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(dBV) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(c) SNFP.

FNSP

 
(
d

e
g

)

-100.0

-50.0

0.0

 
(
d

B
V

)

-200.0

-100.0

0.0

100.0

 f(Hz)

1u 10u 100u 1.0m 10.0m 0.1 1.0 10.0 100.0 1.0k 10.0k 100.0k 1meg

(deg) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(dBV) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(d) FNSP.

Figure 11. Cont.



Electronics 2021, 10, 3148 18 of 23

FF

 
(
d

e
g

)

-100.0

-50.0

0.0

 
(
d

B
V

)

-200.0

-100.0

0.0

100.0

 f(Hz)

1u 10u 100u 1.0m 10.0m 0.1 1.0 10.0 100.0 1.0k 10.0k 100.0k 1meg

(deg) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(dBV) : f(Hz)

T- V-

T- V

T- V+

T V-

T V

T V+

T+ V-

T+ V

T+ V+

(e) FF.

Figure 11. PVT simulations of the CMOS fractional-order integrator given in Figure 8 using the
one-stage OTA given in Figure 1.
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Figure 12. PVT simulations of the CMOS fractional-order integrator given in Figure 8 using the RFC
OTA given in Figure 1.
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In addition to PVT analyses, a Monte Carlo analysis was performed to observe the
variability due to matching conditions of the MOS transistors. This analysis was carried
out assuming a deviation of 10% in the W’s and L’s of all MOS transistors. These two
analyses were more than enough to appreciate the robustness of the CMOS design of the
fractional-order integrator; therefore, it was used to design an FOCO. Figure 13 shows the
histogram for each OTA topology for 1000 runs.
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Figure 13. Monte Carlo simulation.

8.4. Fractional-Order Chaotic Oscillator Design Using OTAs

Once the fractional-order integrator was designed, the FOCO design was carried
out; its OTA-based implementation is shown in Figure 14. It is noted the requirement
of three fractional-order integrators (H(s)), five OTAs and one multiplier were required
for its implementation. From (8), one can determine the value of the constants a, b and c.
If the OTA has gm = 500 µA/V, the constant a is equal to 2.05(500 µA/V) = 1025 µA/V,
b = 1.12(500 µA/V) = 560 µA/V and c = 0.42(500 µA/V) = 210 µA/V. The three
constants multiplying the convolution X(s) ∗ (X(s) in (8) leads to a transconductance value
of 3(500 µA/V) = 1500 µA/V.

As mentioned above, the sizes of the OTAs were taken from the optimal solutions
provided by the many-objective optimization with MOEA/D for five objectives. Finally,
the portraits of the FOCO given in Figure 14 are shown in Figure 15, where the CMOS
design was obtained using UMC technology at 180 nm. The bias was established at ±0.9.
As can be seen, the MatLab simulation of the portraits of the FOCO shown in Figure 3
are in very good agreement with the portraits generated by the CMOS FOCO shown in
Figure 15; therefore, we conclude confirming the suitability of performing many-objective
optimization in the sizing of CMOS OTAs.
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Figure 14. OTA-based implementation of the FOCO given in (8). The multiplier is designed from
Figure 5 and the fractional order integrator H(s) is designed as detailed in Section 8.2.
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Figure 15. HSPICE portraits of the proposed CMOS OTA-based FOCO from Figure 14.

9. Conclusions

Sizing CMOS OTAs is a challenging task, mainly due to the large number of design
variables and trade-offs among the target specifications. Fortunately, one can take ad-
vantage of applying metaheuristics to optimize such kinds of analog integrated circuits.
In this manner, this paper shows the application of mono-, multi- and many-objective
optimization algorithms to size three different CMOS OTA topologies. The many-objective
optimization process was performed considering five different electrical characteristics
taken as objective functions, namely, FoM, DC gain, power consumption, CMRR and total
MOS area. The optimization results provided by the mono-, multi- and many-objective
optimization algorithms to the three OTAs show that the many-objective metaheuristic
not only found better sizing solutions in the main objective functions but also improved
the trade-offs among the electrical characteristics, which lead to a more robust design.
The robustness of the optimized OTAs was verified through PVT variation analyses and
Monte Carlo simulations. That way, an optimized OTA was used to design a fractional-
order integrator using OTA-C active filters. Finally, the CMOS OTA-based fractional-order
integrator was used in the design of a CMOS fractional-order chaotic oscillator (FOCO).
As a result of the optimization process, the MatLab simulations of the FOCO were in
very good agreement with the CMOS design using UMC technology at 180 nm. This
application of an optimized OTA in the design of an FOCO leads us to conclude that,
although all metaheuristics are a good option to size CMOS OTAs, the application of many-
objective optimization algorithms can provide much better results compared to mono- and
multi-objective metaheuristics.
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