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Abstract: Medical imaging is considered one of the most important advances in the history of
medicine and has become an essential part of the diagnosis and treatment of patients. Earlier
prediction and treatment have been driving the acquisition of higher image resolutions as well
as the fusion of different modalities, raising the need for sophisticated hardware and software
systems for medical image registration, storage, analysis, and processing. In this scenario and
given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often
required to provide both highly accurate and real-time processing of large amounts of imaging data.
Additionally, lowering the prices of each part of imaging equipment, as well as its development
and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more
accessible healthcare. This paper focuses on the evolution and the application of different hardware
architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various
specific examples and discussing different options depending on the specific application. The main
purpose is to provide a general introduction to hardware acceleration techniques for medical imaging
researchers and developers who need to accelerate their implementations.

Keywords: biomedical imaging systems; hardware acceleration; medical imaging; medical image
analysis; parallel architectures

1. Introduction

Medical imaging is a set of techniques and methods that noninvasively acquire a
variety of images of the body’s internal aspects by means of several effects and interactions
with different tissues, revolutionizing modern diagnostic imaging, radiology, and nuclear
medicine [1,2]. Currently, there are a wide range of imaging modalities, i.e., ultrasound
(US), conventional radiology, arthroscopy, computed tomography (CT), magnetic resonance
imaging (MR), bone scintigraphy, positron emission tomography (PET), and combined
technologies such as PET/MR, that provide complementary information, being the radiol-
ogists who determine the most appropriate examination in a specific clinical situation [3].
For example, CT images provide information on the densities of different tissues; MR
images can provide anatomical, functional, perfusion or diffusion information depending
on the different sequences used; and PET images provide metabolic information, perfusion
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or receptor occupation and binding by detecting the concentration of radiotracers within
the body.

Medical imaging applications are very demanding systems. Earlier prediction and
treatment have been driving the acquisition of higher image resolutions as well as the fusion
of different modalities, raising the need for sophisticated software/hardware systems for
medical image registration, storage, analysis, and processing [4,5]. They demand complex
computations and real-time processing of the images, whose number, size, resolution, and
bit depth tend to increase with the evolution of the technology scenario, and given the new
clinical pipelines and the huge clinical burden of hospitals, these systems are often required
to provide both highly accurate and real-time processing of large amounts of imaging data.
This is crucial because it is directly related to the uncomfortable patient experience and
generally higher clinical costs, hence the importance of achieving faster and better imaging
studies. Additionally, lowering the prices of each part of imaging equipment, as well
as its development and implementation, and increasing their lifespan is crucial to grant
more affordable and accessible healthcare in general [6,7]. Given these circumstances, the
development and implementation of novel hardware architectures have been an essential
requirement when dealing with imaging technologies and real-time image processing in
healthcare applications.

In fact, the most common and flexible platform to code or develop on is probably the
personal computer or PC. As such, many applications are initially developed and refined
for Central Processing Units (CPUs). While their computing capabilities might not match
up to more specialized platforms, CPUs must not be underestimated. Their computational
performance has increased drastically since the dawning of this technology, either by
increasing their clock frequency or by increasing the number of cores. Currently, most
CPUs achieve a compromise between the number of cores and clock frequency, allowing
different combinations of performance and power-draw to be achieved. This trend has also
enabled multi-processing using threads.

In this respect, to reduce the computation time, it is usually thought of first using
hardware with high computational power. Although the processing power of CPUs in
PCs continues to increase, this option may not be the best choice depending on the specific
applications. This is particularly relevant when it comes to designing a system that requires
low power consumption and high performance.

In the literature, the most discussed hardware accelerators for computer vision and
image processing algorithms can be grouped into Graphics Processing Units (GPUs),
Digital Signal Processors (DSP), and Field Programmable Gate Arrays (FPGAs) [8]. In this
review, Application Specific Integrated Circuits (ASICs) are also included, as they have
been widely used for the implementation of certain medical imaging equipment parts.

Despite being a more specialized technology, the GPUs platforms fit perfectly in
the medical imaging niche, offering a way to speed up certain computational tasks and
algorithms (compared to CPUs) and still maintain a certain amount of flexibility. As such,
GPUs are often used when CPUs fail to meet the needs of a specific application, but another
specialized platform cannot be used either.

While usually not the fastest platform, DSPs specialize in digital signal processing,
and as such, are the best performers in that field. They barely offer any flexibility, so it is
common to use them combined with other hardware solutions in complex designs where
fast digital signal processing is needed, yet it is not the only kind of processing performed.

FPGAs are integrated circuits capable of post-fabrication reconfiguration, both in-
terconnect and hardware functionality, using hardware description languages (HDLs).
This type of device is based on an array of logic blocks, such as lookup tables (LUTs),
flip flops and logic gates, connected through programmable interconnects along with
input/output ports. Therefore, FPGAs allow custom hardware design with the flexibility to
make modifications due to design errors or improvements. Thus, it is recommended to use
FPGAs when the system specifications demand high performance, usually with real-time
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processing. Indeed, they are used to avoiding becoming involved in the complexities and
lower flexibility of ASIC design (as it will be described now).

ASICs are devices made specifically to fulfill the required functionality; thus, as its
name suggests, they are integrated circuits tailored for specific applications. Consequently,
ASICs provide smaller form factors, higher performance, and less power consumption
since they are manufactured to custom design specifications. Furthermore, their implemen-
tation offers a significantly lower cost per unit for very high-volume designs. However,
designing an ASIC is a long, complex, and high-risk endeavor that requires dedicating
many resources.

Nowadays, modern hardware architectures have evolved to provide competitive
clock rates for use in high-capacity imaging equipment. In addition, all architectures have
benefited from increased logic density, as well as other features such as integration of
dedicated memory and high-speed serial input/output. As such, all modern hardware
architectures may offer competitive solutions in the image processing space depending on
system requirements and flexibility.

Several reviews on hardware accelerators can be found in the state-of-the-art. How-
ever, none of these reviews offers a general overview of all the hardware technologies in
the field of medical imaging. While the most comprehensive reviews analyze the different
hardware technologies [9–11], they do it in the field of artificial intelligence and/or deep
learning algorithms in general.

On the other hand, those reviews focused on medical image processing generally do
not cover all the hardware possibilities but only one of them. Different surveys can be found
focused on the use of GPU for medical imaging in general [12,13], but also more specifically
on medical image reconstruction [14], segmentation [15] or registration [16,17]. Similar
results appear related to the use of FPGA, both in general medical image processing [18] and
in specific applications [19]. A specific review on photon counting ASICs for spectroscopic
X-ray imaging, with emphasis on the CT medical imaging application, is presented in [20].
To the best of our knowledge, there are no specific reviews on DSP technologies focused on
medical image processing.

The present paper offers an introduction on the different hardware accelerators and
their applications on medical imaging that will be of high interest for those researchers
and developers in the field of medical imaging that are concerned about using different
hardware architectures to speed up their implementations. In the next section, a brief
presentation explaining the evolution of each one of the technologies is offered, followed by
several examples of their application in medical imaging. In the discussion, a comparison
of the technologies is detailed in depth, highlighting strengths and drawbacks, and general
guidelines for selecting the proper technology for every need are presented.

2. Evolution of Hardware Architectures and Their Applications in Real-Time Medical
Imaging

In this section, the evolution of the different architectures (CPUs, GPUs, DSPs, FPGAs
and ASICs) and their use and performance in medical imaging through several specific
examples are explained.

2.1. Central Processing Units (CPUs)
2.1.1. Evolution of CPU Architectures

Consumer CPU architectures have traditionally powered their performance by in-
creasing the frequency clock as well as including parallel capabilities since the 1990s. In the
Intel x86 family, the Single Instruction Multiple Data (SIMD) introduction was coined Mul-
tiMedia eXtensions (MMX) in 1996 for the release of the Intel Pentium MMX processor [21].
They were composed of eight 64-bit wide registers for integer data with an instruction set
of 57 operations. They were focused on the early multimedia needs, mainly in the video
game industry and imagery from the Internet irruption. They could execute one instruction
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in 64-bit integer data (such as 8 independent bytes or 2 32-bits words) simultaneously,
saving loop iterations in integer data processing (such as images) [22].

With the 3D video game industry in mind, in 1998, AMD released an extension for
supporting floating-point operations on the MMX registers called 3DNow! technology [23].
In 1999, Intel released the Pentium III processor with new 128-bit floating-point registers
for 4 single precision 32-bit floating-point data called SSE (Streaming SIMD Extensions)
and an instruction set of 70 operations. After several updates of the SSE instruction set
for packing different integer and floating-point data configurations in the 128-bit registers,
Intel launched the Advanced Vector eXtensions (AVX) in 2011 [24]. AVX registers double
the 128-bit wide SSE registers to 256-bits, adding extra updates to the instruction set, which
were again renewed in 2014 with the AVX2 SIMD technology. Initially for the Intel Xeon Phi
HPC platform, an update of 256 to 512-bit wide registers was released with the AVX-512
extensions [25].

All these SIMD facilities were added for parallel processing and were especially suited
for image processing tasks. An optimized compiler configuration would try to automate
the use of these instructions and registers, though sometimes a good data layout is needed
to ease the automatic vectorization.

For many years, Moore’s law and Dennard scaling have delivered greater perfor-
mance because a greater number of transistors per chip can be packed, and they could
perform faster with less power consumption almost every two years [26]. However, the
physical limits have been reached, and obtaining a constant free speedup increase with new
computer generation has slowed down considerably [27,28]. In the past two decades, it has
been seen how CPUs have evolved from single-core architectures (only one processor in
die to process instructions) to multicore architectures combining several independent cores
in a single die. Nowadays, multicore architectures have become very popular, and desktop
CPUs as well as high-end computing machines improve their computational performance
by means of parallel resources.

On the other hand, as stated by Amdahl’s Law, the performance of parallel computing
is limited by its serial components [29,30]. Although multicore CPUs offer outstanding
instruction execution speed with reduced power consumption, optimizing performance of
individual processors and then incorporating them by interconnection between processors
and access to shared resources on a single die is a non-trivial task [31,32].

In this scenario, concurrent primitives such as mutex, locks, and monitors, etc., could
be employed for synchronization of computing threads and avoidance of race conditions
in shared memory problems. However, their use becomes extremely difficult when scaling
from two to more computing threads. This situation led to the development of solutions
from the low-level POSIX Threads (Pthreads) [33] to higher level open proposals such
as the Open Multi-Processing specification (OpenMP) [34], or proprietary solutions such
as Intel Threading Building Blocks (TBB) [35]. Moreover, simultaneous multithreading
technologies such as 2-way Intel Hyper-threading or 4-way IBM BlueGene can also spread
the parallel capabilities of a desktop processor. Based on this, if an average quad-core (four
cores) processor is being used, it is possible to run 4, 6 or up to 8 threads that would perform
optimally (with gains up to 30% [36]). Likewise, if a hexa-core (six cores), octa-core (eight
cores) or deca-core (ten cores) processor is being used, 12, 16 or 20 threads could be run
up with a good performance, respectively. Currently, it is even possible to find processors
with up to 128 cores (ARM Ampere Altra, single threaded cores) or with 64 cores and 128
threads (AMD Ryzen). Thus, OpenMP is an example of how to parallelize the computation
successfully, efficiently, and easily, thus, speeding up CPU-based implementations.

Figure 1 shows the most significant milestones over time on CPUs that have con-
tributed significantly to CPU-based hardware acceleration for image processing.
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2.1.2. CPU Architectures in Medical Imaging

Medical imaging has been historically tied to CPU computing, as it has been the
more accessible and flexible architecture to prototype and deploy algorithms. In this
sense, several studies have considered and studied the effect of multicore architectures and
parallel processing in several medical imaging applications.

Membarth et al. performed a comprehensive assessment of the use of different
frameworks for multicore architectures to single-core implementations in an X-ray im-
age registration problem [37]. They compared OpenMP, Cilk++, TBB, RapidMind and
OpenCL as parallelization languages for multicore processors and provided with usability,
performance and overhead estimations, showing a speedup of ~6 times for an octa-core
processor and up to ~18 times when using 24 cores compared to a single-core processor
sequential implementation. In addition, the study performed by S. Ekström demonstrated
how the combination of a GPU with a CPU can accelerate the image registration process by
parallelizing the tasks instead of only using a GPU or a CPU [38]. Thus, they performed
the matching algorithm in the GPU while the registration optimization was computed in
the CPU. The performance of their method was evaluated on brain images. They sped
up the process by a factor of four and eight compared to the GPU-only and the advanced
normalization tools (ANTs) implementations, respectively.

Kegel et al. showed how the use of multicore architectures improved the computa-
tional performance of the list-mode Ordered Subset Expectation Maximization (OSEM)
algorithm for 3D PET image reconstruction [39]. In this study, the authors compared the
use of Pthreads, OpenMP and TBB, demonstrating a speedup of parallel implementations
for a single subset iteration of up to approximately five times on a dual quad-core processor.

Kalamkar et al. showed the speedup obtained by using multicore systems to improve
the performance of the Non-Uniform Fast Fourier Transform (NUFFT) in iterative 3D
non-Cartesian MRI reconstruction [40]. The high performance of their algorithm implemen-
tation relied on an efficient SIMD utilization rate and high parallel efficiency, demonstrating
a speedup of more than four times on a 12-core processor compared to the best implemen-
tation in that time.

Saxena et al. compared the use of multicores in a method for kidney segmentation
from abdominal images [41]. The authors showed how some segmentation tasks could
be more efficient when each core is responsible for an individual region, demonstrating a
speedup of ~2–4 times on a quad-core processor. Moreover, several groups have proven
the efficiency and acceleration of fuzzy c-means and fuzzy c-means based segmentations
when they are implemented on hybrid CPU-GPU designs. This way, promising results
have been obtained in different parts of the body, such as brain and breast [42,43].

CPUs are accessible hardware architectures. Hence, the use of CPUs is much more
widespread in the clinic than that of GPUs due to their lower complexity and cost. For
that reason, Vaze et al. designed a CNN and implemented it on a CPU system for real-
time ultrasound segmentation [44]. They reduced the computation time by 9 and the
memory requirements by 420 compared to the traditional U-net method. Thus, images
were processed at 30 fps, enabling real-time applications suitable for ultrasound imaging
in the clinical environment.

All these publications confirm that the use of multicore architectures increases the
CPU performance up to a point where serial component restrictions limit the performance
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growth, even lowering it. The combination of GPU with CPU designs also reduces the
computation time in medical image processing. Moreover, the accessibility of CPUs
compared to other architectures makes them convenient for implementations in the clinic,
even for deep learning applications.

2.2. Graphics Processing Units (GPUs)
2.2.1. Evolution of GPU Architectures

At the same time CPUs were evolving into more efficient architectures. GPUs evolved
dramatically to allow tackling problems other than computer graphics and video games.
The GPU architecture has fundamental differences in comparison with CPU architecture.
First, GPUs possess more Arithmetic Logic Units (ALU), making it possible to compute
more operations, but on the contrary, they lose flow control [45]. Second, GPUs are
equipped with small caches, focused on producing a better bandwidth output instead of
reducing latency [46].

To use this hardware, algorithms must be adapted to this new paradigm. Two parts in
this CPU–GPU computing ecosystem can be distinguished: host and device. The host is
the CPU that controls the device computation, whereas the device is the graphics hardware
that processes the data. The instructions to accomplish a specific procedure executed are
encoded in kernels.

The first generation of GPUs was designed as simpler peripherals to display infor-
mation on monitors. After this, the second generation incorporated dedicated memory
and processors to render effects. They were configurable but not programmable. At the
same time, some 3D OpenGL [47], and DirectX [48] libraries were released. The third
generation came with two specific graphic processors allowing the implementation of two
stages: vertex shaders and fragment shaders through a rendering pipeline [49]. In the next
generation, a unified device architecture was created after merging these two kinds of
processors into a single scalar processor.

Programming the GPU for general purpose applications using this graphics context
was called GPGPU (general-purpose computation on GPUs). Although a wide range of
functions had been added, the programming was still complicated. There was an effort
in the software direction to create a model to better manipulate the resources and let the
programmers map more problems without describing them in terms of graphics (GPU
Computing).

Since then, there has been a constant evolution both in hardware and in software.
There are currently several GPU manufacturers: AMD/ATI, Intel, and NVIDIA, to name
the most relevant ones. AMD stream computing technology came to the market a long time
after NVIDIA introduced CUDA (originally Compute Unified Device Architecture) [50].
As a result, NVIDIA has far more applications available for CUDA than AMD/ATI (HIP
programming language) does for its competing stream technology [51].

Each generation includes more processors for computation, increasing parallelism and
scalability, for example, from NVIDIA Tesla C870 (2007) with a processor size of 90 nm and
681 million transistors to Tesla A100 (2020), which includes 54.2 billion transistors with a
processor size of 7 nm [52]. These graphics cards deliver 0.345 and 19.5 TFlops, respectively.
Furthermore, there has also been an effort to reduce development time costs using unified
memory space (Unified Virtual Addressing in NVIDIA or Heterogeneous Unified Memory
Access for AMD). Global memory in the graphic card (DRAM technology) is conceptually
organized into a sequence of byte segments and connected to the host through a high-speed
IO bus slot, typically a PCI-Express and, in current high-performance systems, NVLink for
NVIDIA [53]. Large differences can be shown, from Tesla C870 (PCIe 1.0 x16) 76.80 GB/s
to Tesla A100 (NVLink 3rd) 1555.80 GB/s. The memory cache system has been improved,
imitating the evolution in CPU, and in the new graphic cards, the complexity of the caches
allows having no alignment memory access patterns with fewer penalizations [54].

This evolution has also been on the software side to exploit spatial locality with
efficient representations, i.e., the multiplication of the vector-matrix with new ways to



Electronics 2021, 10, 3118 7 of 34

store the spare matrix [55], highlighting the importance of the low occupancy for specific
problems using instruction-level parallelism [56], creating more sophisticated libraries
for parallel primitives such as reduction, sort, etc., for example, Thrust [57] or low-level
primitives to improve the codification of collaborative algorithms on the GPU side [58].

The development of highly optimized libraries for computation has increased every
year and helped to tackle new problems in a more productive way. Apart from libraries for
Fourier transform (FFT), basic linear algebra (BLAS) or random number generation (rand),
to name a few, there also exists the possibility of integrating Matlab with native kernels,
which allows reducing the time of the computation for those expensive functions [59].

As it has happened to other fields in computer science, there has been a common effort
to standardize the GPU Computing model. Although the standard OpenCL was released
in 2008 [60], it is still a work in progress. The OpenCL idea promotes multi-platform
adoption rather than being bound to a single vendor, and it is a collaboration among
software vendors, computer system designers (including designers of mobile platforms)
and microprocessors (embedded, accelerator, CPU and GPU) manufacturers. AMD’s
ROCm (Radeon Open Compute) is an open software platform to provide a heterogeneous
ecosystem for computing on GPU with portability and flexibility [61]. Furthermore, there
are also some libraries to alleviate the difficulties in programming the algorithms in the
parallel landscape using GPUs. For example, OpenACC exposes a transparent way to
parallelize code such as OpenMP, which is very convenient for a large community in
research [62]. With the emerge of machine learning approaches, the use of GPUs for
training and inferring has increased. This is the reason why there are also many libraries
to make the most out of the GPUs with machine learning frameworks, i.e., Caffe [63],
Tensorflow [64] or PyTorch [65].

Figure 2 shows the most significant milestones over time on different technologies
(libraries, GPUs, frameworks, etc.) that have contributed significantly to the development
of applications requiring GPU-based hardware acceleration for image processing.
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2.2.2. GPU Architectures in Medical Imaging

Many research fields have progressed and included GPU-based acceleration tech-
niques for parallel programming with very significant results. In such scenario, medical
imaging has been one of the most demanding fields for GPU computation, with GPUs
found in nearly all imaging modalities, bringing high computation capabilities to the edge
equipment in several applications [12,13,15]. Here, a few examples where GPUs played a
crucial role in achieving faster computations and leading to real-time implementations are
provided.

In 2010, Johnson et al. proposed an iterative GPU-based fat and water decomposition
with an echo asymmetry and least squares reconstruction (IDEAL) scheme. They approx-
imated the fat and water parameters and compared the Brent method with the search
for the golden section to optimize the unknown parameter of MR field inhomogeneity
(psi) in the IDEAL equations. They stated that their algorithm was more robust to the
ambiguities of fatty water using a modified planar extrapolation of the psi method. Their
experiments showed that the grease-water rebuild time of their GPU deployment methods
could be rapidly and strongly reduced by a factor of 11.6 on a GPU compared to CPU-based
rebuild [14,66].

Herraiz et al. presented a GPU-based implementation of the OSEM iterative re-
construction algorithm for 3D PET image reconstruction [67]. In this study, the authors
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compared a GPU implementation using CUDA against a single-core CPU implementation,
demonstrating a speedup factor of up to 72 times on a NVIDIA Tesla C1060 compared to
an Intel Core i7.

Alcaín et al. proposed a very fast implementation of an algorithm for modality
propagation/synthesis based on a groupwise patch-based approach and a multi-atlas
dictionary [68,69]. They proposed and implemented an accelerated version of the patch-
based modality propagation algorithm to compare the benefits of using multicore CPUs
and CUDA-based GPU models, using both a global memory and a shared memory version.
The evaluation of these GPU-based implementations demonstrated how the use of these
techniques gained up to 15.9 times of speedup against a multicore CPU solution and up to
about 75 times against a single-core CPU solution.

Punithakumar et al. compared an implementation of an image registration algorithm
on the GPU versus the CPU. The goal of their research is to develop computationally
efficient approaches for deformable image registration to find the point correspondence
between image slices with the delineated cardiac right ventricle. The proposed approach
offered a computational performance improvement of about 19 times compared to the CPU
implementation while maintaining the same level of segmentation accuracy [70].

Florimbi et al. developed a multi-GPU support system that provides accurate brain
cancer delimitation based on hyperspectral imaging constrained to providing a real-time
response to avoid prolonging the surgery [71]. Their most efficient implementation showed
the ability to classify images in less than three seconds.

Torti et al. presented a parallel pipeline for skin cancer detection that exploits hyper-
spectral imaging [72]. They showed how adopting multicore and many-core technologies,
such as OpenMP and CUDA paradigms, and combining them led to a significant reduction
in computational times, showing that a hybrid parallel approach can classify hyperspectral
images in less than 1 s.

Zachariadis et al. introduced a novel implementation of B-spline interpolation (BSI) on
GPUs to accelerate the computation of the deformation field in non-rigid image registration
algorithms for Image Guided Surgery. Its implementation of BSI on GPUs minimizes
the data that must be moved between memory and processing cores during input mesh
loading and takes advantage of the GPUs large on-chip register file to reuse input values.
They succeeded in reducing computational complexity and increasing accuracy. They
evaluated the method on liver deformation caused by pneumoperitoneum, i.e., inflation of
the abdomen. They managed to improve BSI performance by an average of 6.5 times and
interpolation accuracy by 2 times compared to three state-of-the-art GPU implementations.
Through preclinical validation, they were able to demonstrate that their optimized interpo-
lation accelerates a non-rigid image registration algorithm, which is based on the free-form
deformation (FFD) method, by up to 34%. Thus, the study showed the achievement of sig-
nificant performance and accuracy gains with the novel parallelization scheme presented
that makes effective use of the GPU resources. They showed that the method improves the
performance of real medical imaging registration applications used in practice [73].

Milshteyn et al. proposed a fast, patient-specific workflow for online specific absorp-
tion rate supervision using a fast electromagnetic (EM) solver [74]. The MARIE® package
used in their approach solves the EM fields in the patient accelerated on an NVIDIA
Tesla P100 GPU, and the EM simulations required an average and standard deviation of
290.3 ± 67.3 s.

Another example of 3D image registration is proposed by Brunn et al. [75], who
presented an implementation of a mixed-precision Gauss–Newton–Krylov solver for diffeo-
morphic two-image registration. The work extended the publicly available CLAIRE library
to GPU architectures. Their algorithms managed to significantly reduce the execution time
of the two main computational kernels of CLAIRE: derivative computation and sparse data
interpolation. First, they implemented highly optimized, mixed-precision GPU kernels for
the evaluation of sparse data interpolation; second, they replaced the first-order derivatives
based on the fast Fourier transform (FFT) with optimized eighth-order finite differences;
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and finally, they compared them with state-of-the-art CPU and GPU implementations.
They showed that it is possible to record 2563 clinical images in less than 6 s on a single
NVIDIA Tesla V100. This is a speedup of more than 20× over the current version of
CLAIRE and more than 30 times over existing GPU implementations.

With the development and improvement of new modern approaches, such as deep
learning (DL) research in medical imaging, more efficient and improved approaches that
were not previously feasible are being developed thanks to the evolution of GPUs. In this
sense, training a DL model takes hours or even days, depending on its complexity and the
amount of training data; however, presenting a new input to the already trained model
provides results in seconds, which has led to a decrease in time acquisition and processing
for several approaches.

Martinez-Girones et al. recently showed how the use of DL architectures took around
90 h for training a DL model used for head and neck MR-based pseudo-CT synthesis, but
around 1 min to reconstruct the whole pseudo-CT volume in a NVIDIA RTX 2080Ti [76].
These results remark an affordable way to generate images of specific modalities from
other different ones in real-time.

These works settle how the use of GPU architectures has enabled promising results
in medical imaging acquisition, processing and enhancement in the past ten years due to
their high efficiency in low time rates and the heterogeneity of their applications. Due to
this fact, GPUs are powering the next generation of medical image algorithms, having a
significant impact in medical imaging modalities such as CT, MRI, PET, SPECT, and US,
etc. and, consequently, opening the way to innovative medical imaging applications.

2.3. Digital Signal Processors (DSPs)
2.3.1. Evolution of DSPs Architectures

While theories concerning digital signal processing date back as far as the 1960s, it
was during the late 1970s that Speak and Spell™ from Texas Instruments first proved
that DSPs could operate in real-time and be cost effective [77,78]. In fact, DSPs are a
class of microprocessors whose architectures have been optimized for numeric processing
operations and algorithms, with this way being faster, cheaper, and more energy efficient
than usual microprocessors while still being reprogrammable.

DSPs are designed to measure, filter and/or compress continuous signals. They
can obtain data and execute instructions simultaneously with low latency and power
consumption. As a result, these devices typically do not require a demanding power system
or cooling system, making them suitable for use in portable devices. Furthermore, this
characteristic makes them less risky—in terms of their re-programmability and lifespan—
and more cost-effective than ASICs for small productions [79,80]. Their evolution has been
motivated by the custom algorithms they execute, as every feature is designed to increase
the performance of the heavy computations carried out by the processor.

The main improvements performed over the years in the architectures of DSP pro-
cessors are mostly related to parallelization of processes, enhancing memory access, and
reducing the number of clock cycles per operation in the most common operations, multiply
and accumulate (MAC) [8,81]. DSPs are specifically designed for digital signal processing,
and particularly in image analysis, one of the common calculation algorithms is filtering,
where multiply and accumulate (MAC) operations are commonly used.

In this way, DSP processors evolved to achieve a single clock cycle MAC, first in-
troduced in 1982 by Texas Instruments. This feature is so important that modern DSPs
have at least one dedicated MAC unit, and the number of MACs per second has become
a measuring unit in the field. Despite these efforts, the MAC block still lies in most DSP
critical paths to this day, impacting both their overall speed and power draw [82].

To be able to perform such specific operations as fast as possible, the architectures
implement several execution units to parallelize the operations. Multicore chips have been
critical since the early 1990s, when Texas Instruments launched the TMS320C40, the first
multicore DSP capable of parallel processing [83]. As stated above, DSP processors excel at
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MAC-intensive operations. Due to this, adding multiple cores sharply increases system
performance through parallelization. At the same time, adding multiple-core architecture
is the simplest way to achieve the above-mentioned parallelization [8,78]. These platforms
also have at least three data buses for each computational unit so, with the same instruction,
and in the same clock cycle, the data sample and the filter coefficient can be fetched, and
the MAC result can be stored in the memory [84].

Each manufacturer offers different families of DSPs for general and specialized use.
Typically, the general-purpose ones allow filtering, correlation, convolution, and FFT
operations [85]. However, those for specialized use are more oriented to a more specific
use in audio or video processing. For example, Texas-Instruments has designed various
DSP families with different ranges of processing power and functionalities: ultra-low-
power DSPs (cheap but low performance), optimized power DSPs (portable and mobile
devices), and Open Multimedia Application Platforms (OMAP) [86–89]. Other processors
are Digital Media Processors (DMP), which are designed for multimedia applications
such as image and video capture as well as their processing. DMPs can perform more
complex tasks at the expense of higher power consumption, i.e., hardware image and
video codecs (MPEG, H.264 and JPEG) and hardware accelerators for video processing [90].
There are also multicore DSPs that are optimized for computationally complex tasks and
high-performance computing (HPC) [91], which allow them to perform tasks in parallel.
The maximum computational performance in multicore DSPs is obtained if the task can
be fully parallelized so that the threads run on different cores simultaneously. However,
this is often not feasible in practice, and advanced parallel programming techniques are
required to optimize the computational speed of these DSPs [8].

Another factor to consider is the type of arithmetic calculation support (fixed point
or floating-point operation). Floating-point operational support in DSPs makes algorithm
implementation easier and increases precision compared to fixed-point units. In contrast,
fixed point units can perform operations with fewer bits and higher speed.

Current multicore DSP systems can combine DSP cores with other types of cores,
such as GPU or microcontroller cores. These are known as “heterogeneous” platforms.
The most common type of heterogeneous platform combines CPU cores (ARM) and DSP
cores. The former handles user interaction, protocol processing as well as controlling
the platform. The latter handles compute-intensive tasks [78,92]. Furthermore, since a
single MAC operation requires accessing two memory reads to obtain the data, plus the
multiplication, the addition and the writing of the result in the memory in the same clock
cycle, special long instructions have been developed, and DSP processors have their own
specialized instruction sets. Furthermore, for better memory access, they incorporate direct
memory access (DMA).

Some known manufacturers have developed a subgroup of processors known as
Crossover MCUs (‘crossover’ embedded processors), which guarantee high performance
(>400 MHz multicore CPU) and low consumption. These devices combine the best of
the microcontroller world with high-performance DSPs that are ideal for machine learn-
ing and artificial intelligence applications. The price is affordable compared to other
hardware platforms [93]. For instance, NXP offers an i.MX RT family based on a Cortex-
M7/M33, supporting RTOS and providing 2D graphics support, a camera interface, and
high-performance audio support [93]. These devices are application processors built with
an MCU core, architected to deliver high performance and functional capabilities of applica-
tions processors but with the ease-of-use and real-time low-power operation of traditional
MCUs. Further, crossover processors are designed to reduce system cost by eliminating the
need for flash, external DDR memory, and power management ICs. Some of these elements
appear on general embedded designs for mass-market applications such as metering,
medical equipment, and IoT gateways.

As a result, modern DSP systems have a small power draw compared to other solu-
tions, while also excelling at handling digital signal processing. Multicore solutions also
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offer the ease-of-use attributes associated with microcontrollers, one of the drawbacks
traditional DSP solutions have suffered from.

Figure 3 shows the most significant milestones over time that have contributed sig-
nificantly to the development of imaging applications requiring DSP-based hardware
acceleration systems.
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2.3.2. DSPs in Medical Imaging

There are several methods needed in medical imaging that depend on digital signal
processing (DSP), such as convolution, discrete Fourier transform (DFT), fast Fourier
transform (FFT), finite impulse response (FIR) and infinite impulse response (IIR) filters,
FFT recursive and non-recursive digital filters, FFT processing, random signal theory,
adaptive filters, upsampling and downsampling, etc. [94].

The DSPs’ rising performance has allowed them to undertake intense real-time tasks,
which, coupled with their inherent proficiency in arithmetic operations, has made them a
desirable platform for certain medical imaging algorithms implementation.

Recursive and non-recursive digital filters are mainly used to acquire interest signals
and block unwanted signals, i.e., noise. In general, low pass, high pass, band pass and
band reject filters are implemented for filtering functions. It is common to employ these
filters using DSPs for biomedical engineering fields such as MRI, ultrasound, CT, X-ray
or PET imaging, as well as the analysis and processing of signals derived from these or
genetic signals [94].

Berg et al. [95] proposed an optimization-based image registration algorithm using
a least-squares data term and implemented it on an embedded distributed multicore
digital signal processor (DSP) architecture. All relevant parts were optimized, ranging
from mathematics, algorithmics, and data transfer to hardware architecture and electronic
components. They evaluated the performance using histological slices of cancer tissue.

Chandrashekara and Sreedevi implemented contrast-limited adaptive histogram
equalization on a TMS320C6713T DSP processor to improve contrast in brain magnetic
resonance images [96]. They showed promising results for several image quality metrics
and subjective visualization.

DSPs have often been used together with another accelerator. Liang et al. described a
digital magnetic resonance imaging spectrometer based on a DSP along with an FPGA [97].
The DSP was utilized as the pulse programmer on which a pulse sequence is executed as a
subroutine.

Ali et al.’s white paper and Pailoor et al.’s application report provided a descrip-
tion of portable ultrasound imaging equipment with emphasis on the signal processing
strategies [98,99]. They reported how DSPs, oftentimes, can be complemented by a re-
duced instruction set computer (RISC) processor. This way, the DSP can perform the more
demanding algorithmic and real-time control tasks, even though ensuring a low energy
consumption, while the RISC processor handles the tasks the DSP core is less suited for,
making up for its downsides without adding another device.

In this line, Boni et al. described the 256-channel ULtrasound Advanced Open Plat-
form (ULA-OP 256), intended to afford high performance in a small size [100]. This research
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scanner integrates several homogeneous multicore DSP and FPGA devices, where DSPs
handle real-time operations (i.e., demodulation, filtering) as well as arithmetic operations.
The ULA-OP 256 was successfully used in several consequent real-time image processing
applications, such as the ones carried out by Ricci et al. [101], performing real-time blood
velocity vector measurement over a 2-D region; Ramalli et al. [102], presenting a real-time
implementation of the tissue Doppler imaging modality; and Tortoli et al. [103], comparing
vector Doppler methods with conventional spectral Doppler approaches and achieving
real-time estimations.

Arulkumar et al. proposed an ALU-based FIR filter for Biomedical Image Filtering
application [104]. The ALU design operation includes accumulation, subtraction, dis-
placement, multiplication and filtering. The FIR filter is designed to perform retina image
filtering. This process allows DSP uses for improved visualization of the medical field.
They concluded that the design and analysis of the ALU-based FIR filter provides an
efficient result in the way of achieving the factors such as static and dynamic power, delay
area utilization, MSE and PSNR.

On another note, Beddad and Hachemi showed encouraging performance results
when implementing several medical image algorithms (such as Fuzzy C-Means or Level
sets) for brain tumor detection in MR images [105].

All these works confirm that the use of DSPs is especially envisioned when design-
ing specialized devices, particularly as their low power draw makes them exceptionally
well-suited for portable devices. Additionally, there are many tools available for program-
ming C/C ++ code for DSP, and the libraries available include common general-purpose
algorithms for computer vision. In general, the development time for a simple task in
single-core DSP is relatively short; nevertheless, developing optimized code using par-
allel programming techniques for multicore DSPs becomes hard and requires advanced
programming skills. Moreover, free libraries have been developed to help programmers
with optimized basic functions. Some of these libraries are: DSPLIB and MSP-DSPLIB
(including functions for some digital signal processing tasks, such as FFT and convolution),
IMGLIB and MATHLIB (basic math operations and basic practical calculations).

2.4. Field Programmable Gate Arrays (FPGAs)
2.4.1. Evolution of FPGA Architectures

FPGAs were introduced in 1985; however, a variety of Programmable Logic Devices
(PLDs) appeared earlier [106,107]. The first PLDs were just Programmable Read-Only
Memories (PROMs) that, rather than being used as computer memories, were used to
implement simple logical functions. These devices integrate in the same integrated circuit
a non-programmable memory decoder consisting of AND gates and a programmable array
consisting of OR gates. Using the ROM input addresses as independent signals of a Boolean
function and the memory outputs interfaced to the programmable array as a result of this
Boolean function, it is possible to make independent logic circuits from the input signals.
However, in some cases, they may be larger and slower than dedicated logic circuits and
only a part of the capacity is used, which provides an inefficient use of the device.

New kind of PLDs appeared later in the 1970s to reduce the size of the PROMs or
increase the configurability, such as Programmable Logic Array (PLA) and Programmable
Array Logic (PAL) [108], which allow programming the AND gate array or the memory
decoder, and the PALs also allow programming the output logic, reducing the number of
components. The PROM, PLA and PAL are classified as Simple PLDs (SPLD).

In the 1980s, more advanced PLDs appeared, which were called Complex PLDs
(CPLD) [109]. The architecture of CPLDs consists of various SPLDs blocks surrounded
by a programmable interconnection matrix. This allows the development of larger and
more complex logic circuits, reducing cost, size and increasing design reliability. Although
the internal structure of a CPLD varies from vendor to vendor, the general structure is
characterized by the following blocks: SPLD blocks, such as PROM, PLA or PAL; input and
output (I/O) blocks that connect the I/O to the SPLDs; and the programmable interconnect
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matrix responsible for interconnecting the inputs and outputs of the SPLDs, as well as the
I/O blocks.

CPLDs hierarchical structure, combining registered SPLDs with a programmable
interconnect matrix, produced a big leap forward in the capabilities of programmable logic
devices. Nevertheless, CPLDs were not yet suitable for complex circuits that require many
flip flops. At that moment, there was still a big gap between the circuits that could be
designed using PLDs and ASICs, leading to the development of FPGAs.

The most common FPGA architecture is called island-style FPGA architecture, in
which the logic blocks are surrounded by a grid of routing interconnect, such as connection
boxes or switch boxes. The smallest unit of logic block is the Configurable Logic Block,
which consists of a LUT, a flip flop and a multiplexer [107]. LUTs are composed of SRAM
cells that store the function outputs and a multiplexer that selects the output value from
the inputs, and it can implement any function from its inputs.

FPGAs accomplish the goal of implementing complex digital circuits on a single chip
that was previously only achievable using ASICs. At the same time, its high configurability
allows for fast design and modification times. However, this flexibility comes at a cost
since most of the FPGA area is dedicated to the programmable routing interconnections,
which not only implies much higher use of silicon but also higher power consumption and
slower speeds than ASICs [110].

On the other hand, the flexibility of FPGAs is the main advantage compared to ASICs,
since if the design had to be modified due to design errors or improvements, the FPGA
could just be reprogrammed, but a custom digital circuit would need to be redesigned from
scratch [111]. In addition, since nowadays FPGAs can be reprogrammed on-site within
seconds, their design costs are significantly lower than ASICs’. Thus, ASIC devices are only
economical when high production volumes are needed or where the ASICs performance
cannot be matched by an FPGA [112].

The FPGAs have evolved from the homogeneous structure to a more heterogeneous
architecture with a wide range of specific blocks. Nowadays, FPGAs contain embedded
memory blocks (block RAM), multipliers (DSP), and even embedded processors cores,
known as System-on-Chip FPGA (SoC FPGA) [113]. In addition, current multiprocessor
system-on-chip (MPSoC) systems also include real-time processors, GPUs or AI mod-
ules [114,115] on the same die. These devices are growing more and more complex;
therefore, the use of high-level synthesis tools allows further abstraction using C, C++ or
SystemC to transform algorithm descriptions into register-transfer level code, allowing to
speed up the hardware design process on the FPGA.

Semiconductor manufacturers are exploring alternative architectures, including spe-
cific accelerators for vector processing (DSPs, GPUs) and programmable logic (FPGA).
Xilinx has introduced in recent years a new heterogeneous architecture called Adaptive
Compute Acceleration Platform (ACAP), which is expected to be a solution for the current
applications [116,117].

ACAP is a hybrid platform that integrates an FPGA, together with a programmable
processor and software programmable accelerator engines (DSP and GPU) prepared for
vector computation. In addition, a communication network (NoC) interconnects all the
parts, which makes it possible to establish an efficient data exchange channel. This new
architecture allows performing acceleration interfaces for Artificial Intelligence and Ma-
chine Learning applications, as well as Automotive Driver Assist System and 5G wireless
communications, among others. Therefore, this new architecture can be an alternative
for future medical image processing applications, since it includes all the architectures
described in this article (DSPs, GPUs, FPGA and CPU) and the manufacturers are tending
to integrate more elements in the same chip.

Therefore, FPGAs are now widely used in the implementation of image processing
applications. This is especially focused on real-time applications, where latency and power
consumption are important parameters of design. For instance, an FPGA built into a smart
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camera can do much of the processing of the captured image, allowing the camera to
deliver a stream of processed output data rather than a sequence of raw images.

Unfortunately, implementing an algorithm to an FPGA can produce disappointing
results because many image processing algorithms have been optimized for a serial pro-
cessor execution and for a specific image dimension. Generally, it could be necessary to
transform the algorithm to efficiently exploit the parallelism and resources available in the
FPGA.

Figure 4 presents the most significant milestones over time that have contributed
significantly to the development of imaging applications using FPGA-based acceleration
systems.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 35 
 

 

architecture allows performing acceleration interfaces for Artificial Intelligence and Ma-
chine Learning applications, as well as Automotive Driver Assist System and 5G wireless 
communications, among others. Therefore, this new architecture can be an alternative for 
future medical image processing applications, since it includes all the architectures de-
scribed in this article (DSPs, GPUs, FPGA and CPU) and the manufacturers are tending 
to integrate more elements in the same chip. 

Therefore, FPGAs are now widely used in the implementation of image processing 
applications. This is especially focused on real-time applications, where latency and 
power consumption are important parameters of design. For instance, an FPGA built into 
a smart camera can do much of the processing of the captured image, allowing the camera 
to deliver a stream of processed output data rather than a sequence of raw images. 

Unfortunately, implementing an algorithm to an FPGA can produce disappointing 
results because many image processing algorithms have been optimized for a serial pro-
cessor execution and for a specific image dimension. Generally, it could be necessary to 
transform the algorithm to efficiently exploit the parallelism and resources available in 
the FPGA. 

Figure 4 presents the most significant milestones over time that have contributed sig-
nificantly to the development of imaging applications using FPGA-based acceleration sys-
tems. 

 
Figure 4. Most significant milestones over time on FPGA-based hardware acceleration for image processing. 

2.4.2. FPGA in Medical Imaging 
The evolution of FPGAs has motivated an increase in the use of these devices, whose 

architecture allows the development of hardware solutions optimized for complex tasks, 
such as 3D MRI image segmentation [118], 3D discrete wavelet transform [119], tomo-
graphic image reconstruction [18,120], or PET/MRI systems [121,122]. The developed so-
lutions can perform intensive computation tasks with parallel processing, are dynamically 
reprogrammable, and have a low cost, all while meeting the hard real-time requirements 
associated with medical imaging. 

Moreover, its reduced size and single chip capabilities make them the perfect plat-
form to implement portable testing devices [123] or even surgical assisting imaging de-
vices [124]. Configurable hardware solutions offer a compromise between the flexibility 
of software and the high processing speed of ASICs, at a lower cost than DSPs, and as 
reconfigurable devices, new algorithms can be implemented. Furthermore, parallelism 
and pipelining techniques become possible, increasing the FPGAs performance, even at 
slower clock rates. This makes FPGAs capable of performing more than 33 million opera-
tions per second [125], which is the number of operations per second needed to execute a 
single operation in real-time 768 × 576 color video at 25 frames per second. 

FPGAs have been designed to perform image registration of medical images as well. 
Specific processes as affine transformations or mutual information calculations can be ac-
celerated during real-time image registration, implementing the algorithms in FPGAs 

Figure 4. Most significant milestones over time on FPGA-based hardware acceleration for image processing.

2.4.2. FPGA in Medical Imaging

The evolution of FPGAs has motivated an increase in the use of these devices, whose ar-
chitecture allows the development of hardware solutions optimized for complex tasks, such
as 3D MRI image segmentation [118], 3D discrete wavelet transform [119], tomographic
image reconstruction [18,120], or PET/MRI systems [121,122]. The developed solutions
can perform intensive computation tasks with parallel processing, are dynamically re-
programmable, and have a low cost, all while meeting the hard real-time requirements
associated with medical imaging.

Moreover, its reduced size and single chip capabilities make them the perfect platform
to implement portable testing devices [123] or even surgical assisting imaging devices [124].
Configurable hardware solutions offer a compromise between the flexibility of software
and the high processing speed of ASICs, at a lower cost than DSPs, and as reconfigurable
devices, new algorithms can be implemented. Furthermore, parallelism and pipelining
techniques become possible, increasing the FPGAs performance, even at slower clock rates.
This makes FPGAs capable of performing more than 33 million operations per second [125],
which is the number of operations per second needed to execute a single operation in
real-time 768 × 576 color video at 25 frames per second.

FPGAs have been designed to perform image registration of medical images as
well. Specific processes as affine transformations or mutual information calculations
can be accelerated during real-time image registration, implementing the algorithms in
FPGAs [126,127]. Nevertheless, recently, Mondal and Banerjee proposed an efficient and
complete hardware-based image registration [128]. They used angular and radial pro-
jections without converting the image into polar coordinates. Therefore, they adaptively
adjusted the number of samples according to the angle and the radial length in parallel.
Moreover, they sped up the process by avoiding the calculation of geometric transfor-
mations in each iteration, which also reduces the amount of hardware resources that are
required. Hence, they presented a high-speed hardware architecture able to perform the
whole image registration process.

Gebhardt et al. proposed a system based on FPGAs to solve the electromagnetic
interference problems to which PET detectors and the MRI radio frequency (RF) subsystem
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in multimodal PET-MRI systems are exposed, resulting in a deterioration of the signal-to-
noise ratio (SNR) [129]. The methods presented employed an FPGA that replaces clock
frequency and phase shifting of the digital silicon photomultipliers (dSiPM) used in PET
modules. A reduction in RF interference was achieved based on the principles of coupling
and decoupling of the EM field from the RF receive coils. For this purpose, the clock
frequencies were modified, and the clock phase relationships of the digital circuits were
changed.

Zhou et al. solved the problem of detecting nuclei in high-resolution histological
images by implementing a generalized Gaussian Laplacian algorithm on FPGA. The results
demonstrated a significant improvement in processing time without loss of detection
accuracy [130].

In addition, real-time image processing can be implemented in MRI normal/abnormal
immediate classification, lowering the false-negative rates and increasing tumor detection
by double reading the images [131]. FPGAs are ideal devices to implement functions and
operations, as convolutions, or even neural networks for machine learning and DL, due to
parallelism and pipelining where they outperform CPUs and GPUs [132]. Several proposals
have been presented for MR image reconstruction. Li and Wyrwicz designed a single FPGA
chip with a 2D Fast Fourier Transform (FFT) core to reconstruct multi-slice images without
the need of additional hardware components [133]. More recently, different groups have
presented FPGA designs intended to accelerate the MRI reconstruction through sensitivity
encoding (SENSE) [134,135]. Thus, Inam et al. obtained results that were comparable
to those acquired with conventional CPU-based implementations but achieved lower
computational time [135]. Furthermore, FPGAs have been used for other MRI applications,
such as spectrometry. Liang et al. use a DSP along with an FPGA-based design to build a
digital magnetic resonance imaging spectrometer [136]. The FPGA oversaw the gradient
control, RF generation and RF receiving.

According to other imaging modalities, innovative applications have been developed
for CT with field programmable gate arrays. Choi et al. showed an FPGA design with
several block RAMs to make 3D CT reconstruction faster and reduce the radiation expo-
sure [137]. Likewise, FPGAs can be used to accelerate data acquisition of ultrafast X-ray
CT in real-time, as Windisch et al. demonstrated [138]. This way, real-time control of the
scanning process can be enhanced, which is one of the main limitations of this modality. In
addition, Goel et al. proposed a new method to speed up the COVID-19 diagnostic process.
For that purpose, they developed a deep convolutional neural network to classify infected
patients from CT images [139]. They tested different hardware-based implementations,
including multicore CPU, many-core GPU, and even FPGA. They obtained satisfactory re-
sults with the different platforms, demonstrating a competitive optimization of the network
training and inference performance with the FPGA.

Moreover, many PET and PET/MR scanners include FPGA systems to decode the
signals arriving at photomultipliers [140]. Thus, several groups have implemented FPGA-
only digitizers for signal digitization, processing and communication. Moreover, the latest
research built these highly integrated data acquisition (DAQ) boards using single-ended
memory interface (SeMI) input receivers instead of low-voltage differential signaling
(LVDS) input receivers [141,142]. Furthermore, different machine learning algorithms have
been implemented for photon position and arriving time estimation, scatter correction,
attenuation correction and noise reduction taking advantage of FPGAs [140].

FPGAs are also introduced to speed up the acquisition of US imaging as well as to
reduce the computational cost. Thus, Assef et al. designed an envelope detector for US
imaging using a Hilbert Transform finite impulse response filter on an FPGA [143]. The
results showed high efficiency for real-time envelope detection with a cost minimization of
up to 75%. In addition, the implementation of an FPGA system allowed Wu et al. to build
an intravascular US device able to perform photoacoustic and ultrasound imaging with
forward- and side-viewing capability (contrary to conventional only forward-looking in-
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travascular US) [144]. The system presented high-speed, low-cost, flexible programmability
and compactness, making the device suitable for both research and clinical environments.

Henceforth, the scope of FPGA applications in the medical image field is becoming
increasingly widespread. They enable to design-specific processes separately and in
parallel, speeding-up acquisition and processing. Moreover, recent developments have
proven their capability to combine tasks in order to complete whole procedures as image
registration. Therefore, FPGAs offer a broad range of possibilities to improve the current
imaging techniques.

2.5. Application Specific Integrated Circuits (ASICs)
2.5.1. Evolution of ASICs

The beginnings of ASICs could be traced back at least 20 years before the development
of masked read-only memory (ROM). In the early 1970s, the concept of Gate Arrays
and Standard Cells was introduced, with the first ASICs using diode-transistor logic and
transistor-transistor logic technology. On the other hand, complementary metal oxide
semiconductor (CMOS) technology enabled the commercialization of gate arrays, with the
first CMOS gate arrays being developed in 1974. However, ASICs acquired a prominent
place in the integrated circuit market worldwide during the 1980s, when the first low-end
personal computers became commercially available using circuits based on gate-array
circuits. The evolution of ASIC designs and technology can be characterized by the
continuous growth and development of various ASIC design styles, which can be classified
into four groups: standard-cell designs, gate-array or semi-custom design, structured
design and full-custom design [145–147].

The standard cell design was the first method that allowed enhancing this technology
since, until then, to design an ASIC it was necessary to choose a manufacturer and use
the design tools that it provided. However, manufacturers implemented standard cells
that were functional blocks with known electrical characteristics, which could easily be
represented in the developed tools. Standard Cell-based design is the use of these functional
blocks to achieve very high gate densities while achieving good electrical performance.
Standard Cells produce a design density with comparatively lower cost and can also
integrate Intellectual Property (IP) and SRAM cores in an effective way, unlike gate arrays.

The gate-array design is a method where the transistors and the other active elements
are predefined, and the wafers containing these elements are kept in stock prior to metal-
lization, while the design process defines the interconnection of the elements in the final
device. Fixed costs are significantly lower, and the production cycles are shorter. It should
be noted that minimal propagation delays can be achieved with this method, compared to
commercially available FPGA-based solutions.

In the structured design of ASICs [148], the manufacturing cycle as well as the design
cycle are reduced compared to cell-based ASICs, due to the existence of predefined metal
layers, which reduces the fabrication time, and a pre-characterization of the silicon, which
reduces the design time. It has lower fixed costs than chips based on standard cells or fully
custom-made, the predefined metallization is used mainly to reduce the cost of the mask
set, and it is also used to reduce the development cycle. In addition, the tools used for
structured ASICs can substantially reduce and facilitate the design since the tool does not
have to perform all the functions required for cell-based ASICs. Besides, it enables the use
of IP cores, which are common for certain applications or industry segments, instead of
designing these cores from scratch.

Finally, the full-custom ASIC includes custom logic cells, as well as the customization
of all mask layers, making them very expensive to manufacture and to design. An example
of a full-custom ASIC is a microprocessor, where many hours of design time are involved
to maximize the performance of the microprocessor area. This allows to include analog
circuits or optimized memory cells in the same device, obtaining more compact designs
although requiring a long design time.
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Since feature sizes of ASICs are shrinking and design tools have improved over the
years, the overall complexity and functionality of an ASIC has grown from 5000 logic gates
to more than 100 million. Current ASICs often include complete microprocessors, memory
blocks, as well as other large building blocks. For this reason, ASICs are sometimes called
system-on-chip (SoC) since the current trend is to integrate all or most of the modules that
make up a computer into a single integrated circuit [149].

Figure 5 presents the most significant milestones over time that have contributed
significantly to the development of imaging applications using ASIC-based hardware
acceleration systems.
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2.5.2. ASICs in Medical Imaging

Despite the recent technological advances in CPUs, GPUs, FPGAs and DSPs, ASICs
are still used to support a few more specific and more challenging processing tasks. Thus,
ASICs have been traditionally used to support the high computational and data rate
requirements in medical X-ray spectroscopy, CT scans, MRI, ultrasounds, and PET imaging
systems, with the focus on the front-end receiver electronics. In this sense, several studies
have proposed dedicated architectures to solve specific problems with very strict real-time
constraints.

Kmon et al. presented an ultra-fast 32k channels chip for an X-ray hybrid pixel detector,
which was designed to obtain a high count-rate performance [150]. Their dedicated and
fast front-end circuit could be bump-bonded to a silicon pixel detector allowing for single-
photon counting readout for hybrid semiconductor detectors in low-energy X-ray imaging
systems. Another proposal in this field is described by Sundberg et al. in [151], where they
use an already evaluated ASIC architecture capable of photon-counting [152] and propose
adjusting the shaping time to counteract the increased noise that results from decreasing
the power consumption.

In clinical and preclinical nuclear imaging applications, there is a rising demand
for high-resolution room-temperature solid-state detectors (RTSDs), especially CZT and
CdTe detectors. As the demand for SPECT systems with higher spatial resolution, energy
resolution and sensitivity continue to rise, there is an increasing need to develop high-
performance small-pixel CZT and CdTe detectors and corresponding high-speed readout
electronics. The multi-channel readout circuitry reported in [153] is based on the pre-
existing High Energy X-ray Imaging Technology (HEXITEC) ASIC [154]. Pushkar et al.
offered a different solution to the same problem, although there are not many details of
their SPECT ASIC [155].

Kang et al. described a novel SoC solution for a portable US imaging system that was
compact and had low power consumption [156]. In this case, their solution comprised all
the signal processing elements, including the transmit and dynamic receive beamformer
modules, mid- and back-end processors, and color Doppler processors, in addition to
an efficient architecture for hardware-based imaging methods, including dynamic delay
computation, multi-beamforming, and coded excitation and compression. Kim et al.
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presented an ultrasound transceiver ASIC directly integrated with an array of 12 × 80
piezoelectric transducer elements to enable next-generation ultrasound probes for 3D
carotid artery imaging. It is a second-generation ASIC that employed an improved switch
design to minimize clock feedthrough and charge-injection effects of high-voltage metal–
oxide–semiconductor field-effect transistors, which in the first-generation ASIC caused
imaging artifacts [157]. Rothberg et al. described the design of the first ultrasound-on-
chip to be cleared by the FDA for 13 indications, comprising a two-dimensional array of
silicon-based microelectromechanical systems ultrasonic sensors directly integrated into
complementary metal–oxide–semiconductor-based control and processing electronics to
enable an inexpensive whole-body imaging probe [158]. The beamformers of ultrasound
imaging are conventionally implemented using FPGA. However, the minimum delay
time provided by an FPGA chip is about 2 ns, which is not suitable for high-frequency
US (HFUS) imaging. As a result, an ASIC is needed to provide an appropriate delay
time to excite the array transducer elements in the HFUS array system. Sheng et al.
proposed an all-digital transmit-beamforming integrated circuit with high resolution for
high-frequency ultrasound imaging systems, not only more suitable for portable ultrasound
system application but also at a lower cost [159].

Cela et al. reported a compact detector module, including a FlexToT ASIC designed for
time-of-flight (TOF) PET [160]. Novel TOF sensors allowed for an additional level of detail
in PET imaging, as they can add the actual time difference between the detection of photons
released during an annihilation event (compared to normal detectors that only measure the
direction and attenuation of photons). Their module provided a fast, low-power front-end
readout for silicon photomultiplier (SiPM) arrays in scintillator-based PET detectors. An
evolution of this ASIC, named HRFlexToT, was presented in 2021. It offers a linear Time-
over-Threshold (ToT) with an extended dynamic range for energy measurement, low power
consumption, and an excellent timing response [161]. Nemallapudi et al. [162] described
the use of STiC, an ASIC with four channels dedicated to fast timing discrimination in PET
using silicon photomultipliers [163], for range verification in proton therapy.

All these works confirm that the use of ASICs is still needed for specific and more
challenging processing endeavors and serves as examples of very specific tasks where
other hardware architectures could fail to meet the strict real-time constraints.

3. Discussion

Earlier prediction and treatment have been driving the acquisition of higher image
resolutions as well as the fusion of different modalities. On the other side, with the demand
for healthcare services increasing, providers require medical imaging equipment that
acquires images faster and improves image quality. In this context, the rising need for
sophisticated software/hardware systems for medical image acquisition and storage, as
well as novel and nearly real-time medical imaging analysis tools, has led to a change
of paradigm when choosing the most efficient hardware architectures while keeping
healthcare affordable and accessible.

3.1. Hardware Architectures Comparison

Today, manufacturing technologies are evolving rapidly, and competition between dif-
ferent manufacturers has brought better development tools, which allow creating solutions
in a reasonable time and equipped with the latest technological advances. However, each
hardware accelerator is designed to be efficient for certain algorithms or implementations
but not for others. In fact, choosing a hardware accelerator is often a compromise between
several factors, including computing power, speed, development time, power consumption,
and price. Therefore, this makes choosing a suitable hardware accelerator for a specific
application relatively difficult.

One of the main challenges lies in finding a suitable solution for an application that
requires the use of hardware accelerators. It is difficult to define an indicator that makes it
easy to choose one hardware accelerator over others. A more realistic analysis indicates that
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processing speed alone is not enough as a criterion of choice, especially when they belong to
different families. Thus, there are other objective factors ranging from power consumption
and price to more subjective ones related to the skill of the programmer and the design
tools available. Figure 6 shows how each of the five hardware architectures discussed
in this review excels in different parameters, so aspiring designers should consider the
strengths of each one before choosing a platform to develop their prototype and, eventually,
their final application. In this sense, the following definitions of the parameters shown in
Figure 6 are considered for comparison purposes:

• Flexibility: Ability to adapt the platform to different scenarios and use cases while
keeping performance high enough to be a competitive option (higher is better).

• Design cost: Economic cost of resources needed to produce and program the device.
This includes coding easiness (higher rating means lower requirements).

• Unitary cost: Cost per manufactured unit. This cost does not include coding or
implementation expenses and is influenced by common manufacturing runs (higher
rating means lower cost).

• Performance: Ability to complete a given (appropriate) task (higher is better).
• Power efficiency: Power required to operate (higher rating means lower power con-

sumption).

CPUs have been typically chosen as the most common and flexible platform to code
or develop on due to their inherent flexibility and easiness to program new methods.
Additionally, their computational performance has increased considerably in the past
decades (Figure 6a).

GPUs offer a further dedicated technology providing a way to improve certain com-
putational tasks and algorithms while maintaining a certain amount of flexibility (Figure
6b). However, the development and implementation of algorithms in GPU architectures
has been very complex until the development of a unified architecture, which helped to
have a better load-balancing in exchange for complex hardware. Furthermore, the use of
GPUs by a broader public has driven the development of new functionalities as well as
the creation of several highly optimized libraries such as OpenACC, Caffe, Tensorflow or
PyTorch.

DSPs specialize, as mentioned earlier, in digital signal processing, and as such, are
the best performers in that field. Nevertheless, they barely offer any flexibility, so they are
often used together with other architectures in composite designs where fast digital signal
processing is desired, yet it is not the only kind of processing performed (Figure 6c).

FPGAs have less performance, higher power consumption and unitary cost than
ASICs but advantages of higher flexibility, lower design effort and time-to-market. More-
over, since FPGA design times are considerably shorter than dedicated ASICs’, they are also
used to prototype the ASIC design. Compared to CPUs and GPUs, FPGA performance can
be higher, but with the cost of a higher design effort (Figure 6d). In addition, it is possible
to simulate functionality in the early stages of the design and validation process [106], in-
cluding the hardware–software interactions and communication with other devices. These
features provide FPGA-based devices ideal for a large application range, from prototyping
to aerospace and defense [164,165]. In general, FPGAs are used in communications, video,
and image processing because of their parallelism, which allows them to meet real-time
requirements.
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availability, flexibility and ease-of-use make them the perfect prototyping candidates when deploying algorithms or
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programmed to perform similarly to a given highly specialized platform. (e) Application Specific Integrated Circuits (ASICs)
are extremely geared towards high-performance and low unitary cost for a high production so that the low variable costs
may offset the high fixed costs.

ASICs provide smaller form factors, higher performance, and less power consumption
since they are tailored for a specific application and implemented based on custom design
specifications. However, ASICs have a long time to market as there is a need for the layout
of masks and manufacturing steps, with its subsequent risk of lost revenue due to being late
to market, implementation flexibility and future obsolescence. In summary, ASICs should
only be considered by experienced engineers developing high volume-specific devices,
especially as they only add up in very well tested systems/subsystems where a possible
change or update does not make much sense and, above all, security is not compromised
(Figure 6e).

Table 1 provides a summary comparison chart for all five hardware architectures dis-
cussed in this review, including a brief overview of the architecture, the specific processing
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characteristics, programming capabilities, supported peripherals, strengths, weaknesses,
and most common medical applications.

Table 1. Summary comparison chart for CPU, GPU, DSP, FPGA and ASIC hardware architectures.

CPU GPU DSP FPGA ASIC

Central Processing
Unit

Graphics Processing
Unit

Digital Signal
Processors

Field Programmable
Gate Arrays

Application-Specific
Integrated Circuit

Overview

Traditional sequential
processor, optimized
for executing general

computational
instructions.

Designed mainly for
graphical outputs;

now used in a wide
range of

computationally
heavy applications

(e.g., training AI
models).

Dedicated to
processing digital

signals such as audio.
Designed to perform

mathematical functions
such as addition and
subtraction at high

speed with minimal
energy consumption.

IP blocks and logic
elements that can be

modified or
configured in the

field by the designer.

A customized
embedded circuit

designed for a
specific application.

Processing Single and Multicore
MCUs MPUs.

Thousands of
identical processor

cores.

A parallel architecture
is suitable as it is

scalable and allows
performance based on

the number of
processors in the
system. Current

multicore DSPs can be
combined with other
structures (e.g., CPU

cores (ARM) and DSP
cores).

SoCs include hard or
soft IP cores, and

they are configured
for application.

Configured for
specific application,

and they could
include third-party IP

cores.

Programming

OSes, multitude of
high-level languages
via APIs; OpenMP,

Cilk++, TBB,
RapidMind and

OpenCL; assembly
language.

OpenCL, HIP (AMD)
and NVIDIA CUDA

API allow
general-purpose

programming (e.g., C,
C++, Python).

C, C++

Traditionally HDL
(Verilog VHDL); The

newer systems
include C/C++ via
OpenCL and Vitis.

Application specific.
For example, Google
Coral TPUs to work

with Tensorflow
tensors or CPU

manufacturers such
as Intel include tools

with ASICs.

Peripherals

Analog and digital
peripherals in MCUs

include digital bus
interfaces.

Very limited, e.g.,
only cache memory
and interconnection

among GPUs
(multi-GPUs).

Program memory, data
memory, BUS.

Transceiver blocks
and configurable I/O

banks.

Tailored to
application. ASICs

can include standard
connectors such as
USB, Thunderbolt,

Ethernet, etc.

Strengths

High versatility,
multitasking and

ease of
programming.

High-performance
processing in specific
applications, such as

video processing,
image and signal

analysis and neural
network training,

deep learning.

They have an
optimized architecture

to perform the
computational

operations in digital
signal processing with

low cost and high
performance per watt.

Application-specific
configuration, and
this configuration

could be changed for
new fields. High

performance per watt.
Allows parallel

operation.

Tailor-made for the
application with an

optimal combination
of performance and

energy consumption.

Weaknesses

The operating system
adds a large

overhead. It is
optimized for

sequential processing
with limited
parallelism.

Not suitable for all
programs or

algorithms. It is
energy-intensive and

becomes hot.
Problems must be

adapted to take
advantage of
parallelism.

They barely offer any
flexibility.

Long development
time and difficult

programming. Low
performance in

sequential operations.
Not optimal for
floating-point

operations.

Long development
time with a high

price tag. Cannot be
changed once

designed.

Most common
medical usage

Image reconstruction,
registration,

segmentation.

3D PET image
reconstruction, EM

simulations,
Pseudo-CT synthesis

with MRI.

Ultrasound filtering,
image registration,

image enhancement.

Optimized 3D MRI
image segmentation,
TC/PET/MRI image
reconstruction, image

registration

Time-of-flight (TOF)
PET, X-ray hybrid

pixel detector, CZT
and CdTe detectors
for SPECT, specific

US solutions.



Electronics 2021, 10, 3118 22 of 34

Despite having analyzed each of the different hardware architectures separately,
nowadays, it is difficult to find any one of the five types of devices discussed in this paper
working independently of each other in image processing pipelines. An example of this is
GPUs, which also need memory and usually work together with a CPU to manage data
transactions. Moreover, frequently, there is no optimal solution for a specific application
but a well-suited solution for a compromise between different requirements. It is also worth
bearing in mind in what way these selections line up in numerous shared applications. As
exposed in Table 1, developers can often base their designs on several or all the choices
either alone or, often, in combination.

On the other hand, a recent trend of using FPGAs as partially reconfigurable, highly
specialized circuits has set them under the spotlight. MPSoC devices are characterized by
integrating different elements on the same chip. Although they have less computational
power than CPUs or GPUs, however, when combined with a programmable logic of an
FPGA, they are a very flexible solution. In addition, the current microprocessors integrate
SIMD units, making these devices more commonly used for real-time image processing.
These platforms tend to use FPGAs to speed up algorithm implementation while leveraging
their onboard CPU to perform general tasks or run software applications. Their advantages
include the ability to provide high-speed customizable solutions due to the parallelism
it allows in the design. The programmable logic in the same device makes it possible to
design hardware accelerators combining the advantages of FPGAs together with those of
multicore systems.

Semiconductor device manufacturing techniques require increasingly complex tech-
niques to allow the integration of a greater number of transistors, functional blocks, mem-
ories and buses, all on the same chip, obtaining devices with higher computational per-
formance [166]. This increases the cost of most CPUs, GPUs, MPSoCs or FPGAs but also
allows higher performance and the ability to parallelize and speedup algorithms, as well
as greater flexibility in the different fields of application.

Considering the devices in terms of their flexibility and parallelism capabilities, it can
be considered that MPSoCs with FPGAs allow using the programmable logic of the FPGA
to apply parallelism, while different applications can be developed on the SoC processors.
Slightly less flexible are CPUs and GPUs since it is possible to parallelize very effectively
using the GPU, but it is not possible to make specific hardware accelerators as it happens
with FPGAs. Finally, ASICs would be the least flexible, because they are usually designed
for a specific application and development; therefore, if the ASIC is designed to be flexible,
it may become a very costly solution.

Taking performance into account, it can be said that MPSoC devices with FPGAs
have lower performance than a solution based on ASICs. Nevertheless, depending on
the processing, their performance could be higher than a solution based on CPUs or
GPUs [167–169]. The flexibility provided by MPSoCs makes it possible to use a large part
of the programmable logic to develop hardware accelerators, while parallel processing is
performed on the microprocessor cores, implementing mixed hardware/software solutions.

Finally, it should be noted that the trend of manufacturing devices that integrate a
greater number of specific elements on the same die, known as heterogeneous architecture,
allows for more complete solutions; however, it requires a high level of specialization
from designers to obtain optimal solutions adapted to the chosen hardware. This means
that, despite having a very powerful heterogeneous architecture, sometimes not all the
embedded components are used, making inefficient use of the device. However, this
statement is somewhat relative since a better solution can be achieved depending on the
challenge imposed by the application, the selection process carried out by the developers,
and their experience in similar tasks.

Multicore units (whether heterogeneous or homogeneous) are tailored to either benefit
from the added strengths of two different architectures or to offset their weaknesses.
As such, they have become the golden standard in many applications and commercial
products. However, to properly utilize a multicore unit, a correct understanding of its cores
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is needed. To this extent, this paper focuses on these independent hardware platforms
while occasionally touching on specific multicore applications.

3.2. Advantages and Disadvantages of Hardware Architectures for Real-Time Medical Imaging

A compilation of the advantages and disadvantages of the most relevant characteristics
for the different architectures analyzed has been summarized in Table 1 and Figure 6. With
all details about the different hardware architectures suitable for real-time medical image
processing in mind, one of the main challenges in medical imaging applications lies in
selecting the right image processing engine. The ability of an architecture to manipulate
images according to medical imaging standards (increasingly used in different services in
the hospital) in a certain time gap places a huge load on both the selected processor and the
associated system. However, the specific processing requirements depend on the explicit
application and, thus, general characteristics such as speed, resolution and cost will be
important considerations for both the designer and the end-user.

Medical imaging requires a high level of processing power, especially in parallel
computing, when real-time analysis and processing are required. In this sense, any solution
or improvement that arises can be developed mainly on three main levels:

1. Lower level: It deals with pixel operation functions, differences between images
and filtering using kernels. These operations are usually repetitive and exhaustive
processes that tend to increase the operations number despite the simplicity of the
operations.

2. Intermediate level: The segmentation, the movement estimation and the extraction
or coincidence of characteristics (i.e., image registration). It requires a large use of
operations and memory.

3. Top level: It deals with the interpretation. This function requires prior knowledge of
the environment and even the application of Artificial Intelligence techniques.

The challenge of channeling these three tiers in real-time can be accomplished using
parallel architectures and generally depends on the assigned operations of each part of the
medical imaging system. Additionally, to allow a degree of flexibility and scalability in
the processing system, a modular design approach is preferable, as it allows additional
processors to be added if the original specification turns out to be insufficient or a system
design with some degree of scalability is sought. Therefore, a parallel architecture is
suitable and desired as it is scalable and will allow performance based on the number of
processors in the system.

In this sense, the use of CPUs as the desired hardware platform for real-time medical
imaging processing has been recognized. Indeed, this type of architecture has been con-
sidered the more accessible and flexible architecture to prototype and deploy algorithms.
Some of the advantages of using CPUs are explained now:

• They are an adequate platform for prototyping due to the existence of many ubiquitous
optimized libraries for tackling image processing and mathematical problems.

• There exist standards (OpenMP) to facilitate multithreading programming.
• They offer good performance in problems that require serial processing.
• They can be part of computation clusters or supercomputers.

Nonetheless, there exist several drawbacks:

• A combination of multicores and vectorization is needed to obtain the best speed
up. This implies a deep knowledge of hardware and software and heavily timed
optimization processes.

• Difficult to control the exclusivity of the memory, as there are more processes running
on the same operating system.

However, due to the huge improvements in GPU architectures during the past decade,
real-time medical imaging processing has advanced after including GPU-based acceleration
techniques for parallel programming, with GPUs found in nearly all imaging modalities,
bringing high computation capabilities to the edge equipment in several applications.
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Additionally, with the development of novel methods such as DL research, more efficient
and improved approaches are now feasible. Some of the advantages of using GPUs are:

• They offer a good performance/cost ratio.
• Coding productivity has been improved in recent years.
• GPU architectures have been adapted to cover different algorithms that were not

suitable at the beginning, such as branching or bank conflicts in shared memory.
• Many high optimized libraries have been developed for many tasks such as machine

learning, signal, and image processing, etc., increasing their suitability for medical
imaging problems.

• More efficiency in medical image processing tasks, generally, due to GPU ecosystems
being designed and optimized for working with large amounts of data.

• Manageability of cloud ecosystems with powerful GPUs, which eliminate the necessity
of having local equipment.

Nonetheless, there exist several notorious drawbacks:

• Data transfer between general and dedicated memory limits some real-time applica-
tions, generating a memory transfer/exchange bottleneck.

• Difficulty to migrate code into other GPUs vendors, unless using OpenCL and HIP.
• Requirement of deep knowledge of CPU and GPU programming languages for spe-

cialized medical imaging solutions involving GPUs.
• Not all image processing tasks perform better on a GPU than on a CPU.

The rising performance of DSPs has allowed them to undertake heavier real-time tasks,
which, coupled with their inherent proficiency in arithmetic operations, make them the
desirable platform for implementing certain medical imaging algorithms. Some advantages
of using DSP are:

• The development costs of a portable system are relatively low, helping to lower the
prices of each part of the imaging equipment.

• Generally, medical image processing tasks involve sequential algorithms, and the chip
architecture of DSPs is optimized to do it. Multi-core DSPs have added the ability to
implement coarse-grained parallelism for algorithms with a low to medium level of
complexity.

• Power consumption in DSPs is relatively low. There are DSP families specially de-
signed for mobile and portable applications, being a great choice for portable imaging
equipment, such as portable ultrasound imaging equipment.

• Development time for simple single-core DSP computer vision and image processing
algorithms is generally relatively short. There are free libraries and operative systems
available for imaging processing.

• DSPs used to incorporate standard communications ports (e.g., USB, SATA, RS-232
and ethernet). It facilitates storage and transmission tasks between medical devices.

• Some DSPs are compatible with audio and video codecs, making them suitable for
video processing applications on portable devices.

Nevertheless, there are some known disadvantages:

• Multi-core DSPs are designed for low to medium complexity HPC applications mostly.
Thus, they are not suitable for high-speed or high-data throughput applications, and
their use is not recommended for imaging devices that generate great amounts of data.

• DSPs are better suited for sequential processing but not a suitable option for increasing
processing speed in massively parallel imaging algorithms.

• It is generally not efficient to use DSP in conjunction with CPU in PCs. Both have
a similar sequential processing nature, while CPU programming is easier and more
efficient than using DSP.

DSPs also seem to be relegated as a secondary/complementary option due to the
performance improvement of other architectures, such as those used in the newest FPGAs.
As stated, the evolution of FPGAs has motivated an increase in the use of these devices,
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as their architecture allows the development of hardware solutions optimized for more
complex medical image processing tasks. Some of the advantages of using FPGAs are:

• It is possible to perform massive arithmetic operations per clock cycle, and these
operations can be performed in parallel. As stated before, for the case of GPUs,
this is of great interest, as a huge amount of medical image processing and analysis
algorithms are inherently parallelizable.

• Different image algorithms implementations or designs are feasible using the same
hardware, which provides flexibility of application.

• The designer can create prototypes quickly, simulate, measure time constraints, and
modify them, making FPGAs a very interesting option for real-time medical image
processing applications using High-Level Synthesis (HLS) tools, such as Vitis HLS.

• The programmable logic of current FPGAs is huge, allowing more complex algorithms
to be implemented in hardware. Thus, FPGAs are excellent devices to implement
functions and operations, such as convolutions, or even neural networks for machine
learning and DL.

• In the mixed hardware/software architectures, it is possible to implement a hardware
solution versus a software solution to achieve some algorithm acceleration.

• The integration of the recent FPGA devices includes RAM memory, ARM processors
and even DSP engines on the same die. This makes it possible to develop more
complex applications by developing heterogeneous architectures where a large part of
the elements contained in the FPGA are used.

Nonetheless, there exist several notorious drawbacks:

• Image processing algorithms are often highly complex and computationally expensive,
requiring many logical resources. Thus, it is necessary to consider the cost of FPGAs
since the more programmable logic integrated into the FPGA, the more expensive
the device.

• Although it is possible to create prototypes quickly, it has long design cycles to
optimize the resources consumption and achieve the time constraints, as well as
making sure that the hardware designs reach a balance between area occupied and
parallelization. In addition, the compilation and synthesis processes can take some
time, depending on the design, and are related to the designer experience

Considering the customization capabilities of the hardware, both ASICs and FPGAs
can achieve a better system performance compared to other technologies analyzed through-
out this work. However, as both technologies differ in the internal structure of the logic
block construction, they have very different results in areas such as speed, power con-
sumption, cost, and degrees of integration, etc. In general, designs based on ASICs are
optimized using a wide variety of logic cells with different sizes and characteristics along
with dedicated interconnections. In contrast, FPGAs are designed to optimize flexibility
through programmable logic components and programmable interconnections. Therefore,
ASICs are considerably faster than FPGAs.

On another note, in the case of more specialized and complex medical equipment,
such as medical X-ray spectroscopy, CT scans, MRI, ultrasounds, and PET imaging systems,
ASICs are still used to support more specific and more challenging high computational and
data rate processing tasks, with an emphasis on the front-end receiver electronics. Some
advantages of ASICs are:

• The chip size is reduced, resulting in ASICs with high levels of customization. Many
circuits can be integrated on the same chip, making it ideal for high-speed applications.

• Libraries in the case of standard cells reduce development time and design complexity.
• Minimal signal routing and timing issues since there is minimal routing to interconnect

the different circuits.
• Low power consumption. The ASICs are designed to use all parts of the circuit, which

implies high energy efficiency.
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However, there exist several notorious drawbacks that make it difficult to use ASICs
in medical imaging applications:

• ASICs in general have a high cost and development time.
• The design of ASICs requires greater design skill and complexity, which increases the

price per unit.
• ASICs have limited programming flexibility because they are custom chips created for

a specific application.
• ASICs require more time to market.

To ensure programmability, many FPGA devices use pass-through transistors to con-
nect dynamically different logic elements. This feature adds delays to the interconnection of
signal paths. In contrast, ASICs provide the ability to use optimal buffered cables. Another
factor that contributes to the degradation of FPGA speed is its logical granularity since
LUTs with a fixed number of entries are used. Any logical function with a few more input
variables will require additional LUTs, which introduces additional routing and delay. In
contrast, ASICs logic functions can be adjusted during the synthesis process to meet a
better time constraint.

Active routing on FPGAs also introduces additional capacitance, which is combined
with large capacitances caused by the length of the fixed interconnection path. Thus,
the capacitance in the FPGA signal path is generally greater than that of an ASIC. This
drawback also increments power consumption dissipated during signal switching that
drives such signal paths.

The logical density in an FPGA is usually lower than ASICs because the active routing
device occupies an important chip area. In general, this situation is related to the increment
of the cost per unit, making the ASIC design preferable for systems ready for massive
production.

However, it is important to stress that algorithms, such as feature extraction and
tracking, are best suited for software implementation. With the facilitation of various FPGA
tools, the interaction between software and hardware can be easily verified on an FPGA
platform. Minor hardware/software changes are easier and more feasible compared to
ASICs-based systems. This will make it easier for hardware designers to focus primarily
on the architecture and the task of logical design.

When it comes to the amount of time it takes to design and develop a system based
on FPGAs versus ASICs, FPGAs are generally easier and faster to produce and can be
reprogrammed in the field as needed, so there is less need for testing and verification
processes such as that of ASIC’s where the process is more complex, often requiring custom
design and a multifaceted design flow requiring a higher specialization degree.

3.3. Concluding Remarks and Outlook to the Future

In this review, the authors discussed how modern hardware architectures have ad-
vanced to deliver competitive clock rates allowing them to be used in high-capacity imaging
equipment. Additionally, all five types of hardware architectures described have benefited
from increased logic density in recent years, along with other features such as integration
of dedicated memory and high-speed serial input/output. Intrinsically, all of them may
offer competitive solutions in the medical image processing field depending on the specific
purpose/system requirements and flexibility.

Knowing all advantages and disadvantages of the different hardware architectures
suitable for real-time medical image processing discussed in this review, it can be affirmed
that choosing the right hardware architecture for the implementation of Real-Time Med-
ical Image Processing is a very complex task. On the one hand, there should be a very
well-defined premise of the underlying medical imaging problem and, based on that, a
very good establishment of the medical needs and constraints, which, usually, are very
demanding. On the other hand, the designer/developer should be aware of the advantages
and drawbacks of each hardware architecture to be able to meet all the different needs
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and constraints established from the medical perspective (including time constraints and
cost limits).

However, as mentioned before, despite having studied each of the different hardware
architectures unconnectedly, currently, it is hard to find any of them working independently
in medical imaging processing workflows. In the case of medical imaging, it is important
to note that solutions based on CPUs together with GPUs are the most used since they
allow fast prototyping, and their performance is optimal for image processing. Moreover,
the cost of these devices has been reduced in recent years, along with an increase in
their performance and parallelism capabilities. Finally, it should be noted that the cost
of developing applications on CPUs and GPUs is very low since these devices support
multilanguage coding and there exist a multitude of optimized libraries to obtain the best
performance from these devices.

For example, it would be evident that, by increasing the quality of medical images
(i.e., spatial and contrast resolution), physicians could better diagnose or monitor their
patients. Consequently, with the emergence of Ultra HD displays, the new challenge will
be to design processors to reliably represent these high levels of image quality and clarity,
which is currently a clear trend for the audiovisual electronic industry. However, basing
the design only on CPUs would be intended for applications with a market life of a few
years only. In medical applications, this problem may be more evident because (i) higher
image resolutions and deeper (more gray levels) contrast resolutions are required for these
types of applications, (ii) it is not possible to assume an unreliable representation of those
resolutions, and (iii) it is not possible to adopt a product redesign/upgrade within a few
years, given the tedious, expensive, and time-consuming regulatory framework adaptation.

In this sense, the use of heterogeneous architectures, including different combinations
of multicore designs counting with CPUs, GPUs, DSPs, FPGAs, or even small ASICs,
in medical imaging is on the rise. The case of a PET/MRI could serve as an example:
specialized ASICs perform the highly demanding real-time data acquisition of TOF PET;
MPSoC combining CPU, FPGA and DSP can be used for optimized 3D MRI segmentation
and other DL-based algorithms that exploit the flexibility of this hardware; GPUs oversee
the 3D PET image reconstruction and the MRI to CT synthesis for PET attenuation, while
CPUs are used for the user interaction.

Thus, the main arising challenge for both manufacturers and designers may be to
facilitate the integration of the different hardware architectures, alleviating the programming
difficulties associated with the heterogeneous solutions needed in the field of medical imaging.
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