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Abstract: In the paper, the problem of forming and maintaining the small satellites formation in
the near-earth projected circular orbits is considered. The satellite formation reconfiguration and
formation-keeping control laws are proposed by employing the passivity-based output feedback
control. For the complete nonlinear and time-dependent dynamics of the relative motion of a pair of
satellites in elliptical orbits, new combined control algorithms, including a consensus protocol, are
proposed and analyzed. A comparison of the control modes using the passivity-based output feed-
back control and the proportional-differential controller with and without the consensus algorithm
is given. On the basis of the passification method, the algorithm is obtained ensuring the stable
motion of the slave satellite relative to the orbit of the master satellite. To improve the accuracy of the
satellites’ positioning, a consensus protocol based on measurements of the relative positions of the
satellites is proposed and studied. Computer simulations of the proposed algorithms for options
to construct formations are provided for two projected circular orbits of 8 satellites, demonstrating
the efficiency of the proposed control schemes. It is shown that the resulting passivity-based output
feedback control provides better accuracy than the PD controller. It is also shown that the use of the
consensus protocol further increases the positioning accuracy of the satellite constellation.

Keywords: satellite formation; keeping; control; passification; consensus; projected circular orbit

1. Introduction

Space research has led to the emergence of the idea of spacecrafts’ motion in a group.
Group motion makes it possible to perform a wider range of tasks. This approach has
reduced the costs of production and operation, and increased the reliability of the entire sys-
tem. There are several satellite constellation formation methods for creating time-invariant
and time-varying configurations. In the literature, various options to create satellite constel-
lations are proposed, cf. [1–3]. The constant tuning method [4] implies periodic adjustment
of active satellites relative to the spatial position. The variable formation method [5] forms
a swarm, which periodically changes its configuration as satellites move in non-coplanar
orbits. It is possible to form the configuration of satellites by means of their tether con-
nection; such formations are possible in low orbits [6]. A grouping can be formed using
several methods; this method of formation is called combined [2]. Among the groupings
with a constant structure, a class stands out that uses projected circular orbits (PCO) [7] to
form the structure. When using this construction method, a group is considered, which
consists of the head and surrounding slave satellites [8]. The orbit of the master satellite is
considered to be the reference orbit, and the remaining orbits are called projection circular
orbits, which are circular when projected onto the local horizontal plane [9,10]. The first
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successful missions were based on the results for a group of two satellites [11]. Based on
these results, a mission was implemented to study the formation of satellites in near-earth
orbit. Two satellites, CanX-4 and CanX-5 [12], were launched. The satellites maintained
a maximum controllable range of about 50 m. The satellites under study are classified as
small. For these satellites, various options were proposed to solve the problem of building a
permanent group structure. However, there are still problems associated with their control.
One of them is the need to keep the satellites in a prescribed order. A number of studies
were carried out to address this problem. As an example, in [13–15], various methods of
adaptive control of the spacecraft formation were considered. In [16], the variable structure
model reference adaptive control technique for spacecraft formation flying was proposed.
Zou and Kumar [17] presented the fast terminal sliding manifold, using a control term
based on the hyperbolic tangent function to suppress bounded external disturbances. The
control system for such plants is designed to solve many problems. One of these tasks is to
keep a constant satellite configuration. For this, the method of stabilizing only the unstable
subsystem can be applied. In [18–20], a partial stabilization method with an algorithm
to compensate for fluctuations was applied. These studies consider the stabilization of
a linearly varying component caused by a zero root of multiplicity two. Additionally, a
method to maintain satellite configuration employs the PCO.

In [21,22], the control of a formation of two satellites in a near-earth circular orbit is
discussed. It is proposed to use adaptive neurocontrol. One of the vehicles is considered to
be controllable, while the second is uncontrolled and moves in PCO orbit relative to the
first satellite. To solve the adaptation problem, a non-gradient optimization method is used.
Adaptation takes 2.5 to 5 days. This approach is time consuming to control a large group
of satellites. In [5], a feedback control law was developed to regulate the relative motion of
satellites in a swarm in a low circular near-earth orbit, taking into account the speed of data
transmission over communication channels. The control law is based on classical modal
control. In [23], algorithms were developed for decentralized stabilization of the position
of two satellites moving in a near circular orbit using a modal approach, passification
method, sliding mode control, linear and speed-optimal partial stabilization. In the study
of a new control algorithm based on the passification method, convergence was obtained
at a lower initial speed than the modal control algorithm. Ref. [24] discussed maintaining a
working orbit and a given configuration. For the orbit of the lead satellite, rigid (absolute)
support is used. For the slave satellite, rigid and flexible (relative) support is applied.
The dependence of the costs of the total characteristic velocity to maintain the master
and slave vehicles on the accuracy of maintaining the working orbit was investigated,
which showed the particular importance of the correct choice of the maximum accuracy of
maintaining. In [25], the problem of calculating the parameters of the maneuvers of the
satellite system configuration was considered. For convenience, the orbits of a group of
six satellites (STARSIS) are reduced to projection circular orbits. Ref. [26] complemented
the task of calculating the parameters of satellite maneuvers by examining high-elliptic
orbits for four satellites. The satellite array model is brought into the main orbital plane
to simplify calculations. In [27], to solve the control problem, the influence of the given
initial values of the projection circular orbit for different approaches to control of a group
of satellites was investigated. The design takes into account the minimization of error and
fuel consumption.

When performing tasks with a large number of satellites, it is more efficient to use
multi-agent and decentralized control [28]. To this aim, in [4], using local relative di-
mensions was suggested. Another approach was used in the article [29]. It proposed a
combined consensus method with a robust H∞ control. Using this approach, it is possible
to provide an arbitrary scalability of the system. Comparisons were made between various
controllers [30]. In the course of the study, data were obtained, on the basis of which it was
shown that the nonlinear controller based on the Riccati equations (state-dependent Riccati
equation—SDRE) has better accuracy.
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The paper is devoted to the problem of forming and maintaining the small satellites
formation in the near-earth PCO orbits. On the basis of the passification method, an
algorithm is obtained that ensures the stable motion of the slave satellite relative to the
orbit of the master satellite. To improve the accuracy of satellites positioning, a consensus
protocol based on measurements of the relative positions of satellites is proposed and
studied.

In this paper, for the complete nonlinear and time-dependent dynamics of the relative
motion of a pair of satellites in elliptical orbits, new combined control algorithms, including
a consensus protocol, are proposed and analyzed. A comparison of the control modes
using the PD controller with and without the consensus algorithm is given. The dynamic
structure of the proposed control algorithm is quite simple and avoids the use of a large
number of blocks. Its implementation is simple, and the computational cost is low. The
new result of the paper is also a rigorous mathematical proof of the use of control laws
based on the passification method for the satellite system under consideration.

The rest of the paper is organized as follows. Section 2 is devoted to modeling the
satellite formation. The problem statement is given in Section 3. Section 4 deals with
application of the passivity concept to the control law design. The notion of projection
circular orbit is described in Section 5. Section 6 presents designing the control law for
PCO constellation. The simulation results are given in Section 8. Concluding remarks in
Section 9 finalize the paper.

2. Satellite Formation Modeling

In satellite formation flying, the relationship of the positions between satellites is very
important. Hence, the rotating reference coordinate is used: a chief satellite is centrally
located and circles the Earth. Note that it is assumed that the main satellite is located at the
origin of the coordinate system because it provides a reference point for the formation. The
local-vertical local-horizontal (LVLH) coordinate system [1] is used to describe the relative
motion in the formation.

The coordinate systems are illustrated in Figure 1. In this figure,~rc is the position
vector of the master satellite,~r is the position vector of the slave satellite, and~ρ is the relative
position vector between the master and slave satellites. A general non-linear equation of
relative motion is expressed as in [1]:

ẍ− 2θ̇ẏ− θ̈y− θ̇2x +
µ

γ
x +

µ

γ
rc −

µ

r2
c

ÿ + 2θ̇ẋ + θ̈x− θ̇2y +
µ

γ
y

z̈ + µ
γ z

 =

ax
ay
az

 (1)

r̈c = rcθ̇2 − µ

r2
c

, θ̈ = −2ṙcθ̇

rc
(2)

where x, y and z are state variables to describe the relative position vector, ~ρ, in the x, y
and z axes, respectively, and ax, ay and az are the orbital perturbation terms, such as
the aspherical geopotential perturbation, thrust, air drag, and solar radiation pressure.
aj = ( f j + dj)/mf for all j ∈ {x, y, z} with mf denoting the mass of the deputy spacecraft
and f j denoting the control input applied by the deputy spacecraft, dj is for the perturbation
term, θ is latitude angle of the chief, rc is the radius of the chief orbit and µ is a gravitational
parameter. Finally, γ is defined as

γ ≡ |~rc +~ρ|3 =
(
(rc + x)2 + y2 + z2

)3/2
. (3)
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Figure 1. Reference systems.

For controller design, it is desirable to rewrite system (1) in the following state-space
form

ẋ = A(x, t)x + Bu, (4)

where the state variables are the relative positions and relative velocities of the deputy
satellite with regard to the chief satellite

x =
[

x y z ẋ ẏ ż
]T, u =

[
fx fy fz

]T

It is assumed in this paper that all the system states are measured. Therefore, the full

state feedback control can be implemented. Let us rewrite the term of
(

µ

γ
rc −

µ

r2
c

)
in (1) to

preserve the non-linearity as much as possible and to avoid a singularity [30]. Using (3),
this term can be expressed in the following form:

µ

γ
rc −

µ

rc2 = µ

 rc(
1 + 2

rc
x + x2+y2+z2

rc2

)3/2
1

rc3 −
1

rc2

 (5)

=
µ

rc2

(1−
(
− 2

rc
x− x2 + y2 + z2

r2
c

))− 3
2

− 1

 (6)

Let us define

ξ ≡ − 2
rc

x− x2 + y2 + z2

rc2 =

(
− 2

rc
− x

rc2

)
x +

(
− y

rc2

)
y +

(
− z

rc2

)
z (7)

Then, by negative binomial series and (5), (7) becomes:

µ

γ
rc −

µ

rc2 =
µ

rc2

(
(1− ξ)−

3
2 − 1

)
=

µ

rc2

(
1 +

3
2

Ψξ − 1
)
=

3
2

µ

rc2 Ψξ (8)
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where Ψ is defined as a series Ψ ≡ 1 + ψ1 + ψ2 + · · · , where:

ψ1 ≡
( 3

2 + 1
)

2
ξ, ψ2 ≡

( 3
2 + 2

)
3

ψ1ξ, ψ3 ≡
( 3

2 + 3
)

4
ψ2ξ, . . .

Consequently, (1) becomes:



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

θ̇2 − µ
γ + 3

2
µ

r3
c

(
2 + x

rc

)
Ψ 0 θ̈ + 3

2
µ

r4
c
yΨ 2θ̇ 3

2
µ

r4
c
zΨ 0

−θ̈ −2θ̇ θ̇2 − µ
γ 0 0 0

0 0 0 0 − µ
γ 0





x1
x2
x3
x4
x5
x6



+



0 0 0
0 0 0
0 0 0

1
m f

0 0

0 1
m f

0

0 0 1
m f


u1

u2
u3

, (9)

where state variables x1, x2, x3, x4, x5 and x6 are x, ẋ, y, ẏ, z and ż in the LVLH coordinates,
respectively. Equation (9) has the form of (4).

3. Problem Statement

The following problem is posed. Let the master satellite move freely along its trajectory
around the Earth, and let the slave satellite move along a given trajectory in relative
coordinates x− y− z. Let the trajectory be given by the functions:

xd(t) =

 xd(t)
yd(t)
zd(t)

 ẋ(t)d =

 ẋd(t)
ẏd(t)
żd(t)

 ẍd(t) =

 ẍd(t)
ÿd(t)
z̈d(t)

. (10)

Let us introduce the following error vector:

e , x− xd. (11)

e =
[

ex ey ez ėx ėy ėz
]T.

The following control aim is taken:

‖e‖ → 0 as t→ ∞ (12)

where ‖ · ‖ corresponds to the standard L2 norm. Let xd(t) be a stable trajectory for (9).
Using (11), let us make the variable substitution in (9) [31,32], which has the structure
described by (4). This leads to the following expression

ė = A(e + xd, t)e + B(u− ẍd ) (13)

Let us make the changes: Ā(e, t) = A(e + xd, t) and ū = u − ẍd. Note that the
structure of the matrix A in (9) remains the same. Then system (13) takes the form:

ė = Ā(e, t)e + Bū (14)
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4. Control Law Design Based on Passivity Concept

Let us introduce additional system outputs (14) as

y =
[

α1ex + ėx α2ey + ėy α3ez + ėz
]T, (15)

where α1, α2, α3 is a known positive-definite scaling gains. Now the system (14) takes the
following general form:

ė = Ā(e, t)e + Bū, y = Ce (16)

where the matrices are as follows:

Ā =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

θ̇2 − µ
γ + 3

2
µ

r3
c

(
2 + x

rc

)
Ψ 0 θ̈ + 3

2
µ

r4
c
yΨ 2θ̇ 3

2
µ

r4
c
zΨ 0

−θ̈ −2θ̇ θ̇2 − µ
γ 0 0 0

0 0 0 0 − µ
γ 0


(17)

B =


0 0 0 1

m f
0 0

0 0 0 0 1
m f

0

0 0 0 0 0 1
m f


T

, C =

 α1 0 0 1 0 0
0 α2 0 0 1 0
0 0 α3 0 0 1

 (18)

Let us show that the outputs (15) passify [33] system (16). To do this, it is necessary
to show that the zero dynamics [31] of system (16) are uniformly asymptotically stable.
To isolate the zero dynamics, it is necessary to find the constant matrices M ∈ R6×3 and
N ∈ R3×6 which satisfy the relations [34]

CM = 03 NB = 03 NM = I3 (19)

Then, the equation of zero dynamics is obtained in the form:

η̇ = Aη(e)η ∈ R3, (20)

where Aη(e) ∈ R3×3 and is calculated by the formula:

Aη(e) = NĀ(e, t)M (21)

Matrices M and N satisfying conditions (19) have the form [13]:

M =



1 0 0
0 1 0
0 0 1
−α1 0 0

0 −α2 0
0 0 −α3

, N =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (22)

Then because of (21), one obtains

Aη =

 −α1 0 0
0 −α2 0
0 0 −α3

 (23)
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Considering that the coefficients α1, α2, α3 are positive, it can be argued that the system (20)
is uniformly asymptotically stable. This immediately implies [33] that system (16) is strictly the
minimal phase. Additionally, let us check the result of the product of matrices CB:

CB =

 α1 0 0 1 0 0
0 α2 0 0 1 0
0 0 α3 0 0 1




0 0 0
0 0 0
0 0 0
1

m f
0 0

0 1
m f

0

0 0 1
m f


=

1
mc

I3 (24)

We obtain the result that CB is a symmetric positive definite matrix. Then, from the
results of [34], it follows that there exists a constant matrix of feedback gains K in outputs
y, which makes the system (16) asymptotically stable, and control aim (12) is achieved. The
passification-based control law has a form

ū(t) = −Ky(t) (25)

where matrix K ∈ R3×3.

5. Projection Circular Orbits

When the master satellite moves in a circular Earth orbit, its angular acceleration is
equal to zero [1]. In this case, it is valid for (1) that θ̈y = θ̈x = 0, rc = const, θ̇ = const = n,
where n is the average angular velocity of the master satellite, and Equations (1) and (2)
are of the following form [35]:

ẍ− 2nẏ− n2x = −µ(rc + x)
γ

+
µ

r2
c
+ ax,

ÿ + 2nẋ− n2y = −µy
γ

+ ay, (26)

z̈ = −µz
γ

+ az.

Linearized equations of (26) are called the Hill–Clohessy–Wiltshire (HCW) equa-
tions [1,36]:

ẍ− 2nẏ− 3n2x = ax,

ÿ + 2nẋ = ay, (27)

z̈ + n2z = az.

The HCW equations have the following limited periodic solutions [9]:x(t)
y(t)
z(t)

 =

 (c1/2) sin(nt + φ)
c1 cos(nt + φ) + c3

c2 sin(nt + φ)

, (28)

where x, y and z are the coordinates of the relative motion, φ is the phase angle in the plane
between the master satellite and the slave satellite (the initial phase angle is determined
when the equator of the l master satellite’s in the locally horizontal plane yz) (the initial
phase angle is defined, at the time of the equator crossing of the master satellite, in the
local horizon yz plane). Constants c1, c2, c3, α0 are determined by the initial conditions as
follows:

• The choice c1 = c2 = ρ, c3 = 0 sets the configuration in which the slave satellite
moves around the master satellite so that the projection of its movement on the local
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horizontal plane is the circle y2 + z2 = ρ2, where ρ is a constant. Such an orbit is called
a projection circular orbit (see Figure 2a).

• Selection c1 = ρ, c2 =

√
3

2
, c3 = 0 sets the configuration in which the slave satellite

moves around the master satellite in circles in the axes x, y and z of the local coordinate
system: x2 + y2 + z2 = ρ2. This orbit is called the general circular orbit (GCO).

• Choice c1 = c2 = 0, c3 = ρ sets the master–slave or along-track orbit (ATO) config-
uration, where the slave satellite follows the master satellite along its orbit with a
constant offset ρ (see Figure 2b).

(a) (b)

Figure 2. Configurations of satellite orbits. (a) Projected circular orbit. (b) Along-track orbit.

Substituting the values c1 = c2 = rdpc, c3 = 0 into equations (28), one obtains the
following PCO equation:

xd(t)
yd(t)
zd(t)

 =


(

rdpc/2
)

sin(nt + φ)

rdpc cos(nt + φ)
rdpc sin(nt + φ)

, (29)

where rdpc is the projected circular formation size, φ is the in-plane phase angle between

the master and the slave satellites, and n is the mean angular velocity, n =
√

µ/a3
c , where

ac is the semi-major axis of the master satellite [1].

6. Control of PCO Constellation

Let the following aim of controlling a constellation of satellites be posed: there is a
master satellite that moves in an elliptical orbit, but with a small eccentricity, i.e., its orbit
is close to a circular orbit. It is necessary to create and maintain a certain constellation
of satellites, which are located in a certain formation relative to the master satellite and
keep this formation over time. In the case of a circular master satellite orbit, the most
fuel-efficient slave satellite orbits would be general circular orbit (GCO), PCO, and along-
track orbit (ATO) since such orbits are stable solutions of the HCW (27) equations. Then,
control will be spent only on counteracting disturbances and countering unaccounted
nonlinearities in the model (27).

The most interesting is the problem of positioning and maintaining the orbits of a
constellation of satellites in the relative orbits of the PCO, even in the case of the master
satellite’s elliptical orbits. It is also interesting to investigate the possibility of simultane-
ously storing a formation of a large number of satellites in different PCO orbits. In this
variant set, several orbits have different rdpc in (29), and on the circles, the satellites are
located with different offsets φ so that a symmetric distribution of satellites is obtained.

To maintain the slave satellite position in the formation, it should use control law in
the form of (25) where expressions (29) are used as the target path xd(t). Configurable
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parameters are matrix K ∈ R3×3 and vector (α1, α2, α3). A special case of the control
law (25) is proportional-differential (PD) controllers of the following form:

ūx = −Kpxex − Kdx ėx

ūy = −Kpyey − Kdy ėy

ūz = −Kpzez − Kdz ėz

(30)

where Kpx, Kdx, Kpy, Kdy, Kpz, Kdz are the positive adjustable gains. In the vector nota-
tion (30) can be written as

ū = −Kpde (31)

where matrix Kpd ∈ R3×6 has the following form

Kpd =

Kpx 0 0 Kdx 0 0
0 Kpy 0 0 Kdy 0
0 0 Kpz 0 0 Kdz

. (32)

7. Multi-Agent Control and Consensus Algorithm

The obtained control laws (25) and (31) are applied separately to each satellite of the
constellation and use information about the relative position in satellite form. To improve
the accuracy of the formation positioning, you can apply multi-agent control based on the
consensus algorithm (protocol) [37,38].

7.1. Basic Information on Consensus Algorithm

Graph G is a pair (V , E), where V = 1, . . . , n is a set of nodes (agents), E ∈ V × V is a
set of edges in which each edge is represented by an ordered pair of different nodes. Edge
(i, j) shows that node i is a neighboring to node j, and node j can receive information from
node i. A graph is called undirected if for each (i, j) ∈ E , (j, i) ∈ E . The path from node i1 to
node il is a sequence of ordered edges of the form (ik, ik+1), k = 1, . . . , l − 1. An undirected
graph is connected if for any i ∈ V , there are paths to all other nodes.

Let graph G contain n nodes. The compatibility matrix A =
[
aij
]
∈ Rn×n is defined

as aii = 0, aij = 1 if (j, i) ∈ E , and 0 otherwise. The Laplace matrix L =
[
lij
]
∈ Rn×n is

defined as lii = ∑N
j=1 aij and lij = −aij, i 6= j.

Let us assume that communication graph G is undirected and connected (some ex-
amples of undirected connected graphs are depicted in Figure 3). Assume that ξi ∈ R and
ζi ∈ R contain information about the state of the i-th agent. For information states with
second-order dynamics, the following fundamental second-order consensus algorithm was
proposed by Ren and Atkins in [39]:

ξ̇i = ζi

ζ̇i = ui
(33)

where ui ∈ R has the following form:

ui = −
n

∑
j=1

aij
(
γ0
(
ξi − ξ j

)
+ γ1

(
ζi − ζ j

))
, (34)

where γ0 > 0, γ1 > 0.
For consensus algorithms (33) and (34), it is assumed that consensus is achieved asymp-

totically among several agents if for any ξi(0) and ζi(0) it is valid that
∥∥ξi(t)− ξ j(t)

∥∥→ 0
and

∥∥ζi(t)− ζ j(t)
∥∥ → 0, for all i 6= j as t → ∞. In the case when ξ̇i and ζ̇i represent the

moving agent position and velocity, expression (34) defines its acceleration.
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12

3 4

56

7 8

(a) Communication graph of 8 agents

12

3 4

56

7 8

910

11 12

(b) Communication graph of 12 agents

Figure 3. Examples of communication graphs of 8 and 12 agents.

Denoting ξ = [ξ1, . . . , ξn]
T and ζ = [ζ1, . . . , ζn]

T, one can write the system model in
the following vector form [

ξ̇
ζ̇

]
= Γ

[
ξ
ζ

]
(35)

where

Γ =

[
0n×n In
−γ0L −γ1L

]
(36)

In the vector form, the control law is as

Uc = −[γ0Lξ + γ1Lζ] (37)

where Uc ∈ Rn.

7.2. Consensus-Based Satellite Formation Control Law

The multi-agent satellite formation control law can be obtained by combining expres-
sions (30) and (34). It should be noted that (34) is a control law for a single coordinate. Let
us introduce the following notation: n is a number of agents in the formation (number
of satellites); i = 1, . . . , n is the agent number; ei =

[
exi eyi ezi ėxi ėyi ėzi

]T is the
error vector of i-th agent. Then the control law of agent i can be written as:

ūxi = −Kpxexi − Kdx ėxi −
n

∑
j=1

aij
(
γ0
(
exi − exj

)
+ γ1

(
ėxi − ėxj

))
,

ūyi = −Kpyeyi − Kdy ėyi −
n

∑
j=1

aij
(
γ0
(
eyi − eyj

)
+ γ1

(
ėyi − ėyj

))
, (38)

ūzi = −Kpzezi − Kdz ėzi −
n

∑
j=1

aij
(
γ0
(
ezi − ezj

)
+ γ1

(
ėzi − ėzj

))
.

Another variant of multi-agent control of the formation of satellites can be obtained
based on (25). To do this, let us introduce the matrix of coefficients K =

[
kx ky kz

]T,
where kx, ky, kz ∈ R1×3, and vector y =

[
yx yy yz

]T. In new notations, (25) can be
written as

ūx = −kxy,

ūy = −kxy,

ūz = −kxy.

(39)
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Expressions (39) represent control vector components for a single agent. For the multi-
agent control case, it is possible to employ the consensus algorithm for first-order systems
since the combined output includes derivatives, and the zero-dynamics [31] of the system
is stable. Then the control law based on the passivity of i-th agent can be written as:

ūxi = −kxyi − γ0

n

∑
j=1

aij(yxi − yxj),

ūyi = −kyyi − γ0

n

∑
j=1

aij(yyi − yyj),

ūzi = −kzyi − γ0

n

∑
j=1

aij(yzi − yzj).

(40)

8. Simulation Results

For examining the developed control systems dynamics, a series of simulations was
carried out in the MATLAB/Simulink software framework. The system considered was
(1), (2) and four control laws, (25), (30), (38) and (40). In what follows, passification-based
control (25) law control is denoted as PB law, law (30) is denoted as PD law, (38) as
proportional-differential-consensus (PDC) law and (40) as passification-based consensus
(PBC) law. One situation was simulated for all control laws: 8 satellites in two PCO orbits.

The leader’s satellite orbit was taken to be the same for all simulation runs. The
leader’s orbit parameters are as follows: mF = 10 kg; µe = 398.600 km3 · s−2; perigee
radius Rp = 6971 km; eccentricity e = 0.2; Ω, ω = i = M = 0 rad/s. Disturbances dj(t) for
j = {x, y, z}, acting on (1), (2), and including gravitational perturbations J2, atmospheric
resistance and solar radiation pressure perturbation forces were taken into account. The
following disturbances model of [7,36] was adopted: dx

dy
dz

 = 1.2× 10−3

 1− 1.5 sin(nt)
0.5 sin(2nt)

sin(nt)

. (41)

It is worth mentioning that model (41) gives the disturbances magnitudes which are slightly
higher than the actual ones under the similar conditions.

8.1. Simulation for Motion of 8 Satellites in Two PCO Orbits

The radii of PCO orbits of 1000 m and 2000 m were set for the simulations. Each orbit
contains four satellites. The phase shift between the agents located in the first orbit is π/2.
The phase shift between small spacecraft located on the first orbit is as π/2, the second
four, relative to the first π/4. The initial positions for 8 satellites are shown in Table 1.

8.2. Simulation the PD Laws and PDC Control Laws

The coefficients for the PD laws and PDC control laws (in SI units) are Kpx = Kpy =
Kpz = 0.025, Kdx = Kdy = Kdz = 15. They are obtained by the trial-and-error method.
The criterion is the positioning accuracy after two orbits around the Earth. For PDC, the
consensus algorithm coefficients γ0 = 0.01 and γ1 = 0.04 were additionally set for the
proportional and differential components, respectively. These coefficients are the same for
the x, y, z channels of all 8 satellites. The communication graph is plotted in Figure 3a.

The simulation results for the flight of a group of 8 satellites with PD control are
depicted in Figures 4 and 5. The time histories of errors and control signals along x, y,
z axes are shown in Figure 6. Figures 7 and 8 demonstrate the simulation results of the
motion of a group of 8 satellites with PDC control. The time histories of errors and control
signals along x, y, z axes are shown in Figure 9.

Comparison of simulation results for PD and PDC laws is given in Table 2.
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8.3. Simulation the PB Laws and PBC Control Laws

The coefficients for the PB laws and PBC control laws (in SI units) are α1 = α2 = α3 =
0.0025, kx =

[
15 1 1

]
, kx =

[
1 15 1

]
, kx =

[
1 1 15

]
.

They are obtained by the trial-and-error method. The criterion is the positioning
accuracy after two orbits around the Earth. For PBC, the consensus algorithm coefficients
γ0 = 15.5. These coefficients are the same for the x, y, z channels of all 8 satellites. The
communication graph is plotted in Figure 3a. Figures 10 and 11 show the simulation results
of the flight of a group of 8 satellites with PB control. The time histories of errors and
control signals along the axes x, y, z are depicted in Figure 12. Figures 13 and 14 show the
simulation results of the flight of a group of 8 satellites with PBC control. Time histories of
errors and control signals along the axes x, y, z are shown in Figure 15.

Comparison of simulation results for PB and PBC algorithms for 8 satellites is demon-
strated in Table 2.

Table 1. Initial conditions for 8 satellites.

Satellite # 1 2 3 4 5 6 7 8

Xx m 1000 666.7 −1000 −500 1000 −250 −666.7 500
Xy m 2000 −2000 −2000 1000 2000 −3000 −1000 2000
Xz m 2000 2000 −2000 −2000 4000 4000 −4000 −4000

Ẋx m/s 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
Ẋy m/s 0.0002 0.0002 −0.0002 0.0002 −0.0002 0.0004 −0.0002 −0.0005
Ẋz m/s 0.0008 −0.0008 −0.0008 0.0008 0.0008 −0.0008 0.0008 −0.0008

Table 2. Position tracking errors for formation of 8 satellites.

Mode ex, cm ey, cm ez, cm

PD 33 12 31
PDC 21 7.5 20
PB 23 9 23

PBC 11 4 9
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)
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0
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Figure 4. PD law: Plot of 3D trajectory.
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Figure 5. PD law. Trajectories plots: (a) on plane YZ; (b) on plane YZ after orbiting.
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Figure 6. PD law. Error and control time histories: (a) errors along axis x; (b) controls along axis x;
(c) errors along y; (d) controls along y; (e) errors along axis z; (f) control along axis z.
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Figure 8. PDC law. Trajectories’ plots: (a) on plane YZ; (b) on plane YZ after orbiting.
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Figure 9. PDC law. Error and control time histories: (a) errors along axis x; (b) controls along axis x;
(c) errors along axis y; (d) controls along axis y; (e) errors along axis z; (f) control along axis z.
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Figure 11. PB law. Plots of trajectories: (a) on plane YZ; (b) on plane YZ after orbiting.
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Figure 12. PB law. Error and control time histories: (a) errors along axis x; (b) controls along axis x;
(c) errors along axis y; (d) controls along axis y; (e) errors along axis z; (f) control along axis z.

Figure 13. PBC law. Plot of 3D trajectory.
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Figure 14. PBC law. Plots of trajectories: (a) on plane YZ; (b) on plane YZ after orbiting.
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Figure 15. PBC law. Error and control time histories: (a) errors along axis x; (b) controls along axis x;
(c) errors along axis y; (d) controls along axis y; (e) errors along axis z; (f) control along axis z.

9. Conclusions

In this paper, satellite formation reconfiguration and formation-keeping control laws
are proposed by employing the passivity-based output feedback concept. For the complete
nonlinear and time-dependent dynamics of the relative motion of a pair of satellites
in elliptical orbits, new combined control algorithms, including a consensus protocol,
are proposed and analyzed. A comparison of the control modes using passivity-based
output feedback control and the proportional-differential controller with and without the
consensus algorithm is given. The new result of the paper is also a rigorous mathematical
proof of the use of control laws based on the passification method for the satellite system
under consideration. The simplified version of the control law, which requires fewer
calculations, is also considered. To increasing the accuracy of positioning satellites in
the formation, in addition to the obtained algorithms, it is proposed to use multi-agent
control algorithms based on the consensus protocol. Various methods of constructing
satellite formations require the lowest energy costs to maintain the system. Mathematical
modeling and computer simulations of the proposed algorithms for options for constructing
formations are carried out in two PCO orbits of 8 satellites. The results obtained show good
performance of the proposed satellites formation control laws for the problem of interest.
It is demonstrated that the proposed formation-keeping control laws have robustness with
respect to a variety of perturbations, including aspherical geopotential perturbation, air
drag and solar radiation pressure.
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Abbreviations

The following abbreviations are used in this manuscript:
ATO Along-Track Orbit
GCO General Circular Orbit
HCW Hill–Clohessy–Wiltshire
LVLH Local-Vertical Local-Horizontal
PCO Projected Circular Orbit
PD Proportional-Differential
PDC Proportional-Differential-Consensus
PB Passification-Based
PBC Passification-Based Consensus
SDRE State-Dependent Riccati Equation
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