
electronics

Article

LAN Traffic Capture Applications Using the Libtins Library

Adrian-Tiberiu Costin, Daniel Zinca * and Virgil Dobrota

����������
�������

Citation: Costin, A.-T.; Zinca, D.;

Dobrota, V. LAN Traffic Capture

Applications Using the Libtins

Library. Electronics 2021, 10, 3084.

https://doi.org/10.3390/electronics

10243084

Academic Editor: Juan-Carlos Cano

Received: 9 November 2021

Accepted: 3 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communications Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
costin.t.adrian@gmail.com (A.-T.C.); Virgil.Dobrota@com.utcluj.ro (V.D.)
* Correspondence: daniel.zinca@com.utcluj.ro

Abstract: Capturing traffic and processing its contents is a valuable skill that when put in the
right hands makes diagnosing and troubleshooting network issues an approachable task. Apart
from aiding in fixing common problems, packet capture can also be used for any application that
requires getting a deeper understanding of how things work under the hood. Many tools have been
developed in order to allow the user to study the flow of data inside of a network. This paper focuses
on documenting the process of creating such tools and showcasing their use in different contexts.
This is achieved by leveraging the power of the C++ programming language and of the libtins library
in order to create custom extensible sniffing tools, which are then used in VoIP (Voice over IP) and
IDS (Intrusion Detection System) applications.

Keywords: Apache Kafka; IDS sensors; ksqlDB; libtins; RTP; SIP; VoIP

1. Introduction

Capturing the data that flow throughout a network is extremely important because it
allows the user to intercept, view and analyze network packets. This grants us the ability
to get a better grasp of what happens under the hood, from viewing the protocol stack
that is used to seeing the individual bytes of data that are being sent and received. The
tools that allow us to perform this analysis are labeled as traffic sniffers, packet capture
applications or protocol analyzers.

A sniffer, or protocol analyzer, has many uses, from monitoring bandwidth and traffic
patterns and exploring the flow of conversations throughout the network to troubleshooting
and solving problems as they occur. Furthermore, from a security standpoint, packet
sniffing is often used to intercept conversations between users and view the data with the
purpose of scanning it for malicious activity or to detect holes in the networks’ security. If
the person capturing the traffic has ill intentions, the data can also be used to eavesdrop on
the conversations between users.

Packet capture tools can be written using a variety of different programming languages.
This research paper focuses on showcasing how such a tool can be built using the C++
programming language and the libtins library.

The research extends in two different directions. Firstly, the conversation is steered
toward extending the libtins [1,2] packet sniffing library by adding support for parsing and
processing protocols such as SIP (Session Initiation Protocol), SDP (Session Description
Protocol) and RTP (Real-time Transport Protocol). These protocols are used in IP (Internet
Protocol) telephony in order to produce an application that intercepts VoIP calls and
outputs signaling logs and audio information. The second part of the paper is focused
on producing a custom sniffer that outputs network packets in JSON (JavaScript Object
Notation) format, which are used as input to an IDS in order to detect different types
of attacks.

A different approach (that uses mirrored traffic from OpenFlow switches) to the
same set of problems is described in [3] and focuses on the loss problems caused by the
aggregation of mirrored flows from switches. Our implementation uses the raw traffic

Electronics 2021, 10, 3084. https://doi.org/10.3390/electronics10243084 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5917-4003
https://doi.org/10.3390/electronics10243084
https://doi.org/10.3390/electronics10243084
https://doi.org/10.3390/electronics10243084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10243084
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10243084?type=check_update&version=2


Electronics 2021, 10, 3084 2 of 25

captured by the network adapters in the computers running our software instead of
extracting information from the OpenFlow protocol.

1.1. Libtins

“Libtins is a high-level, multiplatform C++ network packet sniffing and crafting
library” [1,2]. The objects used for capturing network packets are defined using classes such
as Sniffer and FileSniffer. The first is for intercepting packets from the network interface,
whilst the second one is for reading packets from PCAP (Packet Capture) files. These
datagrams are then stored as PDU (Protocol Data Unit) objects, allowing further processing
in a very short amount of time. This is similar to libpcap [4], a more common library, but it
offers packet analysis capabilities that might be more suitable than it. According to [5,6],
libpcap is considered a reference library in the field of network traffic capture and analysis.
However, in [7,8], libtins was analyzed compared to other solutions. It seems that libtins is
more suitable than libpcap to capture WLAN traffic [9] and to generate a larger number of
IPv6 packets [10] or MQTT packets in an IoT network for security testing [11]. Based on our
own experience, initially communicated in [12], we wanted to have a deeper evaluation of
libtins and its performance and to demonstrate its better capabilities in some applications
compared to the competing solutions.

1.1.1. PDU Class

PDU is an abstract class, which acts as a base from which all other protocols are
implemented inside the library. Each new protocol inherits its main attributes directly from
the PDU class, such as default parameters and methods that return basic information such
as length and type of PDU, for example.

Some extensions of the PDU class are provided inside the Tins namespace in order
to define commonly used protocols for different networking layers, with a few examples
including DNS (Domain Name System), ICMP (Internet Control Message Protocol), IP,
UDP (User Datagram Protocol), DHCP (Dynamic Host Configuration Protocol) and many
more. The Tins namespace contains everything the library has to offer, from the definition
and implementation of each protocol to the packet sniffing and crafting capabilities using
constructs such as Sniffer, FileSniffer, PacketWriter, PacketSender and so on. Even though
pre-built functionality already exists with every build of libtins, extending the library is
encouraged. This can be done by creating user defined PDUs, which is discussed in the
Section 2 of the paper, where we describe the process of creating custom classes for SIP and
RTP network packets.

1.1.2. PacketSender and PacketWriter Class

The library allows the user to store the generated PDU objects in output files by using
the PacketWriter class. It also allows sending the packets back on the network by using the
PacketSender class. This grants the user the ability to store the created/captured packets
or manipulate them and further use them for communication on the network.

1.1.3. Sniffer and FileSniffer Class

The Sniffer and FileSniffer classes grant the libtins library packet capture capabilities.
Objects of this type allow sniffing either from a live network interface or from “pcap” files
and can be configured with libpcap filters. The captured packets are interpreted and stored
in PDU objects.

In order to use the Sniffer or FileSniffer class, the user first needs to set the capture
interface or specify an input file. Optionally, they can also specify a capture filter to narrow
down on the captured packets. After this has been done, the incoming packets can be
intercepted in one of two ways, either one at a time, using the next packet method, or by
using the sniff loop method that keeps capturing packets until it is stopped manually, or
an error is encountered.



Electronics 2021, 10, 3084 3 of 25

1.1.4. Processing Captured Packets

Every time a packet is captured, a PDU object is created from it. This object contains all
the data from the network packet, and the user can use specific methods such as find_pdu
to search for information specific to a certain layer. For example, if a DNS packet is captured,
the created PDU would be made up of EthernetII/IP/UDP/RawPDU. As one can observe,
each PDU has an inner PDU that contains the upper layer protocol, up to the RawPDU
which holds the payload data. If the user wishes to process the payload, special functions
such as raw_to <PDU_Type> can be called to use the raw payload data as input for the
construction of other protocol objects.

Many protocol types, including some application layer protocols, are handled by
default by the libtins library, but nothing prevents the user from experimenting with the
above method and building his/her own application layer protocol objects. Creating
custom application layer protocols that are not defined in the library is further detailed
in the Section 2 of this paper, as we used this method during our research to extend the
library to capture and process SIP and RTP packets in order to intercept VoIP calls.

1.2. Extending the Libtins Library with SIP and RTP Classes for VoIP Packet Analysis

Using technologies such as VoIP and others to start different types of communication
sessions (voice calls, video calls, meetings, etc.) is now easier than it has ever been.
However, like any piece of technology, communication over packet-switched IP networks
comes with certain drawbacks in the form of latency, malformed packets, reception of
packets that are not in the same order as they were sent in, jitter and more. Furthermore,
if the network security is not configured properly, the sessions can be intercepted by a
third party [13,14].

These drawbacks introduce technical problems that require network and service
management solutions in order to be fixed. One of the aims of this research was to
explore ways of approaching the problems previously listed. A solution would be to use a
packet sniffing program such as Wireshark [15,16] for analyzing and identifying network
issues such as in [17,18] or its command-line equivalent, tshark, such as in [19,20]. This,
however, is sometimes not possible due to the limitations of the target device on which the
application is being run or simply because the user wishes to use a less resource-intensive
alternative. In such a case, a command-line application, aimed at processing only VoIP
packets would be better suited for the job because it is more lightweight. Additionally, a
custom packet capture application allows for further processing of traffic, for example, by
adding metadata to identify a certain flow. The ability to easily modify the solution we
developed is a major advantage because, in the future, it will allow us to achieve more
than just packet capture, for which a tool such as Wireshark or tshark would have been
sufficient. Further goals are discussed in more detail in Section 1.3.4.

Researching how to develop a packet capture application tailored to processing the
audio and signaling data of VoIP calls led us to find the libtins packet capture library, which
we used as a base on top of which the extra functionality for parsing application layer
protocols such as SIP and RTP was built.

Before discussing the implementation details that need to be taken into consideration
when extending the libtins library with functionality for VoIP application layer protocols,
we must first discuss how the IP telephony network works.

Similar to other telecommunication networks, IP-based voice and multimedia com-
munications rely on a number of systems to be in place so that a proper data session can be
established and maintained. This paper is focused on the signaling system used to establish
a valid session between IP network users and the transport protocol involved in the data
exchange between the users.

The gist of how a VoIP network works is that the users, also called the clients, need
IP phones to connect to the server. In order to establish the session, in our approach, they
exchange signaling messages: Session Initiation Protocol (SIP) for call control and Session
Description Protocol (SDP) for bearer control. After the session has been established, the



Electronics 2021, 10, 3084 4 of 25

Real-time Transport Protocol (RTP) is used for transmitting the multimedia data from user
to user.

1.2.1. Session Initiation Protocol

The Session Initiation Protocol is used inside an IP telephony network very much
in the same way the SS7 (Signaling System 7) was used in the circuit-switching-based
telecommunications networks: Integrated Services Digital Network (ISDN), Global System
for Mobile Communications (GSM), etc. The protocol facilitates establishing and initi-
ating multimedia data sessions by exchanging signaling messages, as it was defined in
RFC3261 [21]. The commands are in ASCII format and were inspired by Hypertext Transfer
Protocol (HTTP) [21]. The structure consists of one request or response line, depending on
the type of the packets followed by multiple header fields, some of which are mandatory
and some optional, and a message body containing SDP information if present.

By default, SIP runs over UDP at port 5060 and in call establishment, INVITE messages
are sent. Based on that, paper [22] introduced a tool developed in C based on a generic
packet sniffer [23] using raw BSD sockets in Linux. It captures SIP packets by selecting UDP
segments and parsing the payload for 5060 and either 1 INVITE or 2 INVITE. Compared
to [22], our solution extracts all SIP packets and decodes the entire SIP header structure.

Because by default the messages are not authenticated or encrypted, one important
area that must be covered is security [24]. Our tool captures SIP traffic that is not encrypted.

1.2.2. Session Description Protocol

Conveying media details, transport addresses and other session description metadata
to the participants is done using the Session Description Protocol. This provides a standard
representation for the information mentioned previously, irrespective of how the multi-
media information is being transported. The protocol was defined in RFC4566 [25], and
a message has three sections related to the description of session, timing and media. It is
possible to have several timing and media descriptions.

1.2.3. Real-Time Transport Protocol

This protocol provides end-to-end delivery of data in real-time. This makes it suitable
as the transport protocol for the interactive audio and video communication used in
VoIP networks, according to RFC3550 [26]. The structure of RTP consists of the header
followed by extensions if they are present and a data field containing the exchanged
multimedia information.

1.3. Building an IDS Using Libtins, Apache Kafka and ksqlDB

One of the most important requirements in modern computer networks is related to
security. Mechanisms designed for detecting or preventing intruders are paramount to
the safety and reliability of the network. When implemented properly, such a system can
ensure secure and trusted communications between organizations.

An IDS is used to monitor network traffic for suspicious activity and issue alerts when
it is detected. This is done by using a sensor (network probe) that gets triggered based on
certain patterns and prompts the system to send an alarm to an administrator or collect
the data in a centralized location for later analysis. Being a passive monitoring device, the
IDS comes with the advantage of having no impact on the actual network at the cost of
providing no actual active protection because it relies on another system to act in case of an
attack. One can build such a system by following the instructions provided in [27].

In the following paragraphs, we introduce some of the components required for
building an IDS using the following tools. The first one is called Vagrant [28], needed to set
up and provision virtual machines. These were used in a particular manner, as described
in [27], in order to set up a virtual network to run our simulations and tests. The second
tool is called Apache Kafka, needed to ingest the captured data packets and analyze them.



Electronics 2021, 10, 3084 5 of 25

As part of the Kafka ecosystem, ksqlDB is the third one, and it was used to detect intruders
and malicious activity inside the virtual network.

1.3.1. Vagrant

Users can benefit from this tool because it can be involved in establishing a work envi-
ronment, which should be portable, reusable and easy to be configured [28]. The architecture
has Provisioners and Providers as building blocks to manage the development environments.

A Provisioner allows the user to customize the configuration of virtual environments
(e.g., Puppet, Chef and Ansible). On the other hand, a Provider is a service that Vagrant
uses to set up and create virtual environments (e.g., Oracle VirtualBox, KVM, Hyper-V
and others).

The main role of Vagrant is to sit on top of virtualization software as a wrapper and
help the developer interact easily with the providers, automating the configuration of the
virtual environments. These configurations are placed inside a Vagrantfile and are executed
step by step in order to create a development-ready box.

1.3.2. Apache Kafka

Apache Kafka simplifies the communication between multiple systems using the
publisher/subscriber pattern [29]. Therefore, the Kafka Cluster represents the communica-
tions backbone that decouples the systems. A producer publishes data on one or multiple
streams (or channels). A stream is unidirectional. The streams are stored in commit logs
which are append-only structures that keep all capture events in an ordered sequence.
Once appended in the log, a certain record will keep the same offset (as the position of
the record from the beginning of the log). Appending a record makes it immutable. An
update of an existing record will create another one in the log, keeping the original one
unmodified [30]. Kafka is an implementation of a software bus that uses stream processing.
It is an open-source software platform written in Scala and Java, which aims to provide a
unified, high throughput, low-latency platform for handling real-time data feeds. It can
also connect to external systems for importing and exporting data with Kafka Connect,
and it needs Kafka Streams, a Java stream processing library.

Kafka was designed to store key-value messages that come from processes called
producers. The data can be partitioned into different partitions with different topics. Other
processes called consumers can read messages from these partitions. The five major APIs
it provides are the following: (1) producer (allowing an application to publish a stream
of records); (2) consumer (an application can subscribe to topics and processes streams of
records); (3) connector (executing the reusable producer and consumer APIs that can link
the topics to the existing applications); (4) stream (converting the input streams to output
and producing the results); and (5) admin (to manage Kafka topics, brokers and other
objects). The whole architecture runs on a cluster of one or more so-called brokers, and the
partitions are distributed across the cluster nodes and are replicated to multiple brokers.
This architecture allows Kafka to deliver massive streams of messages in a fault-tolerant
fashion. Because of this, it has successfully replaced some of the conventional messaging
systems such as Java Messaging Service (JMS), Advanced Message Queueing Protocol
(AMQP) and others. In addition to generic streaming applications [31–34], Kafka can also
be used in Intrusion Detection Systems [35].

1.3.3. ksqlDB

This is a type of database for stream processing applications [36]. It achieves this by
consolidating the many components that are found in almost every stream processing
architecture.

Almost all streaming architectures today require a subsystem to acquire events from
existing data sources, another subsystem to store those events, another one to process them
and another one to serve queries against aggregated materializations. Integrating these
subsystems can be difficult and because of the many mental models, a lot of complexity is



Electronics 2021, 10, 3084 6 of 25

introduced. For ksqlDB there is just one mental model for doing everything that is needed.
Thus, the whole application depends on Apache Kafka only [36].

Because of ksqlDB’s ability to extract information in real time from a running flow,
it can be used for a variety of applications, from energy consumption monitoring [37] to
processing industrial sensor data [38].

1.3.4. Putting It All Together

In the implementation part of the paper, we discuss how to combine the technologies
described above, along with the libtins library and the C++ programming language to
create an IDS. The strategy follows the original confluent.io article [27], but the major
novelty is that we replaced the tool they chose for packet capture (tshark) with a custom
sniffer that intercepts network traffic, creates and stores JSON objects and feeds them into
Apache Kafka. The goal we had in mind here was to create a small, lightweight, extensible
alternative to tshark, aiming to further develop it in the future to fit our use case. The
main advantage of having this type of tool as opposed to simply using a readily available
protocol analyzer is that we have the possibility of easily modifying the source code to add
extra functionality based on our needs. Our next goal will be to extend this custom tool
by computing and adding metadata that uniquely identifies the flow, before inserting it
into the Kafka database. This will allow for faster processing of IDS rules directly from the
database. Furthermore, we are researching ways of directly sending the captured network
data from our application to Apache Kafka. Thus we do not need to rely on intermediate
storage such as the current tshark-based solution, which dumps all the sniffer output into
a shared directory, from where it is later fed into Apache Kafka using a connector.

According to [39–41], the VoIP traffic in 4G/5G networks requires high data rates and
is still vulnerable to attacks. The tools and methodologies we present in this paper can be
used as described to capture VoIP traffic in 5G and B5G (Beyond 5G) networks.

2. Implementation

This section describes the implementation details of extending the libtins library for
different applications. The first part is focused on the development of the VoIP analysis
command-line interface, which extracts information from SIP/SDP/RTP packets. The
latter part discusses the software developed for capturing network traffic and sending it to
Apache Kafka for intrusion detection purposes.

2.1. Extending the Libtins Library with SIP and RTP Classes for VoIP Packet Analysis

Adding functionality for working with SIP and RTP packets was done by defining
the structure of the previously enumerated protocols inside separate classes. Afterward,
the newly defined objects were created using the data captured by the libtins library.
Intercepting the data was done inside a loop, which was created by using a Sniffer object
to call the sniff loop function. Each captured packet was processed inside a user-defined
callback function.

Knowing that SIP and RTP are Application Layer protocols, the callback function was
used to fetch the packet payload data and parse it inside the individual class constructor
for each of the two protocols. After the processing was done, the packets were stored
inside appropriate data structures for later decoding, in the case of RTP packets, or for easy
writing to output text files, in the case of SIP packets.

All the captured packets were also written to temporary PCAP files. Taking this
approach, we separated the packet capture from the packet processing, which is the
recommended approach for performance reasons. Storing the packets inside a packet
capture file or appropriate data structure and processing them separately either on different
threads or sequentially was less error-prone and faster.



Electronics 2021, 10, 3084 7 of 25

2.1.1. Application Diagram

The entry point for the application is the start function, which is called from main.
This redirects the user to either packet creation or packet capture through a text-based
user interface.

The packet creation was done by obtaining the input from the user and concatenating
it into a string and using it as an argument for the SIP constructor. If the constructed packet
was valid, it was sent over the network by the send_packet method inside the PacketCrafter
class. The packet capture was done by creating a sniffing environment using the libtins
library on either a network interface or an input file. After the packets were captured, they
were processed, and output files were generated. SIP processing was straightforward while
the RTP stream was converted to linear PCM through the decode function and written to
an audio file.

Figure 1 shows that the application splits into two different execution paths. Path A
was selected if the user entered the capture mode, listening for incoming SIP and RTP
packets, processing them and producing output in the form of text and audio files. Path B
was selected if the user chose to create SIP packets, verify, and send them on the network.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 27 
 

 

to call the sniff loop function. Each captured packet was processed inside a user-defined 
callback function. 

Knowing that SIP and RTP are Application Layer protocols, the callback function 
was used to fetch the packet payload data and parse it inside the individual class 
constructor for each of the two protocols. After the processing was done, the packets 
were stored inside appropriate data structures for later decoding, in the case of RTP 
packets, or for easy writing to output text files, in the case of SIP packets. 

All the captured packets were also written to temporary PCAP files. Taking this 
approach, we separated the packet capture from the packet processing, which is the 
recommended approach for performance reasons. Storing the packets inside a packet 
capture file or appropriate data structure and processing them separately either on 
different threads or sequentially was less error-prone and faster. 

2.1.1. Application Diagram 
The entry point for the application is the start function, which is called from main. 

This redirects the user to either packet creation or packet capture through a text-based 
user interface. 

The packet creation was done by obtaining the input from the user and 
concatenating it into a string and using it as an argument for the SIP constructor. If the 
constructed packet was valid, it was sent over the network by the send_packet method 
inside the PacketCrafter class. The packet capture was done by creating a sniffing 
environment using the libtins library on either a network interface or an input file. After 
the packets were captured, they were processed, and output files were generated. SIP 
processing was straightforward while the RTP stream was converted to linear PCM 
through the decode function and written to an audio file. 

Figure 1 shows that the application splits into two different execution paths. Path A 
was selected if the user entered the capture mode, listening for incoming SIP and RTP 
packets, processing them and producing output in the form of text and audio files. Path B 
was selected if the user chose to create SIP packets, verify, and send them on the network. 

 
Figure 1. Simplified software diagram illustrating the structure of the VoIP sniffer application. 

The following sections go deeper into explaining the role of each software 
component and how they collectively achieved the ability to capture VoIP calls. The 
source code for the application can be found in the GitHub repository [42]. 

Figure 1. Simplified software diagram illustrating the structure of the VoIP sniffer application.

The following sections go deeper into explaining the role of each software component
and how they collectively achieved the ability to capture VoIP calls. The source code for
the application can be found in the GitHub repository [42].

2.1.2. ConsoleUI Structure

This structure was used to statically define all the messages the user sees in the text
user interface during the execution of the program. These messages were arranged into
two groups, one for the packet capture mode and one for the packet crafting mode.

Besides the text information, the ConsoleUI structure also held the start function,
which was the entry point for our command-line application and contained all the high-
level logic for its execution and user interaction logic. This function also provided the user
with the option to choose between the packet capture mode and the packet crafting mode.

If the user chose to enter the packet capture mode, three options were offered, consist-
ing of either live capture or parsing pcap files. Figure 2 shows the process of reading SIP
packets from a capture file (a slightly modified version was used in a similar fashion to
process RTP packets, with the exception that those packets had to run through a decoding
algorithm, which is discussed in a later section, to obtain the audio information). After



Electronics 2021, 10, 3084 8 of 25

the initial pass, where all live-captured network packets were processed and stored in a
temporary capture file, this technique was used to read and process those packets and
build SIP and RTP objects from them.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 27 
 

 

2.1.2. ConsoleUI Structure 
This structure was used to statically define all the messages the user sees in the text 

user interface during the execution of the program. These messages were arranged into 
two groups, one for the packet capture mode and one for the packet crafting mode. 

Besides the text information, the ConsoleUI structure also held the start function, 
which was the entry point for our command-line application and contained all the 
high-level logic for its execution and user interaction logic. This function also provided 
the user with the option to choose between the packet capture mode and the packet 
crafting mode. 

If the user chose to enter the packet capture mode, three options were offered, 
consisting of either live capture or parsing pcap files. Figure 2 shows the process of 
reading SIP packets from a capture file (a slightly modified version was used in a similar 
fashion to process RTP packets, with the exception that those packets had to run through 
a decoding algorithm, which is discussed in a later section, to obtain the audio 
information). After the initial pass, where all live-captured network packets were 
processed and stored in a temporary capture file, this technique was used to read and 
process those packets and build SIP and RTP objects from them. 

 
Figure 2. Reading SIP packets from capture files using the libtins library. 

2.1.3. Capture Class 
For further abstraction, a wrapper for the packet capturing functionality of the 

libtins library was defined in the form of the Capture class. This contained all the logic for 
running the Sniffer in order to capture packets. After the data had been parsed, the 
Capture object used std::vector objects for storage. 

Using a Capture object allowed calling the run sniffer method for sniffing loop and 
for listening to the appropriate incoming packets. This was performed according to the 
capture filter, and a callback function was called for each captured packet. The header file 
that contained the definition for the Capture class can be seen in Figure 3. 

Figure 2. Reading SIP packets from capture files using the libtins library.

2.1.3. Capture Class

For further abstraction, a wrapper for the packet capturing functionality of the libtins
library was defined in the form of the Capture class. This contained all the logic for running
the Sniffer in order to capture packets. After the data had been parsed, the Capture object
used std::vector objects for storage.

Using a Capture object allowed calling the run sniffer method for sniffing loop and
for listening to the appropriate incoming packets. This was performed according to the
capture filter, and a callback function was called for each captured packet. The header file
that contained the definition for the Capture class can be seen in Figure 3.

The callback function differentiates based on the type of packets being captured and
processes them accordingly. Three branches were defined inside the function, one for
working with all incoming captured packets, another one only for the SIP packets and
another dedicated only to RTP packet processing.

In the first case, when all the packets were captured, the program did not process them
at all, just storing them by writing into an intermediary packet capture file for later use. This
was done during the live network capture mode, similar to the Wireshark packet analyzer.
The user could stop the live capture at any time by pressing a key on the keyboard.

In the second and third cases, when processing SIP and RTP packets, the callback
function retrieved the payload of the captured packet and converted it from a RawPDU
object to either a SIP or RTP instance, calling the specific constructor that constructed an
object from the raw data. The processed SIP and RTP packets were stored inside data
structures of type vector for later processing and were also written to temporary capture
files. In addition, the source and destination IPs and UDP ports were also stored for each
multimedia packet in order to be used in the RTP decoding process.



Electronics 2021, 10, 3084 9 of 25Electronics 2021, 10, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 3. Header file containing the definition of the Capture class. 

The callback function differentiates based on the type of packets being captured and 
processes them accordingly. Three branches were defined inside the function, one for 
working with all incoming captured packets, another one only for the SIP packets and 
another dedicated only to RTP packet processing. 

In the first case, when all the packets were captured, the program did not process 
them at all, just storing them by writing into an intermediary packet capture file for later 
use. This was done during the live network capture mode, similar to the Wireshark 
packet analyzer. The user could stop the live capture at any time by pressing a key on the 
keyboard. 

In the second and third cases, when processing SIP and RTP packets, the callback 
function retrieved the payload of the captured packet and converted it from a RawPDU 
object to either a SIP or RTP instance, calling the specific constructor that constructed an 
object from the raw data. The processed SIP and RTP packets were stored inside data 
structures of type vector for later processing and were also written to temporary capture 
files. In addition, the source and destination IPs and UDP ports were also stored for each 
multimedia packet in order to be used in the RTP decoding process. 

2.1.4. SIP Class 
The SIP class defined the structure of an SIP packet and operations performed on it. 

Being a text-based protocol, the payload data were used to construct a large string that 
was later parsed line by line into the specific fields in the SIP header. Each field was 
stored in an unordered multimap data structure, in the form of key-value pairs where 
each key was the name of the specific header field and the value it points to was the 
header field value. The public methods and variables handled the creation, output and 
data retrieval that were required for working with the individual SIP packets inside the 
application. Besides this, we observed multiple private methods and variables that 
handle internal data storage and manipulation for the SIP header and the validation 
necessary for verifying SIP packets upon creation inside the packet crafter algorithm. The 
header file containing the definitions for the SIP class can be seen in Figure 4. 

Figure 3. Header file containing the definition of the Capture class.

2.1.4. SIP Class

The SIP class defined the structure of an SIP packet and operations performed on it.
Being a text-based protocol, the payload data were used to construct a large string that was
later parsed line by line into the specific fields in the SIP header. Each field was stored in an
unordered multimap data structure, in the form of key-value pairs where each key was the
name of the specific header field and the value it points to was the header field value. The
public methods and variables handled the creation, output and data retrieval that were
required for working with the individual SIP packets inside the application. Besides this,
we observed multiple private methods and variables that handle internal data storage and
manipulation for the SIP header and the validation necessary for verifying SIP packets
upon creation inside the packet crafter algorithm. The header file containing the definitions
for the SIP class can be seen in Figure 4.

Because the data structure used for packet storage did not maintain the key-value
pairs in the order they were inserted in, an auxiliary data structure of type vector was used
to keep this order. This was needed later by the function that reconstructed the packets
and generated text files for each.

Objects created from user data were built in the same way, meaning that after the user
inserted all the data from the keyboard or from a text file, the input was concatenated into a
string that was processed as described above. The user-created packets were then checked
to validate whether they contained the mandatory header fields and correct syntax.

Creation and verification of SIP objects as described in the above paragraph were all
done using the PacketCrafter class, which was implemented to craft SIP objects and acted
as a wrapper for the libtins packet sending functionality. If the created SIP packet was
valid, it was then sent on the network using an instance of the libtins PacketSender class,
inside the send packet method.



Electronics 2021, 10, 3084 10 of 25Electronics 2021, 10, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 4. Header file containing the definition of the SIP class. 

Because the data structure used for packet storage did not maintain the key-value 
pairs in the order they were inserted in, an auxiliary data structure of type vector was 
used to keep this order. This was needed later by the function that reconstructed the 
packets and generated text files for each. 

Objects created from user data were built in the same way, meaning that after the 
user inserted all the data from the keyboard or from a text file, the input was 
concatenated into a string that was processed as described above. The user-created 
packets were then checked to validate whether they contained the mandatory header 
fields and correct syntax. 

Creation and verification of SIP objects as described in the above paragraph were all 
done using the PacketCrafter class, which was implemented to craft SIP objects and acted 
as a wrapper for the libtins packet sending functionality. If the created SIP packet was 
valid, it was then sent on the network using an instance of the libtins PacketSender class, 
inside the send packet method. 

2.1.5. RTP Class 
The RTP class defines the structure of an RTP packet and operations performed on 

it. The header file that defines the structure of an RTP object can be seen in Figure 5. As 
we can observe, the public section of the class implementation handles RTP packet 
creation, along with RTP data retrieval. Inside the private implementation, we can see the 
internal definition of the RTP header which would be used to construct the RTP object. 

Figure 4. Header file containing the definition of the SIP class.

2.1.5. RTP Class

The RTP class defines the structure of an RTP packet and operations performed on it.
The header file that defines the structure of an RTP object can be seen in Figure 5. As we
can observe, the public section of the class implementation handles RTP packet creation,
along with RTP data retrieval. Inside the private implementation, we can see the internal
definition of the RTP header which would be used to construct the RTP object.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 27 
 

 

 
Figure 5. Header file containing the definition of the RTP class. 

To construct an object of type RTP we had to first define the structure of the header. 
The first 12 bytes were occupied by the actual header fields, containing important 
information that would be used in the decoding process such as payload type, sequence 
number and timestamp, followed by zero or more extension headers. Knowing this, we 
could cast the pointer to the captured data inside the callback function to a rtp header 
pointer so that we could access each individual header field and store it for later use. 
After storing the header, we incremented the memory address pointing to the data by the 
size of the header and its extensions to reach the data block, which we stored inside a 
string that would be decoded later. The above process can be seen in Figure 6 with the 
full algorithm being available in the source code [39]. 

Figure 5. Header file containing the definition of the RTP class.



Electronics 2021, 10, 3084 11 of 25

To construct an object of type RTP we had to first define the structure of the header. The
first 12 bytes were occupied by the actual header fields, containing important information
that would be used in the decoding process such as payload type, sequence number and
timestamp, followed by zero or more extension headers. Knowing this, we could cast the
pointer to the captured data inside the callback function to a rtp header pointer so that we
could access each individual header field and store it for later use. After storing the header,
we incremented the memory address pointing to the data by the size of the header and its
extensions to reach the data block, which we stored inside a string that would be decoded
later. The above process can be seen in Figure 6 with the full algorithm being available in
the source code [39].

Electronics 2021, 10, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 6. RTP object creation algorithm. 

2.1.6. PacketCrafter Class 
The PacketCrafter class is responsible for providing functionality for the creation of 

SIP packets either from text files or from data the user inputs via keyboard. Furthermore, 
it also allows the user to send these created packets on the network by calling the 
send_packets function. The header file defining the PacketCrafter class is in Figure 7. 

 
Figure 7. Header file containing the definition of the PacketCrafter class. 

2.1.7. Decoding Algorithm 
In order to decode the packets, we had to first eliminate the RTP packets that were 

being sent to the clients from the server. To do this, we used the stored IPs and ports from 
the previous RTP capture to create separate capture filters for each client and then started 
a capture using that filter to intercept the multimedia information sent to the server. 

Figure 6. RTP object creation algorithm.

2.1.6. PacketCrafter Class

The PacketCrafter class is responsible for providing functionality for the creation of SIP
packets either from text files or from data the user inputs via keyboard. Furthermore, it also
allows the user to send these created packets on the network by calling the send_packets
function. The header file defining the PacketCrafter class is in Figure 7.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 6. RTP object creation algorithm. 

2.1.6. PacketCrafter Class 
The PacketCrafter class is responsible for providing functionality for the creation of 

SIP packets either from text files or from data the user inputs via keyboard. Furthermore, 
it also allows the user to send these created packets on the network by calling the 
send_packets function. The header file defining the PacketCrafter class is in Figure 7. 

 
Figure 7. Header file containing the definition of the PacketCrafter class. 

2.1.7. Decoding Algorithm 
In order to decode the packets, we had to first eliminate the RTP packets that were 

being sent to the clients from the server. To do this, we used the stored IPs and ports from 
the previous RTP capture to create separate capture filters for each client and then started 
a capture using that filter to intercept the multimedia information sent to the server. 

Figure 7. Header file containing the definition of the PacketCrafter class.



Electronics 2021, 10, 3084 12 of 25

2.1.7. Decoding Algorithm

In order to decode the packets, we had to first eliminate the RTP packets that were
being sent to the clients from the server. To do this, we used the stored IPs and ports
from the previous RTP capture to create separate capture filters for each client and then
started a capture using that filter to intercept the multimedia information sent to the server.
Doing this would eliminate the packets originating from the server, ultimately producing
an output media stream for each speaker in the captured conversation.

After splitting the RTP capture, we could continue the decoding process by pushing
the packets for each user into a buffer making sure that all duplicates were eliminated,
and the remaining packets were ordered by sequence number. Each packet would then be
popped out of the buffer in the order they were inserted in and decoded.

The decoding process involved identifying the payload type of the packet which
indicates the type of codec being used, two of the most popular being G711 µ-Law and
A-Law. After the type had been identified, the packet was decoded using the created
G711Codec class that acted as a wrapper for the open-source µ-Law and A-Law decoding
algorithms developed by Sun Microsystems, Inc. These algorithms take an encoded value
as input and output a 16-bit linear PCM decoded value. Since G711 is one of the most
common VoIP codecs, it is the only one the project supports so far.

After the decoded information had been returned, it was written to a WAV (Waveform
Audio File). If the decoding process is successful, the program-generated audio output
files should contain the full conversation that was captured during the VoIP session. The
full algorithm for the decode function can be seen in Figure 8.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 27 
 

 

Doing this would eliminate the packets originating from the server, ultimately producing 
an output media stream for each speaker in the captured conversation. 

After splitting the RTP capture, we could continue the decoding process by pushing 
the packets for each user into a buffer making sure that all duplicates were eliminated, 
and the remaining packets were ordered by sequence number. Each packet would then 
be popped out of the buffer in the order they were inserted in and decoded. 

The decoding process involved identifying the payload type of the packet which 
indicates the type of codec being used, two of the most popular being G711 µ-Law and 
A-Law. After the type had been identified, the packet was decoded using the created 
G711Codec class that acted as a wrapper for the open-source µ-Law and A-Law decoding 
algorithms developed by Sun Microsystems, Inc. These algorithms take an encoded value 
as input and output a 16-bit linear PCM decoded value. Since G711 is one of the most 
common VoIP codecs, it is the only one the project supports so far. 

After the decoded information had been returned, it was written to a WAV 
(Waveform Audio File). If the decoding process is successful, the program-generated 
audio output files should contain the full conversation that was captured during the VoIP 
session. The full algorithm for the decode function can be seen in Figure 8. 

 
Figure 8. Full algorithm for the decode function. 

2.2. Building an IDS Using Libtins, Apache Kafka and ksqlDB 
In this section, we discuss how we can implement an intrusion detection system by 

capturing network data with a custom protocol analyzer (developed in C++) and feeding 
it to Kafka and ksqlDB. The network traffic was captured from a virtualized environment 
consisting of multiple virtual machines (created and provisioned using Vagrant). 
Afterward, the packets were processed by the application, and the JSON (JavaScript 
Object Notation) output was stored in a shared folder so that it could easily be accessed 
by the Docker compose stack (running Kafka and ksqlDB). This approach used a 
modified version of the ids-ksql project [43]. 

2.2.1. IDS Implementation Using ksqlDB 
The process of creating an IDS with Apache Kafka and ksqlDB was described in 

detail in a blog post on the confluent.io platform [27]. The article showcases how one can 
process network activity in real time for intrusion detection by using ksqlDB and its 
SQL-like query language. 

In order to emulate a live network environment, Vagrant was used. This tool allows 
the user to describe the virtual environment he/she wishes to create and its configuration 
inside a Vagrantfile. This file is then parsed when starting the system with the vagrant up 

Figure 8. Full algorithm for the decode function.

2.2. Building an IDS Using Libtins, Apache Kafka and ksqlDB

In this section, we discuss how we can implement an intrusion detection system by
capturing network data with a custom protocol analyzer (developed in C++) and feeding it
to Kafka and ksqlDB. The network traffic was captured from a virtualized environment
consisting of multiple virtual machines (created and provisioned using Vagrant). Afterward,
the packets were processed by the application, and the JSON (JavaScript Object Notation)
output was stored in a shared folder so that it could easily be accessed by the Docker
compose stack (running Kafka and ksqlDB). This approach used a modified version of the
ids-ksql project [43].

2.2.1. IDS Implementation Using ksqlDB

The process of creating an IDS with Apache Kafka and ksqlDB was described in detail
in a blog post on the confluent.io platform [27]. The article showcases how one can process
network activity in real time for intrusion detection by using ksqlDB and its SQL-like
query language.



Electronics 2021, 10, 3084 13 of 25

In order to emulate a live network environment, Vagrant was used. This tool allows
the user to describe the virtual environment he/she wishes to create and its configuration
inside a Vagrantfile. This file is then parsed when starting the system with the vagrant up
command, and its contents are used by Vagrant to determine how to start and provision
each virtual machine in the environment.

An outline for the virtual environment that was involved can be seen in Figure 9.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 27 
 

 

command, and its contents are used by Vagrant to determine how to start and provision 
each virtual machine in the environment. 

An outline for the virtual environment that was involved can be seen in Figure 9. 

 
Figure 9. Overview of the IDS sensor and the virtual environment modified compared to [27]. 

It simulated a small network containing a database, a web application and two 
workstations that performed calls to the web application. Lastly, a network probe was 
used to capture and analyze all the network traffic. The implementation in [27] used 
tshark, a network protocol analyzer allowing to capture data from a live network and to 
save the outputs in different formats. For the purposes of this paper, we did not select 
tshark. Instead, we emulated its behavior by building a new sensor that captured all 
network traffic and converted it into JSON format. This was accomplished by using the 
libtins library. The processed packet dumps were saved to a shared folder in JSON 
format. Then a Kafka source connector checked its content and sent the incoming data to 
a Kafka cluster. The role of ksqlDB was to process and analyze the data helping to 
generate alerts regarding possible intrusions. Although the pipeline followed by the 
network packets is according to [27], note that our approach involved a different library 
(libtins instead of libpcap), a CapJSON application (not present in the initial solution) and 
a complete original package of software for a protocol analyzer available in [42–44]. This 
new approach allowed us to investigate the better capabilities offered by the libtins 
library for security of at least two major fields: SIP-based VoIP calls and large IoT 
networks. Coming back to the description of the pipeline, packets were firstly processed 
and sent to Kafka and ksqlDB using the network-traffic topic. Afterward, the raw data 
were structured into a network-traffic-nested topic. After that, the messages were 
flattened by having the network-traffic-flat topic that only kept the required fields. This 
topic was then analyzed to detect two types of possible attacks, potential port scan and 
potential slowloris. The first is a reconnaissance attack, and the second is a Denial of 
Service (DoS) attack. In port scanning, the hacker sends connection requests to a target 
device in order to test how a port responds and if it is at all active. This allows the 
attacker to gather knowledge about the vulnerabilities in the network and to develop a 
plan to infiltrate it. The second type of attack detected allows a single machine to take 
down another machine’s web server with minimal bandwidth consumption and side 
effects on unrelated services and ports. Slowloris does this by opening many connections 
to the target server and trying to hold them active for as long as possible. This is achieved 
by opening connections to the target web server and sending a partial request then 
periodically sending subsequent Hypertext Transfer Protocol (HTTP) headers, adding to, 
but never completing, the request. 

Figure 9. Overview of the IDS sensor and the virtual environment modified compared to [27].

It simulated a small network containing a database, a web application and two
workstations that performed calls to the web application. Lastly, a network probe was used
to capture and analyze all the network traffic. The implementation in [27] used tshark,
a network protocol analyzer allowing to capture data from a live network and to save
the outputs in different formats. For the purposes of this paper, we did not select tshark.
Instead, we emulated its behavior by building a new sensor that captured all network
traffic and converted it into JSON format. This was accomplished by using the libtins
library. The processed packet dumps were saved to a shared folder in JSON format. Then a
Kafka source connector checked its content and sent the incoming data to a Kafka cluster.
The role of ksqlDB was to process and analyze the data helping to generate alerts regarding
possible intrusions. Although the pipeline followed by the network packets is according
to [27], note that our approach involved a different library (libtins instead of libpcap), a
CapJSON application (not present in the initial solution) and a complete original package
of software for a protocol analyzer available in [42–44]. This new approach allowed us to
investigate the better capabilities offered by the libtins library for security of at least two
major fields: SIP-based VoIP calls and large IoT networks. Coming back to the description
of the pipeline, packets were firstly processed and sent to Kafka and ksqlDB using the
network-traffic topic. Afterward, the raw data were structured into a network-traffic-nested
topic. After that, the messages were flattened by having the network-traffic-flat topic that
only kept the required fields. This topic was then analyzed to detect two types of possible
attacks, potential port scan and potential slowloris. The first is a reconnaissance attack,
and the second is a Denial of Service (DoS) attack. In port scanning, the hacker sends
connection requests to a target device in order to test how a port responds and if it is at
all active. This allows the attacker to gather knowledge about the vulnerabilities in the
network and to develop a plan to infiltrate it. The second type of attack detected allows
a single machine to take down another machine’s web server with minimal bandwidth
consumption and side effects on unrelated services and ports. Slowloris does this by
opening many connections to the target server and trying to hold them active for as long as
possible. This is achieved by opening connections to the target web server and sending a



Electronics 2021, 10, 3084 14 of 25

partial request then periodically sending subsequent Hypertext Transfer Protocol (HTTP)
headers, adding to, but never completing, the request.

2.2.2. Implementing Custom Packet Capture Tool Using C/C++ and Libtins

Capturing packets and turning them into JSON objects was performed by involving a
custom software protocol analyzer application developed in C++, based on libtins library,
which we released to the public domain. The general structure can be seen in Figure 10.
The source code can be viewed in the projects’ GitHub repository [44].

Electronics 2021, 10, x FOR PEER REVIEW 15 of 27 
 

 

2.2.2. Implementing Custom Packet Capture Tool Using C/C++ and Libtins 
Capturing packets and turning them into JSON objects was performed by involving 

a custom software protocol analyzer application developed in C++, based on libtins 
library, which we released to the public domain. The general structure can be seen in 
Figure 10. The source code can be viewed in the projects’ GitHub repository [44]. 

 
Figure 10. Simplified software diagram illustrating the structure of the custom sniffer application. 

• PacketCapture Class 
This is a simple wrapper around the packet capture functionalities of the libtins 

library. Under the hood, it instantiates variables that determine where the processed 
packet outputs will be placed. Moreover, it determines how each captured network 
packet is handled and processed by defining a callback function that is executed for each 
packet that is encountered. Inside this callback function, the raw data are structured and 
processed into JSON objects. Afterward, the class handles outputting the resulting objects 
to text files. 
• NetworkPacket structure 

In order to shape the raw network data captured by using the PacketCapture object, 
we defined a NetworkPacket structure. It mainly consists of pointers to different network 
protocol data types and is used to selectively initialize these protocols based on the type 
of packet. For example, for a UDP segment, the constructor initialized the EthernetII, IP, 
UDP and RawPDU pointers, splitting the captured packet into its specific layers, which 
were then used to process the packet. 
• JSON structure 

After establishing the structure of the captured network packet, a JSON object was 
created using the data. To achieve this, the rapidjson library was used. Note that, 
according to [45], this is a fast JSON parser/generator for C++, having API in both 
SAX/DOM styles. It seems that this has similar performance to strlen(). 

The processed object was stored inside a standard container that acted as a buffer. 
Once enough packets had been accumulated inside the buffer, the callback function from 
the PacketCapture class wrote the resulting JSON array to an output file. 
• Utility functions 

Converting the NetworkPacket to JSON using calls to the rapidjson library was done 
by using a group of utility functions. These involved a string buffer into which they 
wrote several objects consisting of key-value pairs that, when put together, made up a 

Figure 10. Simplified software diagram illustrating the structure of the custom sniffer application.

• PacketCapture Class

This is a simple wrapper around the packet capture functionalities of the libtins library.
Under the hood, it instantiates variables that determine where the processed packet outputs
will be placed. Moreover, it determines how each captured network packet is handled
and processed by defining a callback function that is executed for each packet that is
encountered. Inside this callback function, the raw data are structured and processed into
JSON objects. Afterward, the class handles outputting the resulting objects to text files.

• NetworkPacket structure

In order to shape the raw network data captured by using the PacketCapture object,
we defined a NetworkPacket structure. It mainly consists of pointers to different network
protocol data types and is used to selectively initialize these protocols based on the type of
packet. For example, for a UDP segment, the constructor initialized the EthernetII, IP, UDP
and RawPDU pointers, splitting the captured packet into its specific layers, which were
then used to process the packet.

• JSON structure

After establishing the structure of the captured network packet, a JSON object was
created using the data. To achieve this, the rapidjson library was used. Note that, according
to [45], this is a fast JSON parser/generator for C++, having API in both SAX/DOM styles.
It seems that this has similar performance to strlen().

The processed object was stored inside a standard container that acted as a buffer.
Once enough packets had been accumulated inside the buffer, the callback function from
the PacketCapture class wrote the resulting JSON array to an output file.

• Utility functions



Electronics 2021, 10, 3084 15 of 25

Converting the NetworkPacket to JSON using calls to the rapidjson library was done
by using a group of utility functions. These involved a string buffer into which they
wrote several objects consisting of key-value pairs that, when put together, made up a
JSON string. The main function contains the outline for building a JSON string, and
its name is BuildJSON. It first adds a timestamp, after which it proceeds to add frame
metadata and layer-specific information for each captured packet. It does this by making
calls to other functions that specifically handle building the JSON output for each layer
(AddObject_DataLink, AddObject_Network, AddObject_Transport, AddObject_Payload).
All the above functions operate very similarly, as they perform null checks on certain
members of the NetworkPacket structure. Depending on the result, they determine which
layers and protocols are present and which are not. Based on that, calls are made to the
rapidjson library resulting in the creation of JSON objects consisting of strung together
JSON key-value pairs. These calls used the inner Writer which is a Simple API for XML
generator for JSON.

More examples regarding it are provided in the rapidjson library documentation [46].
To summarize, the user calls one of several functions to create a JSON object and adds
key-value pairs to it, with support for adding anything specified in the JSON standard.
This can be done in other ways, without using the library, but “using Writer API is even
simpler than generating a JSON by ad hoc methods” [47].

2.2.3. Integrating the Custom Sniffer into Ids-Ksql Project and Environment Configuration

In order to test the custom protocol analyzer and to preview the results of using the
IDS, we made some changes to the original ids-ksql project. This had to be done in order to
change the Vagrant configuration to include our custom network sniffer instead of tshark.

• Forking ids-ksql

The first thing to do was to fork the original GitHub repository [47] so that the changes
we introduced can be version-controlled and stored in our GitHub repository [43]. This
custom version of the repository was later used to run the Vagrant project with the custom
protocol analyzer instead of tshark.

• Vagrant configuration

After the repository was forked, the next step was to download a local copy to our
machine so that we were able to make the necessary changes to the configuration. This
was done using the following command: git clone https://github.com/adriancostin6/ids-ksql.

With the repository cloned, the next step was to modify the Vagrantfile, located inside
the infra directory, to include the configuration for creating and provisioning a custom
virtual machine. Inside this, our C++ project was fetched, built and executed in order to
run the custom protocol analyzer, instead of tshark. The configuration in Figure 11 instructs
Vagrant to define a new virtual machine called capjson, which is the name of the custom
protocol analyzer we developed.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 27 
 

 

JSON string. The main function contains the outline for building a JSON string, and its 
name is BuildJSON. It first adds a timestamp, after which it proceeds to add frame 
metadata and layer-specific information for each captured packet. It does this by making 
calls to other functions that specifically handle building the JSON output for each layer 
(AddObject_DataLink, AddObject_Network, AddObject_Transport, 
AddObject_Payload). All the above functions operate very similarly, as they perform null 
checks on certain members of the NetworkPacket structure. Depending on the result, 
they determine which layers and protocols are present and which are not. Based on that, 
calls are made to the rapidjson library resulting in the creation of JSON objects consisting 
of strung together JSON key-value pairs. These calls used the inner Writer which is a 
Simple API for XML generator for JSON. 

More examples regarding it are provided in the rapidjson library documentation 
[46]. To summarize, the user calls one of several functions to create a JSON object and 
adds key-value pairs to it, with support for adding anything specified in the JSON 
standard. This can be done in other ways, without using the library, but “using Writer 
API is even simpler than generating a JSON by ad hoc methods” [47]. 

2.2.3. Integrating the Custom Sniffer into Ids-Ksql Project and Environment 
Configuration 

In order to test the custom protocol analyzer and to preview the results of using the 
IDS, we made some changes to the original ids-ksql project. This had to be done in order 
to change the Vagrant configuration to include our custom network sniffer instead of 
tshark. 
• Forking ids-ksql 

The first thing to do was to fork the original GitHub repository [47] so that the 
changes we introduced can be version-controlled and stored in our GitHub repository 
[43]. This custom version of the repository was later used to run the Vagrant project with 
the custom protocol analyzer instead of tshark. 
• Vagrant configuration 

After the repository was forked, the next step was to download a local copy to our 
machine so that we were able to make the necessary changes to the configuration. This 
was done using the following command: git clone https://github.com/adriancostin6/ids-ksql. 

With the repository cloned, the next step was to modify the Vagrantfile, located 
inside the infra directory, to include the configuration for creating and provisioning a 
custom virtual machine. Inside this, our C++ project was fetched, built and executed in 
order to run the custom protocol analyzer, instead of tshark. The configuration in Figure 
11 instructs Vagrant to define a new virtual machine called capjson, which is the name of 
the custom protocol analyzer we developed. 

 
Figure 11. Vagrant configuration for creating and provisioning the capjson virtual machine. 

We assigned an IP address for it and a hostname, and we ran it in promiscuous 
mode (important because we wanted it to process all the traffic it encounters, not just the 
traffic intended for it). We configured VirtualBox to allocate 512 MB of RAM to it and 

Figure 11. Vagrant configuration for creating and provisioning the capjson virtual machine.

We assigned an IP address for it and a hostname, and we ran it in promiscuous mode
(important because we wanted it to process all the traffic it encounters, not just the traffic



Electronics 2021, 10, 3084 16 of 25

intended for it). We configured VirtualBox to allocate 512 MB of RAM to it and selected
Vagrant to use the provision-capjson.sh script in order to provision the virtual machine.

• Provisioning script

This script creates an environment in which our protocol analyzer can run and sniff
network traffic. In order to do this, we had a Debian-based Linux distribution, on which
we installed all the necessary prerequisites.

To use our own protocol analyzer, we needed a way to build the source code inside this
virtual machine. This was done with the help of a Docker container. We chose this solution
because we wanted to ensure a way to rapidly and consistently deploy our software, in a
repeatable manner. We also wanted our application to be isolated and segregated from all
the other applications. The configuration presented in Figure 12 shows exactly how we
built the protocol analyzer using Docker.

Electronics 2021, 10, x FOR PEER REVIEW 17 of 27 
 

 

selected Vagrant to use the provision-capjson.sh script in order to provision the virtual 
machine. 
• Provisioning script 

This script creates an environment in which our protocol analyzer can run and sniff 
network traffic. In order to do this, we had a Debian-based Linux distribution, on which 
we installed all the necessary prerequisites. 

To use our own protocol analyzer, we needed a way to build the source code inside 
this virtual machine. This was done with the help of a Docker container. We chose this 
solution because we wanted to ensure a way to rapidly and consistently deploy our 
software, in a repeatable manner. We also wanted our application to be isolated and 
segregated from all the other applications. The configuration presented in Figure 12 
shows exactly how we built the protocol analyzer using Docker. 

 
Figure 12. Vagrant provisioning script for the capjson virtual machine. 

After configuring the machine to properly use it, we cloned our fork of the ids-ksql 
repository and entered the CapJSON directory, where we stored our Docker 
configuration for building the project. Afterward, we ran a Docker build command to 
generate an image and copied the service file created for running a Docker container with 
our built application to the systemd directory so we could start our service with the 
systemctl start command. This configuration is similar to the one used in our initial 
project [44], with added modifications for the custom protocol analyzer application 
introduced in the current paper. 
• Dockerfile for building the protocol analyzer 

The Docker configuration for building an image can be seen in Figure 13. It used an 
Alpine Linux image, as this provided a simple, compact environment for us to run our 
code in (the size of a bare-bones Alpine container is about 8MB). On top of that image, we 
installed some basic dependencies for the CapJSON protocol analyzer (i.e., libpcap, 

Figure 12. Vagrant provisioning script for the capjson virtual machine.

After configuring the machine to properly use it, we cloned our fork of the ids-ksql
repository and entered the CapJSON directory, where we stored our Docker configuration
for building the project. Afterward, we ran a Docker build command to generate an
image and copied the service file created for running a Docker container with our built
application to the systemd directory so we could start our service with the systemctl
start command. This configuration is similar to the one used in our initial project [44],
with added modifications for the custom protocol analyzer application introduced in the
current paper.

• Dockerfile for building the protocol analyzer

The Docker configuration for building an image can be seen in Figure 13. It used an
Alpine Linux image, as this provided a simple, compact environment for us to run our
code in (the size of a bare-bones Alpine container is about 8MB). On top of that image,
we installed some basic dependencies for the CapJSON protocol analyzer (i.e., libpcap,



Electronics 2021, 10, 3084 17 of 25

openssl, libtins and rapidjson). This was cloned from the official repository just prior to
running the build [44]. The repository configuration had to be changed to include the
testing mirror, as some packages were not available in the stable repositories.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 27 
 

 

openssl, libtins and rapidjson). This was cloned from the official repository just prior to 
running the build [44]. The repository configuration had to be changed to include the 
testing mirror, as some packages were not available in the stable repositories. 

 
Figure 13. Dockerfile that cloned, built, and installed the C++ protocol analyzer project. 

If the build process is successful, our program copies the generated binary inside the 
/bin directory so that it can be executed from anywhere on the system. This was handled 
when the Docker container was started with a simple script, which ran the application 
and specified the output directory for the JSON dump. See the script in Figure 14. 

 
Figure 14. Run script for executing the IDS sensor. 

One of the most important facts to be mentioned is that the Dockerfile specified the 
creation of a volume inside the /logs directory. This was later linked to another file in the 
Vagrant root directory, acting as common storage between the Vagrant virtual machine 
environment and the Docker-composed stack running Kafka and ksqlDB. This is what 
allowed ksqlDB to ingest and process the captured network packets. 
• Creating and configuring a service for the protocol analyzer 

For running the Docker container inside the Vagrant virtual machine, a service that 
can be started with systemctl was created. Figure 15 is a preview of the configuration that 
is run when starting the service. As we can see, the service creates a data directory inside 
the vagrant root folder and links /data/logs to the /logs folder internal to the Docker 
container. It also specifies parameters for different options such as setting environment 
variables and network options when starting the container. This is a modified version of 
the tshark.service file provided in the original projects’ source code on GitHub [47]. 

Figure 13. Dockerfile that cloned, built, and installed the C++ protocol analyzer project.

If the build process is successful, our program copies the generated binary inside the
/bin directory so that it can be executed from anywhere on the system. This was handled
when the Docker container was started with a simple script, which ran the application and
specified the output directory for the JSON dump. See the script in Figure 14.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 27 
 

 

openssl, libtins and rapidjson). This was cloned from the official repository just prior to 
running the build [44]. The repository configuration had to be changed to include the 
testing mirror, as some packages were not available in the stable repositories. 

 
Figure 13. Dockerfile that cloned, built, and installed the C++ protocol analyzer project. 

If the build process is successful, our program copies the generated binary inside the 
/bin directory so that it can be executed from anywhere on the system. This was handled 
when the Docker container was started with a simple script, which ran the application 
and specified the output directory for the JSON dump. See the script in Figure 14. 

 
Figure 14. Run script for executing the IDS sensor. 

One of the most important facts to be mentioned is that the Dockerfile specified the 
creation of a volume inside the /logs directory. This was later linked to another file in the 
Vagrant root directory, acting as common storage between the Vagrant virtual machine 
environment and the Docker-composed stack running Kafka and ksqlDB. This is what 
allowed ksqlDB to ingest and process the captured network packets. 
• Creating and configuring a service for the protocol analyzer 

For running the Docker container inside the Vagrant virtual machine, a service that 
can be started with systemctl was created. Figure 15 is a preview of the configuration that 
is run when starting the service. As we can see, the service creates a data directory inside 
the vagrant root folder and links /data/logs to the /logs folder internal to the Docker 
container. It also specifies parameters for different options such as setting environment 
variables and network options when starting the container. This is a modified version of 
the tshark.service file provided in the original projects’ source code on GitHub [47]. 

Figure 14. Run script for executing the IDS sensor.

One of the most important facts to be mentioned is that the Dockerfile specified the
creation of a volume inside the /logs directory. This was later linked to another file in the
Vagrant root directory, acting as common storage between the Vagrant virtual machine
environment and the Docker-composed stack running Kafka and ksqlDB. This is what
allowed ksqlDB to ingest and process the captured network packets.

• Creating and configuring a service for the protocol analyzer

For running the Docker container inside the Vagrant virtual machine, a service that
can be started with systemctl was created. Figure 15 is a preview of the configuration that
is run when starting the service. As we can see, the service creates a data directory inside
the vagrant root folder and links /data/logs to the /logs folder internal to the Docker
container. It also specifies parameters for different options such as setting environment
variables and network options when starting the container. This is a modified version of
the tshark.service file provided in the original projects’ source code on GitHub [47].



Electronics 2021, 10, 3084 18 of 25Electronics 2021, 10, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 15. Service configuration for starting the protocol analyzer inside the virtual machine. 

3. Results 
This section outlines the results of the research work, with the first part focusing on 

the VoIP analyzer command-line interface and the second one on the IDS results. 

3.1. Results for the SIP/RTP Packet Extractor 
Using the SIP and RTP packet processing functionality described in the previous 

sections alongside the existing packet capture capabilities of the libtins library resulted in 
the creation of a command-line application. This intercepted VoIP calls and generated 
output files that the user can open to listen to the conversation or to visualize the SIP 
signaling messages. In addition, the application also supports SIP packet creation and 
verification, according to the RFC3261, and sending of these packets across the network. 
Instructions for building the command-line application and the full source code can be 
found inside the GitHub repository [42]. The terminal-based user interface allows the 
user to choose between three modes of operation. The first two deal with packet capture 
and processing from the default network interface or from a pcap file. The third mode of 
operation involves the creation of SIP signaling packets by inputting data either from a 
text file or the keyboard. This can be seen in Figure 16. 

 
Figure 16. Text-based user interface of the VoIP Analyzer command-line application. 

Figure 15. Service configuration for starting the protocol analyzer inside the virtual machine.

3. Results

This section outlines the results of the research work, with the first part focusing on
the VoIP analyzer command-line interface and the second one on the IDS results.

3.1. Results for the SIP/RTP Packet Extractor

Using the SIP and RTP packet processing functionality described in the previous
sections alongside the existing packet capture capabilities of the libtins library resulted
in the creation of a command-line application. This intercepted VoIP calls and generated
output files that the user can open to listen to the conversation or to visualize the SIP
signaling messages. In addition, the application also supports SIP packet creation and
verification, according to the RFC3261, and sending of these packets across the network.
Instructions for building the command-line application and the full source code can be
found inside the GitHub repository [42]. The terminal-based user interface allows the
user to choose between three modes of operation. The first two deal with packet capture
and processing from the default network interface or from a pcap file. The third mode of
operation involves the creation of SIP signaling packets by inputting data either from a
text file or the keyboard. This can be seen in Figure 16.

Electronics 2021, 10, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 15. Service configuration for starting the protocol analyzer inside the virtual machine. 

3. Results 
This section outlines the results of the research work, with the first part focusing on 

the VoIP analyzer command-line interface and the second one on the IDS results. 

3.1. Results for the SIP/RTP Packet Extractor 
Using the SIP and RTP packet processing functionality described in the previous 

sections alongside the existing packet capture capabilities of the libtins library resulted in 
the creation of a command-line application. This intercepted VoIP calls and generated 
output files that the user can open to listen to the conversation or to visualize the SIP 
signaling messages. In addition, the application also supports SIP packet creation and 
verification, according to the RFC3261, and sending of these packets across the network. 
Instructions for building the command-line application and the full source code can be 
found inside the GitHub repository [42]. The terminal-based user interface allows the 
user to choose between three modes of operation. The first two deal with packet capture 
and processing from the default network interface or from a pcap file. The third mode of 
operation involves the creation of SIP signaling packets by inputting data either from a 
text file or the keyboard. This can be seen in Figure 16. 

 
Figure 16. Text-based user interface of the VoIP Analyzer command-line application. Figure 16. Text-based user interface of the VoIP Analyzer command-line application.



Electronics 2021, 10, 3084 19 of 25

3.1.1. Performance

Capturing and processing a VoIP call was the main function of the application. For it
to be a reliable alternative solution to other similar programs, the developed command-line
interface had to have comparable performance to the others. To measure this, we gathered
data from three different test scenarios. This allows the reader to have some insights into
the application performance (drawbacks and improvements) compared to the Wireshark
packet analyzer, de facto reference for the IP-based communications community. It is for
further work to extend this comparison to other solutions, such as those mentioned in [48].

3.1.2. Capturing and Processing a VoIP Call

The “processing time” parameter listed in the above and following graphs is used
to measure the packet processing duration. This is done in two cases, either for a certain
number of packets in the individual SIP and RTP tests or for various call durations as
seen in Figure 17 and Table 1. This time was measured using the real (elapsed) parameter
outputted by running the time command on the application in a Linux environment.

Electronics 2021, 10, x FOR PEER REVIEW 20 of 27 
 

 

3.1.1. Performance 
Capturing and processing a VoIP call was the main function of the application. For it 

to be a reliable alternative solution to other similar programs, the developed 
command-line interface had to have comparable performance to the others. To measure 
this, we gathered data from three different test scenarios. This allows the reader to have 
some insights into the application performance (drawbacks and improvements) 
compared to the Wireshark packet analyzer, de facto reference for the IP-based 
communications community. It is for further work to extend this comparison to other 
solutions, such as those mentioned in [48]. 

3.1.2. Capturing and Processing a VoIP Call 
The “processing time” parameter listed in the above and following graphs is used to 

measure the packet processing duration. This is done in two cases, either for a certain 
number of packets in the individual SIP and RTP tests or for various call durations as 
seen in Figure 17 and Table 1. This time was measured using the real (elapsed) parameter 
outputted by running the time command on the application in a Linux environment. 

The first scenario that was tested was that of intercepting a Voice over IP session of 
variable length. To gather the data, six different captures were realized for calls ranging 
in length from five minutes to almost three hours. The resulting graphic and table show 
that if the conversation length is up to 30 to 45 minutes, the developed application has a 
lower processing time than the Wireshark packet analyzer. Afterward, when we reach 
longer call durations, the two packet analyzers tend to merge together in terms of 
performance. In the next two sections, we focus on the performance of the application 
when exclusively processing either SIP or RTP packets. 

Table 1. Packet processing time comparison for different VoIP call durations. 

Call Information Processing Time (Milliseconds) 
Duration (Minutes) Number of Packets Wireshark VoIP Analyzer 

5 74,250 1785 689 
10 147,144 2338 1384 
15 220,309 3015 2057 
30 454,741 4900 4167 
60 882,308 8800 9089 
167 2,460,609 21,505 21,688 

 
Figure 17. Packet processing time comparison for different VoIP call durations.

Table 1. Packet processing time comparison for different VoIP call durations.

Call Information Processing Time (Milliseconds)

Duration (Minutes) Number of Packets Wireshark VoIP Analyzer

5 74,250 1785 689
10 147,144 2338 1384
15 220,309 3015 2057
30 454,741 4900 4167
60 882,308 8800 9089

167 2,460,609 21,505 21,688

The first scenario that was tested was that of intercepting a Voice over IP session of
variable length. To gather the data, six different captures were realized for calls ranging
in length from five minutes to almost three hours. The resulting graphic and table show
that if the conversation length is up to 30 to 45 min, the developed application has a lower
processing time than the Wireshark packet analyzer. Afterward, when we reach longer call
durations, the two packet analyzers tend to merge together in terms of performance. In
the next two sections, we focus on the performance of the application when exclusively
processing either SIP or RTP packets.



Electronics 2021, 10, 3084 20 of 25

3.1.3. Processing a Large Number of SIP Packets

The second test scenario was developed to gauge the performance of the application
when handling SIP signaling packets. To do so, an instance of the program was run in
order to process a large number of SIP packets, and the results were used to determine how
the number of processed packets affects the execution time.

Figure 18 shows an overall performance comparison between the tool we developed
and Wireshark. From it, we can see that the performance of the two tools is similar, with our
implementation coming up just a few seconds short of matching Wireshark’s processing
speed. Both VoIP Analyzer based on libtins and Wireshark use the same packet capture
engine behind the scenes, namely libpcap. Due to this, we can say that the rate at which
the packets are captured is the same. The small performance difference is due to the
packet processing and storing implementation. Currently, the algorithm uses the C++ STL
(Standard Template Library) which adds a bit of overhead in exchange for convenience
and ease of use. Another factor influencing the performance is the fact that because the
application was designed to output the captured packets in the form of “.pcap” and text
files, most of the computation time is spent on I/O calls. Thus, the performance gap can
easily be bridged with some optimizations in the future. For capturing VoIP traffic in
5G/B5G environments, we plan to save data extracted from SIP/RTP packets directly into
an Apache Kafka database. This would eliminate the need for intermediate storage and
would improve the performance of the application significantly.

Electronics 2021, 10, x FOR PEER REVIEW 21 of 27 
 

 

Figure 17. Packet processing time comparison for different VoIP call durations. 

3.1.3. Processing a Large Number of SIP Packets 
The second test scenario was developed to gauge the performance of the application 

when handling SIP signaling packets. To do so, an instance of the program was run in 
order to process a large number of SIP packets, and the results were used to determine 
how the number of processed packets affects the execution time. 

Figure 18 shows an overall performance comparison between the tool we developed 
and Wireshark. From it, we can see that the performance of the two tools is similar, with 
our implementation coming up just a few seconds short of matching Wireshark’s 
processing speed. Both VoIP Analyzer based on libtins and Wireshark use the same 
packet capture engine behind the scenes, namely libpcap. Due to this, we can say that the 
rate at which the packets are captured is the same. The small performance difference is 
due to the packet processing and storing implementation. Currently, the algorithm uses 
the C++ STL (Standard Template Library) which adds a bit of overhead in exchange for 
convenience and ease of use. Another factor influencing the performance is the fact that 
because the application was designed to output the captured packets in the form of 
“.pcap” and text files, most of the computation time is spent on I/O calls. Thus, the 
performance gap can easily be bridged with some optimizations in the future. For 
capturing VoIP traffic in 5G/B5G environments, we plan to save data extracted from 
SIP/RTP packets directly into an Apache Kafka database. This would eliminate the need 
for intermediate storage and would improve the performance of the application 
significantly. 

Furthermore, Figure 17 showcases that the SIP packet processing time is not a 
bottleneck in the overall performance of the application. The reasoning behind this is that 
during a normal phone call, the number of exchanged SIP packets was drastically lower 
than the number of RTP packets. For two million RTP packets that were sent during the 
call, only 50 to 60 SIP packets at most were exchanged. 

 
Figure 18. Packet processing time comparison for a varying number of SIP packets. 

3.1.4. Processing a Large Number of RTP Packets 

Figure 18. Packet processing time comparison for a varying number of SIP packets.

Furthermore, Figure 17 showcases that the SIP packet processing time is not a bot-
tleneck in the overall performance of the application. The reasoning behind this is that
during a normal phone call, the number of exchanged SIP packets was drastically lower
than the number of RTP packets. For two million RTP packets that were sent during the
call, only 50 to 60 SIP packets at most were exchanged.

3.1.4. Processing a Large Number of RTP Packets

The third test scenario is of much similarity to the second one, involving the processing
of RTP packets instead of signaling packets. Figure 19 shows a similar performance between
the two compared packet analyzers.



Electronics 2021, 10, 3084 21 of 25

Electronics 2021, 10, x FOR PEER REVIEW 22 of 27 
 

 

The third test scenario is of much similarity to the second one, involving the 
processing of RTP packets instead of signaling packets. Figure 19 shows a similar 
performance between the two compared packet analyzers. 

 

Figure 19. Packet processing time comparison for a varying number of RTP packets. 

3.2. Results for the IDS 

3.2.1. Running the Simulation 
Once all the configurations had been done, the user started the system by running 

the commands shown in Figure 20. These started the Vagrant virtual machines to 
simulate a small network and the Docker to compose a stack containing Kafka and 
ksqlDB. As it was a resource-consuming process, it took up some time and failed if the 
user did not have enough CPU and memory to run it. 

 
Figure 20. Commands that set up the environment in order to test the IDS. 

After the simulation environment was up and running, the user was greeted by the 
ksql-cli command-line interface. The next step was to specify a Network Traffic 
Connector that scanned the specified directory (the shared file system in this case) for 
incoming files, before sending them into a Kafka topic. The connector used in this project 
was the same as the one specified in [27]. It scanned the /data/logs directory inside the 
infra Vagrant project, where our sniffed packets were placed. 

To detect the attacks described before, the network-traffic-nested and 
network-traffic-flat streams needed to be created using the ksql-cli console interface. 
Afterward, we created two tables for detecting the attacks using the console interface. 
The first table for detecting port-scan attacks can be seen in Figure 21. By counting the 

Figure 19. Packet processing time comparison for a varying number of RTP packets.

3.2. Results for the IDS
3.2.1. Running the Simulation

Once all the configurations had been done, the user started the system by running the
commands shown in Figure 20. These started the Vagrant virtual machines to simulate
a small network and the Docker to compose a stack containing Kafka and ksqlDB. As it
was a resource-consuming process, it took up some time and failed if the user did not have
enough CPU and memory to run it.

Electronics 2021, 10, x FOR PEER REVIEW 22 of 27 
 

 

The third test scenario is of much similarity to the second one, involving the 
processing of RTP packets instead of signaling packets. Figure 19 shows a similar 
performance between the two compared packet analyzers. 

 

Figure 19. Packet processing time comparison for a varying number of RTP packets. 

3.2. Results for the IDS 

3.2.1. Running the Simulation 
Once all the configurations had been done, the user started the system by running 

the commands shown in Figure 20. These started the Vagrant virtual machines to 
simulate a small network and the Docker to compose a stack containing Kafka and 
ksqlDB. As it was a resource-consuming process, it took up some time and failed if the 
user did not have enough CPU and memory to run it. 

 
Figure 20. Commands that set up the environment in order to test the IDS. 

After the simulation environment was up and running, the user was greeted by the 
ksql-cli command-line interface. The next step was to specify a Network Traffic 
Connector that scanned the specified directory (the shared file system in this case) for 
incoming files, before sending them into a Kafka topic. The connector used in this project 
was the same as the one specified in [27]. It scanned the /data/logs directory inside the 
infra Vagrant project, where our sniffed packets were placed. 

To detect the attacks described before, the network-traffic-nested and 
network-traffic-flat streams needed to be created using the ksql-cli console interface. 
Afterward, we created two tables for detecting the attacks using the console interface. 
The first table for detecting port-scan attacks can be seen in Figure 21. By counting the 

Figure 20. Commands that set up the environment in order to test the IDS.

After the simulation environment was up and running, the user was greeted by the
ksql-cli command-line interface. The next step was to specify a Network Traffic Connector
that scanned the specified directory (the shared file system in this case) for incoming files,
before sending them into a Kafka topic. The connector used in this project was the same
as the one specified in [27]. It scanned the /data/logs directory inside the infra Vagrant
project, where our sniffed packets were placed.

To detect the attacks described before, the network-traffic-nested and network-traffic-
flat streams needed to be created using the ksql-cli console interface. Afterward, we created
two tables for detecting the attacks using the console interface. The first table for detecting
port-scan attacks can be seen in Figure 21. By counting the packets between hosts, it can
trigger an alert when there are lots of packets between two hosts on several different ports.
In this case, we had a threshold of 1000 datagrams for a given IP address. This meant that
this IP established at least one thousand connections over the network with different hosts
and involved distinct ports. Our investigations confirmed the supposition from [27] that
this situation should/could be considered “suspicious”.



Electronics 2021, 10, 3084 22 of 25

Electronics 2021, 10, x FOR PEER REVIEW 23 of 27 
 

 

packets between hosts, it can trigger an alert when there are lots of packets between two 
hosts on several different ports. In this case, we had a threshold of 1000 datagrams for a 
given IP address. This meant that this IP established at least one thousand connections 
over the network with different hosts and involved distinct ports. Our investigations 
confirmed the supposition from [27] that this situation should/could be considered 
“suspicious”. 

 
Figure 21. Creating a table in ksql-cli for detecting port-scan attacks. 

To reproduce this attack, the user logged into the Compromised workstation in the 
Vagrant virtual machine network using the command: vagrant ssh compromised. Once 
he/she had access to the machine, the command nmap -n -sT -sV -sC 192.168.33.0/24 was 
running to execute a nmap port scan on the 192.168.33.0/24 network (if the –p option is 
not specified, nmap scans the most common 1000 ports). 

The slowloris attack was detected in a similar manner by creating a table in the 
ksql-cli that counted the number of connection resets sent by the server in the TCP 
segments. If there was a peak in the number of RST segments sent, then we suspected a 
type of DoS or Distributed Denial of Service (DDoS) attack. The structure of the detection 
table for the slowloris attack can be seen in Figure 22. 

 
Figure 22. Creating a table in the ksql-cli to detect slowloris attacks. 

To simulate such an attack, the user connected to the Compromised workstation via 
the following command vagrant ssh compromised, and once he/she had access to the 
machine, the attack was launched by typing slowhttptest -c 10000 -H -g -o slowhttp -i 10 -r 
500 -t GET -u http://web.local:8080 -x 24 -p 3. We want to mention again that we used the 
same principle for detecting the suspicious cases as in [27], but the testbed and the 
software packages were completely different. Maybe more than in the VoIP case, this 
kind of vulnerability is very likely to happen in large wireless sensor networks. 
Therefore, libtins deserved this particular work. 

3.2.2. Resulting Output in Ksql Command-Line Interface 
This section provides an overview of the results gathered from testing the Intrusion 

Detection System by running the port scan and slowloris attacks. These tests ran on a 
local test machine on a Linux distribution configured as described in the previous 
sections. The following results are presented in a table format, with six columns and a 
variable number of rows. In Figure 23, we can see that by using the table for port-scan 
attacks, ksqlDB detected an unusual number of connections on the network, the largest 
being for IP address 192.168.33.66, marking it suspicious. The way we interpreted the 
table with the results is accurate because the IP address of the Compromised Vagrant 
machine we ran the attack from was indeed 192.168.33.66. The time was represented in 
UNIX format by default. For example, 1633804903919 represents 9 October 2021 at 
18:41:43 GMT, the moment when the experiment was performed. 

Figure 21. Creating a table in ksql-cli for detecting port-scan attacks.

To reproduce this attack, the user logged into the Compromised workstation in the
Vagrant virtual machine network using the command: vagrant ssh compromised. Once
he/she had access to the machine, the command nmap -n -sT -sV -sC 192.168.33.0/24 was
running to execute a nmap port scan on the 192.168.33.0/24 network (if the –p option is
not specified, nmap scans the most common 1000 ports).

The slowloris attack was detected in a similar manner by creating a table in the ksql-cli
that counted the number of connection resets sent by the server in the TCP segments. If
there was a peak in the number of RST segments sent, then we suspected a type of DoS or
Distributed Denial of Service (DDoS) attack. The structure of the detection table for the
slowloris attack can be seen in Figure 22.

Electronics 2021, 10, x FOR PEER REVIEW 23 of 27 
 

 

packets between hosts, it can trigger an alert when there are lots of packets between two 
hosts on several different ports. In this case, we had a threshold of 1000 datagrams for a 
given IP address. This meant that this IP established at least one thousand connections 
over the network with different hosts and involved distinct ports. Our investigations 
confirmed the supposition from [27] that this situation should/could be considered 
“suspicious”. 

 
Figure 21. Creating a table in ksql-cli for detecting port-scan attacks. 

To reproduce this attack, the user logged into the Compromised workstation in the 
Vagrant virtual machine network using the command: vagrant ssh compromised. Once 
he/she had access to the machine, the command nmap -n -sT -sV -sC 192.168.33.0/24 was 
running to execute a nmap port scan on the 192.168.33.0/24 network (if the –p option is 
not specified, nmap scans the most common 1000 ports). 

The slowloris attack was detected in a similar manner by creating a table in the 
ksql-cli that counted the number of connection resets sent by the server in the TCP 
segments. If there was a peak in the number of RST segments sent, then we suspected a 
type of DoS or Distributed Denial of Service (DDoS) attack. The structure of the detection 
table for the slowloris attack can be seen in Figure 22. 

 
Figure 22. Creating a table in the ksql-cli to detect slowloris attacks. 

To simulate such an attack, the user connected to the Compromised workstation via 
the following command vagrant ssh compromised, and once he/she had access to the 
machine, the attack was launched by typing slowhttptest -c 10000 -H -g -o slowhttp -i 10 -r 
500 -t GET -u http://web.local:8080 -x 24 -p 3. We want to mention again that we used the 
same principle for detecting the suspicious cases as in [27], but the testbed and the 
software packages were completely different. Maybe more than in the VoIP case, this 
kind of vulnerability is very likely to happen in large wireless sensor networks. 
Therefore, libtins deserved this particular work. 

3.2.2. Resulting Output in Ksql Command-Line Interface 
This section provides an overview of the results gathered from testing the Intrusion 

Detection System by running the port scan and slowloris attacks. These tests ran on a 
local test machine on a Linux distribution configured as described in the previous 
sections. The following results are presented in a table format, with six columns and a 
variable number of rows. In Figure 23, we can see that by using the table for port-scan 
attacks, ksqlDB detected an unusual number of connections on the network, the largest 
being for IP address 192.168.33.66, marking it suspicious. The way we interpreted the 
table with the results is accurate because the IP address of the Compromised Vagrant 
machine we ran the attack from was indeed 192.168.33.66. The time was represented in 
UNIX format by default. For example, 1633804903919 represents 9 October 2021 at 
18:41:43 GMT, the moment when the experiment was performed. 

Figure 22. Creating a table in the ksql-cli to detect slowloris attacks.

To simulate such an attack, the user connected to the Compromised workstation
via the following command vagrant ssh compromised, and once he/she had access to the
machine, the attack was launched by typing slowhttptest -c 10000 -H -g -o slowhttp -i 10
-r 500 -t GET -u http://web.local:8080 -x 24 -p 3. We want to mention again that we used
the same principle for detecting the suspicious cases as in [27], but the testbed and the
software packages were completely different. Maybe more than in the VoIP case, this kind
of vulnerability is very likely to happen in large wireless sensor networks. Therefore, libtins
deserved this particular work.

3.2.2. Resulting Output in Ksql Command-Line Interface

This section provides an overview of the results gathered from testing the Intrusion
Detection System by running the port scan and slowloris attacks. These tests ran on a local
test machine on a Linux distribution configured as described in the previous sections. The
following results are presented in a table format, with six columns and a variable number
of rows. In Figure 23, we can see that by using the table for port-scan attacks, ksqlDB
detected an unusual number of connections on the network, the largest being for IP address
192.168.33.66, marking it suspicious. The way we interpreted the table with the results is
accurate because the IP address of the Compromised Vagrant machine we ran the attack
from was indeed 192.168.33.66. The time was represented in UNIX format by default. For
example, 1633804903919 represents 9 October 2021 at 18:41:43 GMT, the moment when the
experiment was performed.



Electronics 2021, 10, 3084 23 of 25Electronics 2021, 10, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 23. Detection of potential port-scan attacks in the ksql command-line interface. 

The results for the detection of the second attack can be seen in Figure 24. This 
shows that the number of connection resets detected for IP address 192.168.33.11 (web 
server) was high, which led us to suspect that there might be some type of 
Denial-of-Service attack being run on the web server. This was, in fact, correct, as we 
explained in the previous section, because during this test, we intentionally ran a 
slowloris attack on the web server from the Compromised Vagrant machine. 

 
Figure 24. Detection of potential slowloris attacks in the ksql command-line interface. 

4. Conclusions 
This paper presented two use cases involving the open source libtins library. We 

used this instead of a well-known alternative such as libpcap because we wanted to 
investigate it in real-time applications in larger IoT networks and in WLANs in general. 
The first part of the paper included a method to extend this library with SIP and RTP 
classes in order to build a packet-based VoIP analyzer. The second part presented a 
method to have an Intrusion Detection System by creating a C++ application to act as a 
sniffer. The solution was based on Apache Kafka and ksqlDB, the simulations being 
executed within a Vagrant virtualized network. Furthermore, the basic C++ application 
developed by us, by capturing and processing data, generated outputs in JSON format. 
This allows replacing other solutions (such as tshark) and detecting port-scan and 
slowloris attacks. Because of its minimalist nature, the C++ tool can be extended to parse 
the protocols that are needed to detect other different types of attacks. 

By using the libtins library, the custom software packages presented in this paper 
and published in GitHub proved that this tool could be used for the development of 
IP-based applications in general (not necessarily limited to the previously mentioned 
cases). The solution offers similar performance as the one provided by Wireshark, but it is 
for further work to compare it with other sniffers available on the market. We are aware 
that there is still a lot of work to prove the better performance of libtins-based sniffers 
mainly for wireless networks, but the results obtained herein encourage us to continue 
this approach in the near future. We intend to continue in the direction of capturing VoIP 
traffic in 5G/B5G networks for analyzing it from a security perspective. 

Figure 23. Detection of potential port-scan attacks in the ksql command-line interface.

The results for the detection of the second attack can be seen in Figure 24. This shows
that the number of connection resets detected for IP address 192.168.33.11 (web server) was
high, which led us to suspect that there might be some type of Denial-of-Service attack
being run on the web server. This was, in fact, correct, as we explained in the previous
section, because during this test, we intentionally ran a slowloris attack on the web server
from the Compromised Vagrant machine.

Electronics 2021, 10, x FOR PEER REVIEW 24 of 27 
 

 

 
Figure 23. Detection of potential port-scan attacks in the ksql command-line interface. 

The results for the detection of the second attack can be seen in Figure 24. This 
shows that the number of connection resets detected for IP address 192.168.33.11 (web 
server) was high, which led us to suspect that there might be some type of 
Denial-of-Service attack being run on the web server. This was, in fact, correct, as we 
explained in the previous section, because during this test, we intentionally ran a 
slowloris attack on the web server from the Compromised Vagrant machine. 

 
Figure 24. Detection of potential slowloris attacks in the ksql command-line interface. 

4. Conclusions 
This paper presented two use cases involving the open source libtins library. We 

used this instead of a well-known alternative such as libpcap because we wanted to 
investigate it in real-time applications in larger IoT networks and in WLANs in general. 
The first part of the paper included a method to extend this library with SIP and RTP 
classes in order to build a packet-based VoIP analyzer. The second part presented a 
method to have an Intrusion Detection System by creating a C++ application to act as a 
sniffer. The solution was based on Apache Kafka and ksqlDB, the simulations being 
executed within a Vagrant virtualized network. Furthermore, the basic C++ application 
developed by us, by capturing and processing data, generated outputs in JSON format. 
This allows replacing other solutions (such as tshark) and detecting port-scan and 
slowloris attacks. Because of its minimalist nature, the C++ tool can be extended to parse 
the protocols that are needed to detect other different types of attacks. 

By using the libtins library, the custom software packages presented in this paper 
and published in GitHub proved that this tool could be used for the development of 
IP-based applications in general (not necessarily limited to the previously mentioned 
cases). The solution offers similar performance as the one provided by Wireshark, but it is 
for further work to compare it with other sniffers available on the market. We are aware 
that there is still a lot of work to prove the better performance of libtins-based sniffers 
mainly for wireless networks, but the results obtained herein encourage us to continue 
this approach in the near future. We intend to continue in the direction of capturing VoIP 
traffic in 5G/B5G networks for analyzing it from a security perspective. 

Figure 24. Detection of potential slowloris attacks in the ksql command-line interface.

4. Conclusions

This paper presented two use cases involving the open source libtins library. We used
this instead of a well-known alternative such as libpcap because we wanted to investigate
it in real-time applications in larger IoT networks and in WLANs in general. The first
part of the paper included a method to extend this library with SIP and RTP classes in
order to build a packet-based VoIP analyzer. The second part presented a method to
have an Intrusion Detection System by creating a C++ application to act as a sniffer. The
solution was based on Apache Kafka and ksqlDB, the simulations being executed within a
Vagrant virtualized network. Furthermore, the basic C++ application developed by us, by
capturing and processing data, generated outputs in JSON format. This allows replacing
other solutions (such as tshark) and detecting port-scan and slowloris attacks. Because of
its minimalist nature, the C++ tool can be extended to parse the protocols that are needed
to detect other different types of attacks.

By using the libtins library, the custom software packages presented in this paper and
published in GitHub proved that this tool could be used for the development of IP-based
applications in general (not necessarily limited to the previously mentioned cases). The
solution offers similar performance as the one provided by Wireshark, but it is for further
work to compare it with other sniffers available on the market. We are aware that there
is still a lot of work to prove the better performance of libtins-based sniffers mainly for
wireless networks, but the results obtained herein encourage us to continue this approach
in the near future. We intend to continue in the direction of capturing VoIP traffic in
5G/B5G networks for analyzing it from a security perspective.



Electronics 2021, 10, 3084 24 of 25

Author Contributions: Conceptualization, D.Z.; Software, A.-T.C.; writing—original draft prepa-
ration, A.-T.C.; writing—review and editing, A.-T.C., D.Z. and V.D.; supervision, D.Z. and V.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by the Technical
University of Cluj-Napoca.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, D.Z., upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fontanini, M. Libtins (Version 4.2) [Source Code]. Available online: https://github.com/mfontanini/libtins (accessed on

5 September 2021).
2. Libtins Documentation. Available online: https://libtins.github.io/tutorial/ (accessed on 5 September 2021).
3. Sadrhaghighi, S.; Dolati, M.; Ghaderi, M.; Khonsari, A. SoftTap: A Software-Defined TAP via Switch-Based Traffic Mirroring. In

Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, 28 June–2 July
2021; pp. 303–311. [CrossRef]

4. Libpcap. Available online: https://www.tcpdump.org/ (accessed on 5 September 2021).
5. Li, J.; Wu, C.; Ye, J.; Ding, J.; Fu, Q.; Huang, J. The Comparison and Verification of Some Efficient Packet Capture and Processing

Technologies. In Proceedings of the 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing,
International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing,
International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan,
5–8 August 2019; pp. 967–973. [CrossRef]

6. Bonelli, N.; Giordano, S.; Procissi, G. Enabling packet fan-out in the libpcap library for parallel traffic processing. In Proceedings
of the 2017 Network Traffic Measurement and Analysis Conference (TMA), Dublin, Ireland, 21–23 June 2017; pp. 1–9. [CrossRef]

7. Vormayr, G.; Fabini, J.; Zseby, T. Why are My Flows Different? A Tutorial on Flow Exporters. IEEE Commun. Surv. Tutor. 2020, 22,
2064–2103. [CrossRef]

8. Ivoševia, M.; Vranješ, M.; Pekoviű, V.; Kaprocki, Z. Client-side solution for QoS measurement of video content delivery over IP
networks. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin,
Germany, 2–5 September 2018; pp. 1–6. [CrossRef]

9. Zubow, A.; Zehl, S.; Wolisz, A. BIGAP—Seamless handover in high performance enterprise IEEE 802.11 networks. In Proceedings
of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016;
pp. 445–453. [CrossRef]

10. Morrell, C.; Ransbottom, J.S.; Marchany, R.; Tront, J.G. Scaling IPv6 address bindings in support of a moving target defense.
In Proceedings of the 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014), London, UK,
8–10 December 2014; pp. 440–445. [CrossRef]

11. Ghazanfar, S.; Hussain, F.; Rehman, A.U.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT-Flock: An Open-source Framework for IoT
Traffic Generation. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST),
Karachi, Pakistan, 26–27 March 2020; pp. 1–6. [CrossRef]

12. Costin, A.-T.; Zinca, D. Extending the libtins library with SIP and RTP classes. In Proceedings of the 2020 International Symposium
on Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020; pp. 1–4. [CrossRef]

13. Gruber, M.; Fankhauser, F.; Taber, S.; Schanes, C.; Grechenig, T. Trapping and analyzing malicious VoIP traffic using a honeynet
approach. In Proceedings of the 2011 International Conference for Internet Technology and Secured Transactions, Abu Dhabi,
United Arab Emirates, 11–14 December 2011; pp. 442–447.

14. Aziz, A.; Hoffstadt, D.; Rathgeb, E.; Dreibholz, T. A distributed infrastructure to analyse SIP attacks in the Internet. In Proceedings
of the 2014 IFIP Networking Conference, Trondheim, Norway, 2–4 June 2014; pp. 1–9. [CrossRef]

15. Wireshark. Available online: https://www.wireshark.org/ (accessed on 5 September 2021).
16. Chappell, L. Wireshark Network Analysis, 2nd ed.; Chappell University: Reno, Nevada, 2019; ISBN 978-1-893939-94-3.
17. Barry, M.A.; Tamgno, J.K.; Lishou, C.; Cissé, M.B. QoS impact on multimedia traffic load (IPTV, RoIP, VoIP) in best effort mode.

In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea,
11–14 February 2018; pp. 694–700. [CrossRef]

18. Pathania, N.; Singh, R.; Malik, A. Comparative Study of Audio and Video Chat Application Over the Internet. In Proceedings of
the 2018 International Conference on Intelligent Circuits and Systems (ICICS), Phagwara, India, 19–20 April 2018; pp. 251–257.
[CrossRef]

19. François, J.; State, R.; Engel, T.; Festor, O. Digital forensics in VoIP networks. In Proceedings of the 2010 IEEE International
Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; pp. 1–6. [CrossRef]

https://github.com/mfontanini/libtins
https://libtins.github.io/tutorial/
http://doi.org/10.1109/NetSoft51509.2021.9492588
https://www.tcpdump.org/
http://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00177
http://doi.org/10.23919/TMA.2017.8002904
http://doi.org/10.1109/COMST.2020.2989695
http://doi.org/10.1109/ICCE-Berlin.2018.8576228
http://doi.org/10.1109/NOMS.2016.7502842
http://doi.org/10.1109/ICITST.2014.7038852
http://doi.org/10.1109/ICETST49965.2020.9080732
http://doi.org/10.1109/ISETC50328.2020.9301067
http://doi.org/10.1109/IFIPNetworking.2014.6857088
https://www.wireshark.org/
http://doi.org/10.23919/ICACT.2018.8323886
http://doi.org/10.1109/ICICS.2018.00059
http://doi.org/10.1109/WIFS.2010.5711450


Electronics 2021, 10, 3084 25 of 25

20. Langthasa, B.; Acharya, B.; Sarmah, S. Classification of network traffic in LAN. In Proceedings of the 2015 International Conference
on Electronic Design, Computer Networks & Automated Verification (EDCAV), Shillong, India, 29–30 January 2015; pp. 92–99.
[CrossRef]

21. RFC 3261—SIP: Session Initiation Protocol. Available online: https://tools.ietf.org/html/rfc3261 (accessed on 5 September 2021).
22. Carvajal, L.; Chen, L.; Varol, C.; Rawat, D. Detecting unprotected SIP-based voice over IP traffic. In Proceedings of the 2016 4th

International Symposium on Digital Forensic and Security (ISDFS), Little Rock, AR, USA, 25–27 April 2016; pp. 44–48. [CrossRef]
23. Moon, S. Packet Sniffer Code in C using Linux Sockets (BSD)-Part 2. 2020. Available online: https://www.binarytides.com/

packet-sniffer-code-in-c-using-linux-sockets-bsd-part-2/ (accessed on 5 September 2021).
24. Herculea, M.; Blaga, T.; Dobrota, V. Evaluation of Security and Countermeasures for a SIP-based VoIP Architecture. In Proceedings

of the 7th RoEduNet International Conference “Networking in Education and Research”, Cluj-Napoca, Romania, 28–30 August
2008; pp. 34–39, ISBN 978-973-662-393-6.

25. RFC 4566—SDP: Session Description Protocol. Available online: https://tools.ietf.org/html/rfc4566 (accessed on 5 September 2021).
26. RFC 3550—RTP: A Transport Protocol for Real-Time Applications. Available online: https://tools.ietf.org/html/rfc3550 (accessed

on 5 September 2021).
27. De Bernonville, G.D.; Ribera, M. Intrusion Detection with ksqlDB. Available online: https://www.confluent.io/blog/build-a-

intrusion-detection-using-ksqldb (accessed on 5 September 2021).
28. Vagrant. Available online: https://www.vagrantup.com/intro (accessed on 5 September 2021).
29. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 5 September 2021).
30. Seymour, M. Mastering Kafka Streams and ksqlDB; O’Reilly Media Inc.: Sebastopol, CA, USA, 2021.
31. Vyas, S.; Tyagi, R.K.; Jain, C.; Sahu, S. Literature Review: A Comparative Study of Real Time Streaming Technologies and

Apache Kafka. In Proceedings of the 2021 Fourth International Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 3 July 2021; pp. 146–153. [CrossRef]

32. Van Dongen, G.; Van den Poel, D. Evaluation of Stream Processing Frameworks. IEEE Trans. Parallel Distrib. Syst. 2020, 31,
1845–1858. [CrossRef]

33. Nguyen, S.; Salcic, Z.; Zhang, X.; Bisht, A. A Low-Cost Two-Tier Fog Computing Testbed for Streaming IoT-Based Applications.
IEEE Internet Things J. 2021, 8, 6928–6939. [CrossRef]

34. Chen, C.; Cai, J.; Ren, N.; Cheng, X. Design and Implementation of Multi-tenant Vehicle Monitoring Architecture Based on
Microservices and Spark Streaming. In Proceedings of the 2020 International Conference on Communications, Information
System and Computer Engineering (CISCE), Kuala Lumpur, Malaysia, 3–5 July 2020; pp. 169–172. [CrossRef]

35. Tidjon, L.N.; Frappier, M.; Mammar, A. Intrusion Detection Systems: A Cross-Domain Overview. IEEE Commun. Surv. Tutor.
2019, 21, 3639–3681. [CrossRef]

36. ksqlDB. Available online: https://ksqldb.io/overview.html (accessed on 5 September 2021).
37. Rocha, A.D.; Freitas, N.; Alemão, D.; Guedes, M.; Martins, R.; Barata, J. Event-Driven Interoperable Manufacturing Ecosystem for

Energy Consumption Monitoring. Energies 2021, 14, 3620. [CrossRef]
38. Chira, C.-M.; Portase, R.; Tolas, R.; Lemnaru, C.; Potolea, R. A System for Managing and Processing Industrial Sensor Data: SMS.

In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; pp. 213–220. [CrossRef]

39. Nokia. Available online: https://www.nokia.com/networks/solutions/voice-over-5g-vo5g-core/ (accessed on 30 November
2021).

40. Di Mauro, M.; Liotta, A. An Experimental Evaluation and Characterization of VoIP Over an LTE-A Network. IEEE Trans. Netw.
Serv. Manag. 2020, 17, 1626–1639. [CrossRef]

41. Biondi, P.; Bognanni, S.; Bella, G. VoIP Can Still Be Exploited—Badly. In Proceedings of the 2020 Fifth International Conference on
Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020; pp. 237–243. [CrossRef]

42. Costin, A.-T. VoIP-Analyzer [Source Code]. Available online: https://github.com/adriancostin6/VoIP-Analyzer (accessed on
5 September 2021).

43. Costin, A.-T. Ids-Ksql (Fork) [Source Code]. Available online: https://github.com/adriancostin6/ids-ksql (accessed on
5 September 2021).

44. Costin, A.-T. CapJSON [Source Code]. Available online: https://github.com/adriancostin6/CapJSON (accessed on 5 September 2021).
45. Tencent, Rapidjson [Source Code]. Available online: https://github.com/Tencent/rapidjson (accessed on 5 September 2021).
46. rapidjson Documentation. Available online: https://rapidjson.org/index.html (accessed on 9 September 2021).
47. Zenika, Ids-Ksql [Source Code]. Available online: https://github.com/Zenika/ids-ksql (accessed on 5 September 2021).
48. Watson, J. Eleven Best Packet Sniffers in 2021, Comparitech Limited. 2021. Available online: https://www.comparitech.com/net-

admin/packet-sniffer-network-analyzers/ (accessed on 9 October 2021).

http://doi.org/10.1109/EDCAV.2015.7060546
https://tools.ietf.org/html/rfc3261
http://doi.org/10.1109/ISDFS.2016.7473515
https://www.binarytides.com/packet-sniffer-code-in-c-using-linux-sockets-bsd-part-2/
https://www.binarytides.com/packet-sniffer-code-in-c-using-linux-sockets-bsd-part-2/
https://tools.ietf.org/html/rfc4566
https://tools.ietf.org/html/rfc3550
https://www.confluent.io/blog/build-a-intrusion-detection-using-ksqldb
https://www.confluent.io/blog/build-a-intrusion-detection-using-ksqldb
https://www.vagrantup.com/intro
https://kafka.apache.org/
http://doi.org/10.1109/CCICT53244.2021.00038
http://doi.org/10.1109/TPDS.2020.2978480
http://doi.org/10.1109/JIOT.2020.3036352
http://doi.org/10.1109/CISCE50729.2020.00040
http://doi.org/10.1109/COMST.2019.2922584
https://ksqldb.io/overview.html
http://doi.org/10.3390/en14123620
http://doi.org/10.1109/ICCP51029.2020.9266263
https://www.nokia.com/networks/solutions/voice-over-5g-vo5g-core/
http://doi.org/10.1109/TNSM.2020.2995505
http://doi.org/10.1109/FMEC49853.2020.9144875
https://github.com/adriancostin6/VoIP-Analyzer
https://github.com/adriancostin6/ids-ksql
https://github.com/adriancostin6/CapJSON
https://github.com/Tencent/rapidjson
https://rapidjson.org/index.html
https://github.com/Zenika/ids-ksql
https://www.comparitech.com/net-admin/packet-sniffer-network-analyzers/
https://www.comparitech.com/net-admin/packet-sniffer-network-analyzers/

	Introduction 
	Libtins 
	PDU Class 
	PacketSender and PacketWriter Class 
	Sniffer and FileSniffer Class 
	Processing Captured Packets 

	Extending the Libtins Library with SIP and RTP Classes for VoIP Packet Analysis 
	Session Initiation Protocol 
	Session Description Protocol 
	Real-Time Transport Protocol 

	Building an IDS Using Libtins, Apache Kafka and ksqlDB 
	Vagrant 
	Apache Kafka 
	ksqlDB 
	Putting It All Together 


	Implementation 
	Extending the Libtins Library with SIP and RTP Classes for VoIP Packet Analysis 
	Application Diagram 
	ConsoleUI Structure 
	Capture Class 
	SIP Class 
	RTP Class 
	PacketCrafter Class 
	Decoding Algorithm 

	Building an IDS Using Libtins, Apache Kafka and ksqlDB 
	IDS Implementation Using ksqlDB 
	Implementing Custom Packet Capture Tool Using C/C++ and Libtins 
	Integrating the Custom Sniffer into Ids-Ksql Project and Environment Configuration 


	Results 
	Results for the SIP/RTP Packet Extractor 
	Performance 
	Capturing and Processing a VoIP Call 
	Processing a Large Number of SIP Packets 
	Processing a Large Number of RTP Packets 

	Results for the IDS 
	Running the Simulation 
	Resulting Output in Ksql Command-Line Interface 


	Conclusions 
	References

