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Abstract: A phase shift that is caused by the machining errors of independent circuits would greatly
affect the efficiency of the power combination in traditional multi-beam structures. In this paper,
to reduce the influence of the phase shift and improve the output power, a multi-beam shunted
coupling sine waveguide slow wave structure (MBSC-SWG-SWS) has been proposed, and a multi-
beam overmoded flat-roofed SWG traveling wave tube (TWT) based on the MBSC-SWG-SWS was
designed and analyzed. A TE10-TE30 mode convertor was designed as the input/output coupler
in this TWT. The results of the 3D particle-in-cell (PIC) simulation with CST software show that
more than a 50 W output power can be produced at 342 GHz, and the 3 dB bandwidth is about
13 GHz. Furthermore, the comparison between the single-beam sine waveguide (SWG) TWT and
the multi-beam overmoded SWG TWT indicates that the saturated output power of the multi-beam
overmoded SWG TWT is three times more than that of the single beam SWG TWT.

Keywords: multi-beam; over-mode; 340 GHz; TWT

1. Introduction

Terahertz (THz) technology has a considerable value in medical treatment, device
detection, and many other sectors due to its advantages of high penetrability, low photon
energy, strong absorption, etc. [1,2]. Vacuum electronic devices (VEDs), especially a travel-
ling wave tube (TWT) that has high output power and broadband [3–6], is a main method to
obtain a THz wave. The performance of the TWT is basically determined by the slow wave
structure (SWS), and the sine waveguide (SWG) SWS characterized by low reflection and
insertion loss has previously been explored as a potential THz amplifier [7–10]. However,
the power capacity and the output power decrease significantly as the frequency increases,
and only about ten watts of output power can be generated by 340 GHz TWTs [11–14].
Methods for improving the level of output power in the THz band received particular
attention from researchers; the power combination technology was employed in TWTs that
could distinctly enhance the output power [15,16]. Nevertheless, the inherent problem
with this technology is that the machining errors of independent slow wave circuits would
cause a phase shift, which would greatly affect the efficiency of the power combination.

To solve the problem, a multi-beam shunted coupling sine waveguide slow wave
structure (MBSC-SWG-SWS) in which the energy of each slow wave circuit can be coupled
with the other circuits is proposed in this paper, and an overmoded TWT based on such
SWS has been studied, including the high frequency characteristics and the beam–wave
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interaction property. Since the SWS operates in high mode, a TE10-TE30 mode converter has
been designed as the input/output coupler. The comparison of output power between the
multi-beam overmoded SWG TWT and single beam SWG TWT shows that the presented
TWT can obtain three times the output power of the single beam SWG TWT.

2. High Frequency Characteristics

Figure 1 shows the cross-section view of the structure models, in which the period is p,
the wide side of the waveguide is a, the height of the beam channel is t and the amplitude
of the sine curve is h. The dimensions of the MBSC-SWG-SWS and the single beam SWG
SWS working at 340 GHz were confirmed after optimization. As shown in Table 1, to verify
the performance of the MBSC-SWG-SWS, the dimensions of these two structures are the
same, except that the wide side of the MBSC-SWG-SWS is three times that of the single
beam SWG SWS.
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Figure 1. 3D model with sheet beams (red regions). (a) Left view of single beam SWG SWS. (b) Left 
view of MBSC-SWG-SWS. (c) The cut view of single beam SWG SWS. (d) The cut view of MBSC-
SWG-SWS. 

Table 1. Optimized parameters of MBSC-SWG-SWS and SWG SWS. 
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Value 

MBSC-SWG-SWS SWG SWS 
a 1.605 0.535 
b 0.38 0.38 
p 0.29 0.29 
h 0.15 0.15 
d 0.04 0.04 
t 0.11 0.11 

The dispersion characteristics have been calculated using CST software. As shown in 
Figure 2, all these three modes have a broadband from 315 to 390 GHz. Figure 3 displays 
the electric field distribution of the MBSC-SWG-SWS. We found that mode three is the 
best choice for the operation mode in the MBSC-SWG-SWS because the electric field is 
evenly distributed in all three tunnels. As shown in Figure 4, the interaction impedance at 
340 GHz is 1.1 ohm and the interaction impedance of each tunnel is the same. The results 

Figure 1. 3D model with sheet beams (red regions). (a) Left view of single beam SWG SWS. (b) Left
view of MBSC-SWG-SWS. (c) The cut view of single beam SWG SWS. (d) The cut view of MBSC-
SWG-SWS.

Table 1. Optimized parameters of MBSC-SWG-SWS and SWG SWS.

Symbol
Value

MBSC-SWG-SWS SWG SWS

a 1.605 0.535
b 0.38 0.38
p 0.29 0.29
h 0.15 0.15
d 0.04 0.04
t 0.11 0.11

The dispersion characteristics have been calculated using CST software. As shown in
Figure 2, all these three modes have a broadband from 315 to 390 GHz. Figure 3 displays
the electric field distribution of the MBSC-SWG-SWS. We found that mode three is the
best choice for the operation mode in the MBSC-SWG-SWS because the electric field is
evenly distributed in all three tunnels. As shown in Figure 4, the interaction impedance at
340 GHz is 1.1 ohm and the interaction impedance of each tunnel is the same. The results
in Figure 5 indicate that both the single beam SWG SWS and the MBSC-SWG-SWS have
the same phase velocity in the whole band, which means they have the same synchronous



Electronics 2021, 10, 3018 3 of 9

voltage. The normalized phase velocity is 0.281 and the normalized group velocity is 0.197
at 340 GHz.
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Figure 5. (a) Normalized phase velocity versus frequency. (b) Normalized group velocity versus frequency.

3. Transmission Characteristics

To transfer the TE10 mode in the standard rectangular waveguide WR2 to the TE30
mode in the MBSC-SWG-SWS, a TE10-TE30 mode converter was designed as the in-
put/output structure in the SWS circuit. Figure 6 shows the vacuum model of the converter
and the relevant electric field distribution. Five cylindrical metallic columns were used for
mode conversion. The simulation results of the mode convertor are presented in Figure 7.
The S11 of the mode converter is below −20 dB from 320 to 355 GHz, while the S21 is
−0.086 dB at 340 GHz and the associated transfer efficiency is 98%.
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As shown in Figure 8, the multi-beam overmoded SWG TWT circuit model, including
the SWS circuit, electron beam tunnels and mode converters, was built in the CST STUDIO
SUITE. The period number of the main SWS circuit is 120. The equivalent conductivity σ0
can be calculated from the following equations:

σ0 =
σ(

1 + 2
π arctan

(
1.4
(

R
δ

)2
))2 (1)

δ =

√
2

ωµσ
(2)

where R is the surface roughness and σ is the conductivity of high conductivity oxygen-free
copper. As the surface roughness of the nano-computer numerical control machined model
is about 100 nm [17], the effective conductivity is set to 2 × 107 s/m. The transmission
characteristic is exhibited in Figure 9. The simulation results show that the S11 of the
MBSC-SWG-SWS is below –20 dB ranging from 330 to 350 GHz and the S21 is −13.5 dB at
340 GHz, while the S21 of the single beam SWG SWS is −16.3 dB. We found that the loss of
the MBSC-SWG-SWS is smaller than that of the single-beam SWG SWS, which is due to the
fact that the MBSC-SWG-SWS has a lower power density than the single beam SWG SWS.
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4. Beam–Wave Interaction

The beam–wave interaction process for the multi-beam overmoded SWG TWT and
the single beam SWG TWT were simulated and are compared in this section. Figure 10
shows the models that consisted of 120 periods. According to the aforementioned Brillouin
curve of the MBSC-SWG-SWS, the synchronous voltage is 21.3 kV. To study the output
power and gain of the multi-beam overmoded SWG TWT, input signals with frequencies
between 332 and 350 GHz, an input power of 0.2 W and an operating current of 54 mA were
injected in the waveguide port of the amplifier. A uniform magnetic field of 0.7 T was used
to focus the electron beams. Researchers have reported studies of the multi-beam electron
optics system that indicate that the generation and the focusing of electron beams can be
realized [18,19]. The cross-sectional size of each sheet beam was set to 0.3 mm × 0.06 mm,
and the filling ratio was 35.9%. The number of mesh cells was set at 29,096,144. The
corresponding maximum and minimum mesh steps were 0.017 and 0.008 mm, respectively.
The number of macro particles was fixed at 150, and the time step was 0.003 ns.
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Figure 11 depicts the output power and gain of the multi-beam overmoded SWG TWT
versus the operating frequency, respectively. We found that more than 30 W of the output
power can be produced from 334 to 347 GHz. The maximum output power is 50 W at
342 GHz and the corresponding gain is 24 dB. Figure 12a gives the time-domain simulation
results of the output signal of the multi-beam TWT at 340 GHz, which indicates that the
signal is stable after 0.8 ns with a voltage amplitude of 10 V. The potential reflected wave
and higher harmonic wave are effectively suppressed, as demonstrated in Figure 12b. The
electron bunching effect at the end of the circuit is presented in Figure 13, which illustrates
an effective interaction between the electron beams and the electromagnetic wave.
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Figure 14a shows the output power versus input power with the operating current
of 36 mA (current density is 200 A/cm2) at 340 GHz. For the single beam SWG TWT, the
saturated output power can reach 10 W when the input power is 0.1 W. Nevertheless,
the saturated output power of the multi-beam overmoded SWG TWT is 30 W when the
input power is 0.3 W. If the operating current is 54 mA (current density is 300 A/cm2), as
shown in Figure 14b, the saturated output power of the single beam SWG TWT can reach
17 W when the input power is 0.2 W, and the saturated output power of the multi-beam
overmoded SWG TWT is 50 W when the input power is 0.3 W. We found that the output
power of the multi-beam overmoded SWG TWT is three times that of the single beam
SWG TWT.
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5. Conclusions

In this paper, an MBSC-SWG-SWS has been proposed to reduce the effect of the phase
shift caused by machining errors of independent slow wave circuits, because the energy of
each slow wave circuit can be coupled with that of the other circuits. We found that the SWS
works in the high order mode through the analysis of its high frequency characteristics;
therefore, a TE10-TE30 mode convertor has been designed as the input/output couplers.
The study of a multi-beam overmoded SWG TWT based on the MBSC-SWG-SWS shows
that an output power of more than 30 W can be obtained in the frequency range from 334
to 346 GHz, and the maximum power and the corresponding gain are 51 W and 24 dB at
342 GHz, respectively. Compared with the single beam SWG TWT, the output power of
the multi-beam overmoded TWT is three times that of the single beam SWG TWT. These
results suggest that the MBSC-SWG-SWS has the ability to enhance the output power.
Consequently, the SWS is a potential and promising structure for the high-power THz
traveling wave amplifier.
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