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Abstract: This paper presents the design flow of an advanced non-linear control strategy, able to
absorb the effects that the main causes of torque oscillations, concerning synchronous electrical
drives, cause on the positioning of the end-effector of a manipulator robot. The control technique
used requires an exhaustive modelling of the physical phenomena that cause the electromagnetic
torque oscillations. In particular, the Cogging and Stribeck effects are taken into account, whose
mathematical model is incorporated in the whole system of dynamic equations representing the
complex mechatronic system, formed by the mechanics of the robot links and the dynamics of
the actuators. Both the modelling procedure of the robot, directly incorporating the dynamics of
the actuators and the electrical drive, consisting of the modulation system and inverter, and the
systematic procedure necessary to obtain the equations of the components of the control vector
are described in detail. Using the Processor-In-the-Loop (PIL) paradigm for a Cortex-A53 based
embedded system, the beneficial effect of the proposed advanced control strategy is validated in
terms of end-effector position control, in which we compare classic control system with the proposed
algorithm, in order to highlight the better performance in precision and in reducing oscillations.

Keywords: model-based design; simulation; mechatronics; dynamic systems; modelling; control
theory; brushless motors; electric drives

1. Introduction

In this paper, we propose a non-linear control technique that absorbs the negative
effects of the torque ripple delivered by permanent magnet synchronous motor (PMSM),
which affect the accuracy of rotor axis position control. As a case study, the position control
of the end-effector of a manipulator robot is considered. This allows us to assess the
complexity of the development of the control system using our technique, in the context of
a fairly complex mechatronic system.

The development of a control technique able to absorb this type of intrinsic non-
linearity associated with the use of electric drives based on PMSM is an application of
industrial interest. It is certainly well known that PMSM are the most efficient from the
point of view of energy and the relationship between inertia and electromagnetic torque
delivered. The problems in using PMSM for precision applications are mainly related to
the complexity of driving, since an inverter and an efficient modulation algorithm are
necessarily required, and to the intrinsic interaction between permanent magnets and
stator structure, which overlaps with electromechanical conversion effects, especially at
low rotor speeds. In this work, we focus on the development of a control strategy capable
of absorbing the main sources of disturbance to the electromagnetic torque.

The contribution of this work is to apply the non-linear control strategy, capable of
significantly reducing the effects of electromagnetic torque disturbances, in the context of a
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mechatronic system of relatively high complexity, such as a robot manipulator with two
degrees of freedom. The validation of the strategy proposed in this work involves a very
accurate modelling of all physical and architectural aspects. In particular, a high degree of
detail is taken into account in the virtual representation of the electrical drives, in which
the modulation and supply aspects through three-phase inverter of the control voltages
are modelled. In the modelling of synchronous motors, the model of the main sources of
torque ripple is included. In particular, models of the Cogging Torque and Stribeck Torque
phenomena are included.

The objective is also to show operationally how to develop and validate efficient
control algorithms able to compensate for intrinsic non-linearity effects of the controlled
physical process, in the case of strong industrial interest of mechatronic systems of electro-
mechanical nature, through accurate modelling and/or mathematical formalisation. The
case study is that of a simple manipulator robot, but the procedure we show in this paper is
not limited to the case study itself, and could be applied in different industrial applications
such as the control of industrial technological processes and assisted driving control of
vehicles. Hereafter, the rest of the paper is organized as follows. Section 2 reviews the
cogging and Stribeck effects and the related work at the state of art. Section 3 presents
the electric drive system modeling. Section 4 deals with advanced control system design.
Processor in the loop verification when the proposed technique is implemented on Cortex-
A53 processor is reported in Section 5. Conclusions and future works are addressed
in Section 6.

2. Review of Cogging and Stribeck Effects and Related Works
2.1. Brief Explanation of the Cogging and Stribeck Effects

In this work, the two most important effects are considered as intrinsic non-linearity
representing the torque ripple affecting the performance of the positioning control: Cogging
Torque and Stribeck Torque.

Cogging torque arises from the magnetic interaction between the permanent magnets
on the rotor surface and the teeth of the stator slots. This interaction results in magnetic
forces that alternately attract and repel the two parts in the direction of rotation of the rotor
axis [1]. Figure 1 shows how, depending on the relative position between a permanent
magnet and a stator tooth, the interaction force changes from being in favour of the direction
of rotation (Figure 1a) to being against the direction of rotation (Figure 1b).

Figure 1. Schematic representation of the magnetic stator-rotor interaction. The interaction force
changes from being in favour of the direction of rotation (a) to being against the direction of rota-
tion (b).
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The alternation of the phases of attraction and repulsion means that the Cogging
Torque can be represented in closed form as an additive disturbance on the electromagnetic
torque with the peculiarity of being zero averaged and with a frequency that depends on
the internal structure of the machine, in terms of the number of stator teeth and the number
of permanent magnets arranged on the rotor [2,3]. In this work, we refer to the formulation
given in Equation (1).

Tcog =
Nh

∑
i=1

Ti sin
(

i
θ

θcog
+ αi

)
(1)

In the expression of Tcog, θ represents the rotation of the rotor axis, Nh the number of
harmonics needed to exhaustively represent the phenomenon, Ti and αi are the modulus
and phase coefficients of the ith harmonic and θcog represents the angular period of the
Cogging phenomenon. Furthermore, it has been shown that a limited number of harmonics
(in this paper we limit the analysis to four harmonics) provides a sufficiently detailed
representation of the phenomenon.

The second phenomenon we take into account when modelling electromagnetic torque
ripple is the Stribeck torque. As shown in Figure 2 the Stribeck model, whose expression is
given in Equation (2), is a generalisation of the viscous friction force model, which would
instead depend only on the velocity (and its sign) [4].

Figure 2. Qualitative representation of the friction phases.

Tstr =

[
Tcoul + (Tstat − Tcoul)e

−
(

ω
ωstr

)2

+ βω

]
sign(ω) (2)

In Equation (2), Tcoul represents the level of torque required to balance the constant
friction at each angular velocity, Tstat is the peak torque of the static friction to be balanced
at nearly zero velocity, β is the coefficient of viscous friction and ωstr is the angular velocity
at which the actual Stribeck phenomenon is triggered. In essence, the Stribeck phenomenon
is the transient that links static friction with the classical model of viscous friction with a
model linearly dependent on angular velocity. Note the importance of including Stribeck’s
model when studying phenomena at relatively low speeds, such as in robotic applications
where a certain amount of precision in positioning the end-effector is required.
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2.2. Related Work

The authors of [5] propose the reduction of torque ripple by means of an exhaustive
analysis of inverter commutations, in electric drives in which a brushless DC motor is
used for applications in which it is required to maintain a constant electromagnetic torque
at a constant medium speed. Compared to that work, we present several contributions,
including a much more exhaustive modelling of the electric motor dynamics, and having
considered a complex mechatronic system as a use case, not limiting the analysis to the
control of the actuator alone.

The authors in [6] propose the use of jerk estimation to limit the effect of torque
ripple during angular acceleration and deceleration of the rotor axis, for position control
in robotic applications. The paper lacks a comprehensive description of the synchronous
motor model used, and the authors assume that the robot is comparable to an ideal load
modelled as a second-order system. In doing so, motions of non-linearity effects due to the
robot mechanics are neglected. With respect to this work, we propose a modelling of the
mechatronic system with a high degree of detail, so that the quality of the control obtained
can be effectively assessed.

In [7], the particularity of the braking torque control is illustrated at first. Then, the
speed ranges where the commutation torque ripple can be reduced are derived under
the nine common braking PWM strategies. In order to simplify the process of the theory
derivation, the corresponding relations between the nine braking PWM strategies and
the different pairs of switch states are fully utilized. Finally, a braking control method is
proposed to slow down the BLDCM smoothly and stably. Compared to ours, the problem
with this work is that the solution found is not generally suitable for position control, and
the dynamics of the mechanical load are not considered.

An adaptive nonlinear technique for controlling the angular velocity of a simple BLDC
motor for mechatronic applications is proposed in [8]. The algorithm proposed by the
authors involves the on-line estimation of some parameters of the electric motor model
and the use of a lookup table to approximate the back e.m.f from the angular position
measurement and the result of the angular speed control loop. In addition, in this the
reduction of the torque ripple is subordinate to the writing of a mathematical model of it.
Compared to our proposed work, besides not considering the insertion of the electric drive
within the context of complex mechatronic systems, the presence of adaptive algorithms
weighs down the computational cost of the algorithm, which may not be adequate for
low-cost embedded systems.

The authors in [9] propose a control strategy based on Fuzzy PID logic, for DC mo-
tors in a Cartesian Robot, with the aim of absorbing the harmful effects of the Stribeck
phenomenon. In contrast to our work, the robot model is represented by a second-order me-
chanical system and does not take into account the presence of the electric drive. Moreover,
the authors’ results only show how their strategy is better than a classical PID with regard
to the angular positioning of the motor, without showing how the robot’s end-effector
behaves in the working plane.

In [10], an innovative Adaptive controller is presented that exploits learning paradigm
within a novel control architecture, in order to reduce Stribeck effect in a BLDC electric
drive. In this work, it is presented the validation based on an exhaustive modelling of
electric drive and motor limiting the analysis to only the Stribeck ripple effect without
consider a complex mechatronic system architecture, as instead is presented in this paper.

The authors of [11] presents a control algorithm able to suppress the phenomenon of
cogging torque in high power brushless motors, while [12] shows an anti-cogging control
strategy inserted in the context of a Sensor-less control architecture using an extended
Kalman filter. In [13], the authors propose also the validation of the proposed algorithm
exploiting the paradigms of the Co-Simulation and Formal methods. The contribution with
respect to these articles is to propose an algorithm suitable for absorbing the effects due to
more than one source of torque ripple, and to place the control strategy in the context of a
complex mechatronic system of industrial interest.
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3. System Modelling
3.1. Robot Dynamics

As far as the mechanical part of the mechatronic system is concerned, reference is
made to a serial robot with two rotary joints, which essentially represents the structure
(neglecting prismatic part) of a SCARA robot [14]. A schematic of the essential structure is
shown in Figure 3.

Figure 3. Schematic representation of a 2R planar robot.

Table 1 shows the names and meaning of the parameters needed to define the geometry,
kinematics and dynamics of the robot model. In order to include the contribution of the
actuator dynamics within the differential equations describing the robot dynamics, the
Lagrange method [15] is used. Therefore, it is necessary to write the expressions of the
velocities of the centres of mass of the links of the robot, as in Equation (3).

Table 1. Parameters of the dynamic Robot model.

Variables Name Meaning

m1, m2 mass of robot’s links
M1, M2 mass of the Synchronous motors

I1, I2 inertia moments of the Robot’s links
J1, J2 inertia moments of the actuator rotors
a1, a2 semi-lengths of the Robot’s links
r1, r2 reduction ratios

q1, q2, q̇1, q̇2 relatives angular positions and speed
θ1, θ2, ω1, ω2 absolutes angular positions and speed

~VC1 = ~VO + ~ω1 ∧ ~OC1 = q̇1~uz ∧ a1
[
cos(q1)~ux + sin(q1)~uy

]
~VC2 = ~VA + ~ω2 ∧ ~AC2 =

= −[2q̇1a1 sin q1 + (q̇1 + q̇2)a2 sin(q1 + q2)]~ux+

+ [2q̇1a1 cos q1 + (q̇1 + q̇2)a2 cos(q1 + q2)]~uy

(3)

In Equation (3) are reported the expressions of the two mass centers of the robot’s
links, C1 and C2, exploiting the fundamental law of the kinematics. The link lengths are
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denoted by a1 and a2, and are equivalent to the length of the vectors ~OC1 and ~AC2, while
~ux and ~uy represent the verses of the Cartesian reference system shown as in Figure 3. We
denote by q1 and q2 the relative angular positions of the robot links and by ω1 and ω2 the
absolute velocities of the two links.

Consequently, the kinetic and potential energies associated with each element of the
kinematic chain are written down in the Equation (4).

KL1 =
1
2

m1

∣∣∣~VC1

∣∣∣2 + 1
2

I1|~ω1|2 =
1
2

(
I1 + m1a1

2
)

q̇2
1 =

1
2

(
I1 + m1a1

2
) θ̇2

1
r1

2

KM1 =
1
2

J1θ̇2
1

KL2 =
1
2

m2

∣∣∣~VC2

∣∣∣2 + 1
2

I2|~ω2|2 =

=
1
2

I2

(
θ̇1

r1
+

θ̇2

r2

)2

+
1
2

m2

[
4

θ̇2
1

r1
2 a1

2 +

(
θ̇1

r1
+

θ̇2

r2

)2

a2
2 + 4

θ̇1

r1

(
θ̇1

r1
+

θ̇2

r2

)
a1a2 cos

(
θ̇2

r2

)]

KM2 =
1
2

J2θ̇2
2 +

1
2

M2

∣∣∣~VA

∣∣∣2 =
1
2

(
J2θ̇2

2 + 4M2a1
2 θ̇2

1
r1

2

)

UL1 = −m1 ~OC1 •~g = m1a1g sin
(

θ1

r1

)
UM1 = 0

UL2 = −m2 ~OC2 •~g = m2g
[

2a1 sin
(

θ1

r1

)
+ a2 sin

(
θ1

r1
+

θ2

r2

)]
UM2 = 2M2ga1 sin

(
θ1

r1

)

(4)

In particular, KL1 , UL1 are the kinetic and potential energies associated with the first
link of the robot, KM1 , UM1 are the kinetic and potential energies associated with the motor
implementing the first link, KL2 , UL2 are the kinetic and potential energies associated with
the second link of the robot while KM2 , UM2 are the kinetic and potential energies of the
motor implementing the second link of the robot.

K = KL1 + KM1 + KL2 + KM2 = A(θ2)θ̇
2
1 + B0θ̇2

2 + C(θ2)θ̇1θ̇2

=

[
A0 + A1 cos

θ2

r2

]
θ̇2

1 + B0θ̇2
2 +

[
C0 + C1 cos

θ2

r2

]
U = UL1 + UM1 + UL2 + UM2 = D1 sin

θ1

r1
+ D2 sin

(
θ1

r1
+

θ2

r2

) (5)

The expression of the kinetic and potential energy of the whole mechanical system is
given in Equation (5). Where A0, A1, B0, C1, D1 and D2 are the coefficients whose expression
is given in Equation (6). This step allows to write in a fairly compact form the Lagrangian,
which will be used to derive the expressions of the robot dynamics. It should be noted
that in this context a ‘rigid’ relationship has been imposed between the angular variables
of the actuators and those of the links of the type θk = rkqk, assuming an ideal motion
transmission system, without loss of generality of the proposed method.
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A0 =
1
2

[(
I1 + m1a1

2)
r1

2 + J1 +
I2

r1
2 + m2

(
4a1

2 + a2
2)

r1
2

]
A1 =

m2a1a2

2r1
2

B0 =
I2 + m2a2

2

2r22 +
J2

2

C0 =
I2 + m2a2

2

r1r2

C1 =
m2a1a2

2r1r2

D1 = (m1 + 2m2 + 2M2)a1g

D2 = m2a2g

(6)

In Equation (7), the definition of the functional is given, which is elaborated according
to the criterion of Lagrange’s method mentioned earlier, as given in Equation (8).

L
(
θ1, θ2, θ̇1, θ̇2

) def
= K

(
θ1, θ2, θ̇1, θ̇2

)
−U(θ1, θ2) (7)

d
dt

∂L
∂θ̇k
− ∂L

∂θk
= Qk

def
=

N

∑
i=1

(
~Fi,ext •

∂~ri
∂θk

+~τi •
∂~ωi

∂θ̇k

)
(8)

Applying Lagrange’s method gives the result given in matrix form in Equation (9).
Note that this equation can be put into “Standard” form, as given in Equation (10), where
M(θ1, θ2) represents the inertia matrix, which as can be seen is symmetric, C(θ̇1, θ̇2, θ1, θ2)
is the matrix of the centrifugal and Coriolis terms, and is already in the form of Christoffel
symbols such that Ṁ− 2C is anti-symmetric, and finally G(θ1, θ2) is the vector of the gravi-
tational and potential terms. The vector [τ1 τ2]

T represents the vector of link control pairs,
the expression of which describes the connection between the electrical and mechanical
drive systems of the robot.[

2
(

A1 cos θ2
r2
+ A0

)
C1 cos θ2

r2
+ C0

C1 cos θ2
r2
+ C0 2B0

][
θ̈1
θ̈2

]
+

−A1
θ̇2
r2

sin θ2
r2
−
(

A1
θ̇1
r1
+ C1

θ̇2
r2

)
sin θ2

r2

A1
θ̇1

r1r2
sin θ2

r2
0

[θ̇1
θ̇2

]
+

D1
r1

cos θ1
r1
+ D2

r2
cos
(

θ1
r1
+ θ2

r2

)
D2
r2

cos
(

θ1
r1
+ θ2

r2

)  =

[
τ1
τ2

] (9)

M(θ1, θ2)

[
θ̈1
θ̈2

]
+ C

(
θ1, θ2, θ̇1, θ̇2

)[θ̇1
θ̇2

]
+ G(θ1, θ2) =

[
τ1
τ2

]
(10)

3.2. Synchronous Motors Modelling

In this work, without any loss of generality, we consider permanent magnets arranged
on the rotor surface, with sinusoidal distribution of the counter electro-motor force [16].
This allows to write the typical equations of an isotropic synchronous machine.

Table 2 shows the names and meaning of the coefficients that characterise the dy-
namics of the actuators. According to the Unified Theory of Electrical Machines [17], the
dynamics of an electrical machine can be described by an equivalent electrical and magnetic
circuit. For a synchronous motor with permanent magnets (isotropic), this results in circuit
equilibrium in Equation (11).
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Table 2. Parameters of the Dynamic Actuators model

Variables Name Meaning

R1, R2 stator resistances
L1, L2 stator inductances
λ1, λ2 magnetic flux coefficients
p1, p2 pole pairs
β1, β2 friction coefficients

Ti,k; αi,k Cogging Torque Fourier Series coefficients
Tcoul,k; Tstat,k coulomb and static friction torque model

ωstr Stribek rotary speed limit
θ1, θ2, Ω1, Ω2 absolutes angular position and speed

Ua,k
Ub,k
Uc,k

 = Rk

Ia,k
Ib,k
Ic,k

+ Lk
d
dt

Ia,k
Ib,k
Ic,k

− pk
dθk
dt

λk

 sin(pkθk)
sin
(

pkθk − 2π
3
)

sin
(

pkθk − 4π
3

)
 (11)

In Equation (12) the mechanical equilibrium for the rotational axis of each electric
motor is given. By k, we denote an index related to the kth motor, Tstr is the Stribeck torque
according to Equation (2), Tcog is the Cogging torque according to Equation (1) and Tload is
the load torque for the motor.

Jk
d2θk
dt2 + Tstr,k = Tem,k + Tcog,k − Tload,k

Tem,k = −pkλk

[
Ia,k sin(pkθk) + Ib,k sin

(
pkθk −

2π

3

)
+ Ic,k sin

(
pkθk −

4π

3

)] (12)

The connection between the electric drive part and the mechanical part of the robot
exploits the hypothesis of motion transmission by means of an ideal gearbox, so that
between qi and θi (∀i) there is a congruence relation given by θi = riqi, where ri represents
the ith reduction ratio. In this way, the power flow at each robot joint is also fully conserved
so that we can write the relation θi = Tem,iωi, i.e., τi = riTem,i. Hence, the connection
between the robot Equations (9) and (10) and the motor Equations (11) and (12).

4. Control System Design
4.1. State Space Representation

As a first step in the control vector design, the dynamic equations of the system are
reorganised into state vector form. Furthermore, it is convenient to apply the coordinate
transformations given in Equation (13) to the electrical equilibrium equations of the motors.

~Xαβ,k =

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
~Xabc,k = B~Xabc,k ~Xdq,k =

[
cos θk sin θk
− sin θk cos θk

]
~Xαβ,k = P(θk)~Xαβ,k (13)

In Equation (13), the matrix B is called Blondell’s matrix and allows to reduce the
number of equations so as to describe a three-phase motor as if it were single-phase,
while the matrix P(θk) is called Park’s matrix, and is needed to make the single-phase
representation equivalent to a DC motor, eliminating the dependence on θk in the expression
of the electromagnetic torque.

[
Ud,k
Uq,k

]
= Rk

[
Id,k
Iq,k

]
+ Lk

d
dt

[
Id,k
Iq,k

]
+ pk

dθk
dt

[
−Lk Iq,k

λk + Lk Idk

]
; Tem,k =

3
2

pkλk Iq,k (14)

Equation (14) represents Park’s model of electrical equilibrium, in which it is noted
that the new expression of Tem,k is independent of angular position. The state form obtained
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is represented in Equations (15) and (16), where it is highlighted that the control variables
of an electro-mechanical system are the supply voltages of the motors.

d~x
dt = ~f (~x) + G(~x)~u = ~f + ∑nu

k=1~g(~x)uk

~f =



fid,1
fiq,1
fid,2
fiq,2
fθ1
fθ2
~fω


=



1
L1

(
−R1 Id,1 + p1ω1L1 Iq,1

)
1
L1

(
−R1 Iq,1 − p1ω1(λ1 + L1 Id,1)

)
1
L2

(
−R2 Id,2 + p2ω2L2 Iq,2

)
1
Lk

(
−R2 Iq,2 − p2ω2(λ2 + L2 Id,2)

)
ω1
ω2
~fω


; G =



1
L1

0 0 0
0 1

L1
0 0

0 0 1
L2

0
0 0 0 1

L2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(15)

~fω =

[
2
(

A1 cos θ2
r2
+ A0

)
C1 cos θ2

r2
+ C0

C1 cos θ2
r2
+ C0 2B0

]−1{[
Tem,1 + Tcog,1 − Tstr,1
Tem,2 + Tcog,2 − Tstr,2

]
−

[
−A1

ω2
r2

sin θ2
r2
−
(

A1
ω1
r1

+ C1
ω2
r2

)
sin θ2

r2

A1
ω1

r1r2
sin θ2

r2
0

][
ω1
ω2

]
+

D1
r1

cos θ1
r1
+ D2

r2
cos
(

θ1
r1
+ θ2

r2

)
D2
r2

cos
(

θ1
r1
+ θ2

r2

) 
(16)

The state vector is~x =
[
Id,1, Iq,1, Id,2, Iq,2, θ1, θ2, ω1, ω2

]
while the control vector is given

by ~u =
[
Ud,1, Uq,1, Ud,2, Uq,2

]
. It is important to note that proceeding with modelling as

shown above provides a more accurate and less abstract level of description of the physical
process than is often done in the development of control algorithms for robotic applications.
Typically, the development of control algorithms, such as computed torque [18] or back-
stepping [19], assumes that the control vector is represented by the actuation torques
at the robot joints, inherently assuming that the electrical drive is capable of delivering
the required torques. This is not only wrong from the point of view of describing the
physical system, making the mathematical model too abstract and untrue in representing
the link between the system’s inputs and outputs, but it also does not allow strategies to be
developed to reduce the non-linearities of the implementation system, as they are directly
neglected. This is also an important contribution of the work we have presented, as it
makes it possible to develop a deterministic control strategy without having to compensate
for deficiencies in mathematical modelling through computationally burdensome tools,
such as the use of predictive, adaptive or machine learning control paradigms.

4.2. Application of the Feedback Linearization Technique

As already mentioned, the control technique selected is Feedback linearization (input-
output) [20]. This non-linear control technique allows the contribution given by the a priori
knowledge through the mathematical model of the total torque ripple, the sum of the
Cogging and Stribeck phenomena, to be inserted directly into the control vector.

h1(~x) = 2a1 cos θ1
r1
+ 2a2 cos

(
θ1
r1
+ θ2

r2

)
= h1(θ1, θ2)

h2(~x) = 2a1 sin θ1
r1
+ 2a2 sin

(
θ1
r1
+ θ2

r2

)
= h2(θ1, θ2)

h3(~x) = id,1
h4(~x) = id,2

(17)

In Equation (17) the expressions of the controlled outputs are given, where h1 and h2
represent the expressions of the Cartesian coordinates of the robot end-effector, while h3
and h4 are the direct axis currents in the Park model of the motors. This choice allows to
control the position of the end-effector, which is in fact a function of the angular positions
of the motors, and the current of the motors so as to guarantee a certain efficiency in the
delivery of the electromagnetic torque, emulating a field-oriented control (FOC) [21].
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dhi
dt = ∂hi

∂x
∂x
∂t = ∂hi

∂x

(
~f + ∑nu

k=1~gkuk

)
= ∂hi

∂x
~f = L f hi

. . .
dµi hi
dtµi = d

dt

(
L f

µi−1
)
= ∂

∂x

(
L f

µi−1
)(

~f + ∑nu
k=1~gkuk

)
= L f

µi hi + ∑nu
k=1 Lgk L f

µi−1hiuk

(18)

The operative procedure for applying Feedback linearization involves deriving the
control outputs as many times as necessary to obtain expressions in which the contributions
of the control variables appear. In Equation (18) the expression of the derivative µith for
the ith control output is given in general form. We denote the relative degree for the output
ith by µi, with the condition that ∑ µi ≤ nx.

L f
µ1 h1

L f
µ2 h2
. . .

L f
µl hl

+


Lg1 L f

µ1−1h1 . . . Lgm L f
µ1−1h1

Lg1 L f
µ2−1h2 . . . Lgm L f

µ2−1h2
. . . . . . . . .

Lg1 L f
µl−1hl . . . Lgm L f

µ1−lhl

~u = ~v = ~Γ(~x) + Σ(~x)~u

~u = Σ+(~x)
(
~v−~Γ(~x)

)
+ (I − Σ+(~x)Σ(~x))λ

(19)

Proceeding with the derivation of each control output, in general we obtain the

matrix expression given in Equation (19), where with Lgi L f hj(~x) = ∂
∂~x

(
∂hj
∂~x~f

)
~gi is the Lie

derivative of the function hj in the directions of the vector fields ~f and ~gi respectively.

~̇z =


A1 0 0 . . . 0
0 A2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . Al

~z +


B1 0 . . . 0
0 B2 . . . 0

. . . . . . . . . . . .
0 0 . . . Bl

~v

~z =


~z1
~z2
. . .
~zl

 ; ~zi =


hi

L f hi
. . .

L f
µi−1

 ; Ai =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
0 0 0 0 . . . 0

 ; Bi =


0
0

. . .
0
1


(20)

The Feedback linearization procedure results in a change of coordinates in which the
dynamics of the new state vector is linear, as shown in Equation (20). Note that the state
representation in addition to being linear represents a chain of integrators, consequently
the pair (Ai, Bi) turns out to be completely reachable/controllable ∀i.

~̃z =

[
~z

~σ(~x)

]
with ~σ(~x) s.t

∂~̃z
∂~x
6= 0 (21)

In general, a change of basis with reduction of the cardinality of the state space is
obtained. Formally, this requires that certain mathematical conditions are fulfilled, which
define the criterion of zero dynamics [22]. The first condition is given in Equation (21),
where we impose that the Jacobian of the base change is formally lawful (invertible). This
means that the completion~σ(~x) ∈ Rnx−∑ µi will have to be constructed appropriately to
satisfy the condition.

~̇σ(~x) = ~γ(~z,~σ) +~ξ(~z,~σ)v (22)

The completion vector ~σ(~x) will in general have a non-linear state representation,
dependent on both the new and old state variables and also on the new control vector, as
given in Equation (22).

Lgk σi = 0 ∀i, k → ~̇σ(~x) = ~γ(~z,~σ) → ~̇σ(~x) = ~γ(0,~σ) A.S. (23)



Electronics 2021, 10, 2954 11 of 20

The second condition, given in Equation (23), serves to eliminate the contribution
of the new control vector v from the dynamics of the vector~σ. In this way it is possible
to implement the zero-dynamics criterion, which guarantees us that even in the case of
a reduction of the cardinality of the state space, the vector v constructed by means of a
Feedback linearization technique is able to asymptotically stabilize even the state variables
that serve only to make the base change formally lawful.

dh3
dt =

dId,1
dt → Ud,1 → µ3 = 1

dh4
dt =

dId,2
dt → Ud,2 → µ4 = 1

dhi
dt = ∂hi

∂θ1

dθ1
dt + ∂hi

∂θ2

θ2
dt = φ1(θ1, θ2)ω1 + φ2(θ1, θ2)ω2 = Φ(θ1, θ2, ω1, ω2)

d2hi
dt2 = dΦ

dt = ∂Φ
∂θ1

ω1 +
∂Φ
∂θ2

ω2 +
∂Φ
∂ω1

ω̇1 +
∂Φ
∂ω2

ω̇2 = Ψ(θ1, θ2, ω1, ω2, Iq,1, Iq,2)
d3hi
dt3 = dΨ

dt = ∂Ψ
∂θ1

ω1 +
∂Ψ
∂θ2

ω2 +
∂Ψ
∂ω1

ω̇1 +
∂Ψ
∂ω2

ω̇2 +
∂Ψ

∂Iq,1
İq,1 +

∂Ψ
∂Iq,2

İq,2 → Uq,i → µi = 3, i = 1, 2

(24)

As shown in the set of Equation (24), in the case study of our interest, as a result of the
choice of control outputs shown above, a “complete” Feedback linearization is obtained in
which there is no change in the cardinality of the state space.

d3h1

dt3 = α1(~x) + β11(~x)Uq,1 + β12(~x)Uq,2 = v1

d3h2

dt3 = α2(~x) + β21(~x)Uq,1 + β22(~x)Uq,2 = v2

dh3

dt
=

dId,1

dt
= α3(~x) +

1
L1

Ud,1 = v3

dh4

dt
=

dId,2

dt
= α3(~x) +

1
L2

Ud,2 = v4

(25)

It is operationally verified by the essential steps given in Equation (25) that the control
vector ~u can be written as in Equation (26).

~u = Σ−1
(
~v−~Γ

)
=


0 0 β11 β12
0 0 β21 β22
1
L1

0 0 0
0 1

L2
0 0




v1 − α1
v2 − α2
v3 − α3
v4 − α4

 =


Ud,1
Ud2
Uq,1
Uq,2

 (26)

5. Processor-In-the-Loop Simulations

For the validation of the control system described above, the results obtained through
a Processor-In-the-Loop (PIL) simulation are reported, in which the control algorithm
is implemented on an Embedded platform, a Raspberry Pi 3 model B (RPI3B), with a
Broadcom BCM2837 chipset integrating Cortex-A53 @ 1.2 GHz processor, while the model
of the drive, synchronous motors and robot mechanics is implemented in the Simulink
environment (MATLAB 2018b version). The interface between the embedded system and
the simulation environment uses the Raspberry Pi Support from Simulink [23], provided
by MathWorks. Figure 4 shows the functional block diagram of the system composed of
both the electric drive and the robot dynamics, where it is highlighted that the proposed
control system works on the dynamic variables concerning the electric drive and that the
trajectory generation system in the robot operating space works on the robot variables. In
addition, Figure 4 highlights the division between blocks implemented on the embedded
system and functional blocks implemented in the Simulink environment.

Therefore, in order to ensure that the motor control is such that it moves the robot
end-effector as desired, it is necessary to introduce a conversion block based on inverse
kinematics. In order not to deal with numerical problems and numerical ill-conditioning,
the algebraic approach is adopted as given in the set of Equation (27).
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Figure 4. High level Description of the System Architecture.
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C2 =
x2 + y2 − a1

2 − a2
2

2a1a2

S2 =

√
1− C2

2

q2 = arctan
(

S2

C2

)
q1 = arctan

( y
x

)
− arctan

(
a2 sin q2

a1 + a2 cos q2

)
(27)

Using these equations, we calculate the angular position references for the electric mo-
tors that actuate the robot joints, from the references defined for the Cartesian variables of
the robot. For applications where trajectories are very complicated, in addition to the “con-
version” between Cartesian and angular variables, inverse kinematics should be integrated
using geometric methods [24]. The control we have developed is compared with the classic
FOC control realised with Cascade architecture, which is the algorithm most commonly
implemented in motor controllers such as RoboteQ [25] and Curtis Instruments [26].

Figure 5 represents the comparison between the Cascade control and our proposed
non-linear control, regarding the tracking of the position reference of the first actuator of
the robot.

Figure 5. First joint trajectory tracking result.

Figure 6 shows in detail the behaviour of the first actuator, in the application cases of
Cascade control and the proposed control, in the “critical” (cusp-shaped) situations. As
can be seen, the behaviour of the motor position follows the trajectory more efficiently and
also reduces, as expected, the oscillating effect due to the sources of torque ripple. Note
that Figures 5 and 6 depict the trend of the same variable. The first one over the whole
simulation time interval, while the second one depicts the portion of interest at the cusp
management points in the reference signal.
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Figure 6. Zoom in the “cuspide” point managing.

Figure 7 shows the result of the position control of the second robot joint, in terms
of rotation of the second robot motor. Again, as shown in more detail in Figure 8, our
proposed control is more precise and absorbs almost totally the oscillations due to the
torque ripple.

Figure 7. Second joint trajectory tracking result.
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Note that Figures 7 and 8 depict the trend of the same variable. The first one over the
whole simulation time interval, while the second one depicts the portion of interest at the
cusp management points in the reference signal.

Figure 8. Zoom in a “cuspide” point managing.

It should be noted that the proposed control does not calculate the supply voltages in
such a way as to obtain a desired position for the individual actuator, but instead calculates
a supply voltage for each motor such that the mechanical structure moves as desired.
In fact, the inverse kinematics block is used precisely to convert the reference signals
expressed in terms of a time series into the Cartesian coordinates of the robot’s end-effector.
Figures 9 and 10 show the result obtained with the proposed control technique, regarding
the tracking of the reference signal on the X-coordinate of the robot’s end-effector. Note
that Figures 9 and 10 depict the trend of the X component of the end-effector position.
The first one over the whole simulation time interval, while the second one depicts the
portion of interest at management of the steady-state condition in the reference signal. As
could be expected, from the results related to the angular position control of the single
actuator, our proposed control largely absorbs the oscillations on the positioning. Figure 10
shows in detail the phases in which it is required to maintain a constant position and it
can be seen that in the Cascade control case (red line) there are ripples with respect to the
reference (blue line). Our proposed control (yellow line) has almost no error in the phases
in which the reference is constant in time, and is however more precise in the linear phases
of the reference.

The same applies to the control of the Y-coordinate of the robot’s end-effector. As can
be seen in Figures 11 and 12, in the steady-state phase the control we designed is more
efficient and more precise. Note that Figures 11 and 12 depict the trend of the Y component
of the end-effector position. The first one over the whole simulation time interval, while
the second one depicts the portion of interest at management of the steady-state condition
and the two linear transients, in the reference signal.

The trajectory in the required robot workspace is computed in terms of (Xdes, Ydes)
such that the end-effector traces on the XY plane a profile reminding of spectacle frames.
For this proof of concept, the slopes of the reference signals were calculated manually to
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ensure that the simulation had a duration of twelve seconds but of course the simulations
can be parameterized to track any profile in the Cartesian plane.

Figure 9. Trajectory tracking result for X component of end-effector position.

Figure 10. Zoom in a “steady-state” transitory.

A comparison between the control with classical architecture and the proposed control
algorithm is shown in Figure 13. The robot is made to start from a position “far” from
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the required profile, in order to emulate the transient of reaching the working plane. In
Figure 14 are shown in detail how the edge is managed in the case of using the classical
control and the proposed control. It is also highlighted that in the upper straight phase of
this desired profile, the classical control is not able to compensate in any way the oscillations
in the positioning of the robot’s end-effector, due to the torque ripple.

Figure 11. Trajectory tracking result for Y component of end-effector position.

Figure 12. Zoom in a “steady-state” transitory.
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Figure 13. Obtained trace on end-effector work plane.

Figure 14. Zoom of previous figure.
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6. Conclusions and Future Work

This work shows how to develop a control algorithm that is able to compensate for
the intrinsic non-linearities of a complex mechatronic system. The approach introduced
envisages a rather accurate mathematical modelling, both regarding the mechanical system,
represented in this case by the two links of the robot, and the actuation system composed
of the electric drive and the PMSM. The operational procedure to efficiently derive the
expression (in closed form) of the control vector is shown. The validation of the control
strategy described in the Processor-In-the-Loop context is presented, exploiting SW tools
typical of the Model-Based Design approach, such as the automatic generation of low-level
code and the HW support provided by MathWorks for the implementation on a Cortex-A53
based embedded platform. The results obtained are promising and the proposed procedure
can be generalised in different mechatronic applications such as assisted driving of vehicles
or industrial processes. The algorithmic solution we have developed improves the perfor-
mance of electric drives for manipulator robots and is certainly of great industrial interest,
for example in smart manufacturing applications [27], where technological innovation
based on advanced research is gaining ground, thanks to the foresight of many industrial
partners on the international scene.
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