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Abstract: Smart watch antenna design is challenging due to the limited available area and the
contact with the human body. The strap of smart watch can be utilized effectively for integration
of the antenna. In this study, an antenna integrated on a smart watch strap model using computer
simulation technology (CST) was designed. The antenna was designed for industrial, scientific, and
medical (ISM) frequency bands at 2.45 and 5.8 GHz. Roger 3003C was used as substrate due to its
semi-flexible nature. The antenna size is 28.81 × 19.22 × 1.58 mm3 and it has a gain of 1.03 and
5.97 dB, and efficiency of 80% and 95%, at 2.45 and 5.8 GHz, on the smart watch strap, respectively.
A unit cell was designed having a dimension of 19.19 × 19.19 × 1.58 mm3 to mitigate the effect of
back radiation and to enhance the gain. The antenna backed by the unit cell exhibited a gain of
2.44 and 6.17 dB with efficiency of 50% and 72% at 2.45 and 5.8 GHz, respectively. The AMC-backed
antenna was integrated into a smart watch strap and placed on a human tissue model to study its
human proximity effects. The specific absorption rate (SAR) values were calculated to be 0.19 and
1.18 W/kg at the designed ISM frequencies, and are well below the permissible limit set by the
FCC and ICINPR. Because the antenna uses flexible material for wearable applications, bending
analysis was also undertaken. The indicated results prove that bending along the x- and y-axes has a
negligible effect on the antenna’s performance and the antenna showed excellent performance in the
human proximity test. The measured results of the fabricated antenna were comparable with the
simulated results. Thus, the designed antenna is compact, has high gain, and can be used effectively
for wireless IoT applications.

Keywords: artificial magnetic conductor (AMC) plane; wearable antenna; smart watch; SAR; IoT

1. Introduction

In the future, the greatest challenge in networks will be to connect everything every-
where, and millions of devices will be interconnected with each other. Thus, there is a
need for flexible antennas that can be integrated with flexible and portable devices. These
antennas should have a low profile, be lightweight, be energy efficient, and have high gain
for their effective operation [1]. For instance, the smart watch is the most widely used wear-
able device that can be utilized in many IoT applications [2,3]. To connect smart watches
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wirelessly with other devices and sensors, a flexible and miniaturized antenna is needed
to be easily integrated into IoT gadgets. A metal-rimmed antenna for a 5G/GPS-based
smart watch application is proposed in [4]. Here, a shorting strip and proper feeding at an
optimal location in a slotted metal frame ring provided operational bandwidths of 1575,
2500–2690, 3400–3800, and 4800–5000 MHz. A smart watch antenna with novel non-planar
high impedance surfaces (HIS), instead of the tradition HIS surface, was presented and
integrated in an all-metal smart watch, and showed reasonable gain and efficiency while
being worn on the human wrist [5–8]. A tri-band antenna was proposed using a tempered
edge and an inverted L-capacitive coupled shorted strip. The antenna showed a positive
gain operating in three distinct bands with reduced specific absorption rate (SAR) values.
A metamaterial-based surface was utilized to improve the gain and bandwidth, and to
reduce the back radiation of the antenna. An AMC is a type of meta-material which exhibits
the properties of a perfect magnetic conductor. An AMC exhibits the unique property of
zero-degree phase reflection at the designed resonating frequency [9–14].

A complimentary split ring resonator (CSRR) was used to generate three different
bands in [12]. The antenna showed low gain while being tested on a human tissue model.
A multi-band antenna having a size of 35 × 30 × 0.5 mm3 was proposed in [15], using a
FR-4 (4.3, 0.02) substrate. The antenna showed gain of −1.08, 2.4, and 1.52 dB at 2.4, 3.5, and
5.2 GHz, respectively. Another antenna having a size of 40 × 40 × 0.4 mm3 was designed
at 1.57, 1.94, and 2.4 GHz, with gain of 0.5, 1.4 and 2 dB, respectively. The reported antenna
could not be tested on a smart watch and had a large profile, and no SAR analysis was
undertaken [16].

An antenna with enhanced bandwidth and compact size was proposed at 2.4 and
5.2 GHz for smart watch applications. A T-shaped structure on top of FR-4 substrate was
used to obtain wider bandwidth, and higher gain and efficiency; however, SAR values
were not evaluated [17]. In [18], on the top and bottom of the FR-4, two antennas were
developed having dimensions of 49 × 35 × 5 mm3. The efficiency of the antennas ranged
from 35 to 38%. The antennas had low efficiency and no simulations were performed
on the human phantom model. The idea of an optically transparent dual-band antenna
built on the screen of a smart watch was proposed in [19]. The antenna can operate at two
resonating frequencies, namely, 2.4 and 5.2 GHz, and had efficiency of around 60%. The
antenna gain was not provided and the SAR value was also not calculated, so the actual
result on a smart watch was not evaluated. An antenna working at 2.4, 3.4, and 4.9 GHz
frequencies were proposed in [20]. The efficiency of the antenna ranged from 67 to 91%
for the proposed operating bands. Due to its good performance and simple structure, it
was a good candidate for wireless portable devices; however, the antenna gain was not
given, and the SAR value of this antenna was also not calculated to assess the actual result
on the human tissue model. For smart watch applications, a cavity-based slot antenna was
proposed in [21]. The efficiency of the antenna ranged from 57 to 66% when tested on a
hand phantom model, and the SAR value of the antenna was within the permissible range
set by the FCC. However, the antenna had a low gain of 1.8 dB and also a single band
operating at 2.4 GHz.

A Bluetooth antenna for smart watch applications was previously proposed. It had
a loop structure and was integrated with a watch’s metal frame. Peak gain of 1 dB with
radiation efficiency of 70% was obtained. A single layer simulation model was used to
check the impact of the hand on the antenna’s performance. The antenna had a lower gain
of 1 dB and a large size [22]. Another tri-band antenna having a size of 35 × 35 × 5 mm3

was proposed and had efficiency from 76 to 86% and gain up to 1.84 dB. It was designed
for the metal frame of a smart watch. The antenna efficiency, and had low gain, but it
was also not tested on a watch or a human tissue model [23]. An annual ring type smart
watch antenna integrated into a watch’s metal frame was proposed in [24], having a gain
of 4 dBi and radiation efficiency of 62% at an operating frequency 2.4 GHz. The SAR value
of the designed antenna was below the permissible limit set by the FCC. A circular slot
antenna operating at a single band of 2.4 GHz was designed for an all-metal smart watch
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antenna, and had an efficiency of 65% and gain of 2.6 dB. The antenna was tested and
simulated in free space and on a phantom hand model [25]. A dipole antenna having a
size of 45 × 25 × 1.5 mm3 was proposed in [26]. The tri-band antenna achieved good gain.
SAR values were not evaluated and the antenna was not tested on a human tissue model. A
multi-band smart watch antenna was proposed in [27]. The antenna was based on a plastic
material, and showed low gain and efficiency; no SAR analysis was undertaken. Another
meander-shaped PIFA antenna was utilized for wrist watch applications operating at a
resonant frequency of 915 MHz. As a result of the addition of a parasitic element, there
was a 70% increase in the achieved bandwidth compared to the convention PIFA topology,
but the antenna ha low gain and efficiency [28].

In this research, an antenna integrated on a smart watch strap model using CST
was designed. The antenna was designed for ISM operating bands at 2.45 and 5.8 GHz.
Roger 3003C (3, 0.0019), a semi-flex substrate, is used as the substrate of the antenna.
The designed antenna, which is integrated onto a smart watch strap, has a small size of
28.81 × 19.22 × 1.58 mm3, and has a gain of 1.03 and 5.97 dB, and efficiency of 80 and
95%, respectively. A unit cell having a size of 19.19 × 19.19 × 1.58 mm3 was designed to
mitigate the effect of back radiation and to increase the gain. The antenna was simulated
with a unit cell and achieved the gain of 2.44 and 6.17 dB with efficiency of 50 and 72%,
at 2.45 and 5.8 GHz, respectively. The SAR values of the antenna were calculated and
found to be within the permissible limits set by the FCC and ICINPR, namely, 0.19 W/kg
at 2.45 GHz and 1.18 W/kg at 5.8 GHz for 1 g of tissue.

The remainder of this paper is organized as follows. Section 2 presents the design anal-
ysis of the proposed antenna. The design of the unit cell is proposed in Section 3. Section 4
discusses the AMC-backed antenna and its analysis. Finally, the paper is concluded in
Section 5, including a discussion of future work.

2. Design Analysis of the Proposed Antenna

This section explains the design analysis of the designed antenna used to accomplish
the specified study goals. The schematic diagram of the proposed dual-band antenna is
presented in Figure 1. The simulations and optimizations were carried out using computer
simulation technology (CST) microwave studio 2018. In the first step, a simple square
patch was designed, a parasitic patch on the right side of substrate was added, and
then two resonators were introduced inside the ground plane on the top to resonate
the antenna at 2.45 and 5.8 GHz. The antenna was printed on a Rogers 3003C flexible
substrate with a dielectric constant of 3, the loss tangent of the substrate is 0.0019, and
thickness used is 1.58 mm. The Roger 3003C substrate material was used because of its low
profile, flexibility, and ease of fabrication and integration. The antenna has dimensions of
28.81 × 19.22 × 1.58 mm3. At the rear of the substrate, a ground plane with dimensions of
19.21 × 19.22 mm2 is employed. A parasitic patch helps to improve the reflection coefficient
of the antenna, hence improving the antenna’s performance. The reflection coefficients
were found to be −22.9 dB at 2.45 GHz and −26.8 dB at 5.8 GHz, as shown in Figure 2. The
optimized parameters are given in Table 1.

2.1. Design Steps of the Proposed Antenna

First, a simple patch with a feed line was designed having a width of 8.64 mm and
length of 6.72 mm starting from the center of the substrate (see Figure 3). A feed extension
was designed having a length of 4.8 mm and width of 2.88 mm starting from the center
of the edge of the substrate. Then, a parasitic element was designed having length of
17.29 mm and width of 4.8 mm. This was designed to improve the S11 of the designed
antenna to a reasonable extent. Moreover, a ground plane was created having length of
19.21 mm and width of 19.22 mm. A defective ground plane technique is used for resonance
at 2.45 and 5.8 GHz frequencies. In this step, a horizontal radiator was introduced, having
an initial length of 3.27 mm and a width of 1.92 mm to operate at 2.45 GHz; the other
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radiator inside the ground plane had an initial length of 6.72 mm and a width of 1.92 mm
to work at 5.8 GHz (see Figure 4).
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2.2. Equivalent Circuit Model

In the advanced developed system (ADS) software®, an equivalent circuit model for
the compact size dual-band antenna was designed, as presented in Figure 5. The suggested
circuit model was designed for measuring the input impedance matching and can be
simply used to create an equivalent circuit of a dual-band antenna. The circuit is made up
of two parallel resistor–inductor–capacitor (RLC) circuits linked in series with one capacitor
and one inductor. Both RLC circuits are connected in series, and the entire circuit model is
made up of two resistors, three inductors, and three capacitors. In Table 2, corresponding
values of each element are listed. It is evident from Figure 5a that this circuit configuration
is used to achieve dual bands of 2.45 and 5.8 GHz. Resistors are used to enhance the
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reflection coefficient while keeping it under an acceptable return loss. In comparison with
the antenna structure, two capacitors (C1 and C2) with two inductors (L1 and L2) are used
for the two radiators behind the ground plane, while the other capacitor (C0) is used for
the patch with the feed line. Moreover, an inductor (L0) is used for the parasitic element
and the resistors (R1 and R2) are used in each of them. The antenna’s reflection coefficient
may be adjusted by altering the resistor values. Figure 5b depicts the reflection coefficient
of an equivalent circuit model (b).
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Table 2. Values of the components used in the circuit model.

Inductors Values (nH) Capacitors Values (pF) Resistors Values (Ω)

L0 0.1 C0 2.0 R1 60

L1 0.9 C1 4.2 R2 60

L2 39 C2 19 Zs 50

2.3. Parametric Study of the Designed Antenna

The antenna was simulated by changing the parasitic element width ‘wps’ from 2 to
6 mm. The optimum results were obtained at 4.8 mm, as presented in Figure 6a. In
Figure 6b, it is observed that the length of parasitic element ‘lps’ was changed from 16 to
20 mm, and the optimum value was obtained at 17.29 mm. The patch’s width ‘wp’ was
varied from 6 to 10 mm. In this case, the antenna’s reflection coefficient started shifting
towards the lower frequency band, as shown in Figure 6c, and the optimum value was
achieved at 8.64 mm. The length of the first L-shaped radiator in the ground plane ‘lg1’
was changed from 10 to 12 mm. From Figure 6e it can be observed that the best possible
value at which good results were achieved at a resonating frequency was between 10 and
11 mm, achieving an optimum value at 10.56 mm. Similarly, the length of the second
L-shaped radiator in the ground plane ‘lg2’ was changed from 10 to 16 mm. In Figure 6f, it
is observed that the best possible value at the resonating frequency was obtained between
14 and 15 mm, and the best possible results were obtained at 14.41 mm.
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2.4. Bending Analysis of the Proposed Antenna
2.4.1. Bending Analysis along the x-Axis

Bending analysis of the projected antenna along the x-axis is presented in this section.
Figure 7a presents the bending radius of the antenna along the x-axis termed as “Bx”.
Moreover, the bending analysis was analyzed using different values of “Bx”, such as 30,
60, and 90 mm. From the graph, it is clear that the reflection coefficient of the antenna was
stable even when it was bent along the x-axis by 90 mm. Bending along the x-axis had an
almost negligible effect on the lower band. However, a minor impact was seen on the higher
band, as a slight shift in the S11 curve towards the resonating frequency below 5.8 GHz;
this was considered inconsequential. Overall, the bending effect is almost negligible and
the proposed antenna is well suited for a wearable and flexible electronics application.
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2.4.2. Bending Analysis along the y-Axis

This section presents the bending radius of the antenna along the y-axis termed as
“By”. Bending values along the y-axis were varied from 30 to 90 mm in order to observe
bending along the y-axis. It can be seen that bending along the y-axis has a negligible effect
on the antenna reflection coefficient, implying that our antenna is resistant to changes in
bending along the y-axis (see Figure 8).
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2.5. Radiation Pattern of Proposed Antenna

Figure 9 depicts the proposed antenna’s far-field emission pattern at 2.45 GHz. At
2.45 GHz, the antenna gains along the E- and H- planes are −0.26 and 1.03 dB, respectively.
Figure 9 depicts the built antenna radiation pattern at the resonance frequency of 5.8 GHz
(b). The antenna gains in the E- and H- planes are 4.97 and 4.29 dB, respectively, which are
comparable with those of previously designed antennas.
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2.6. Surface Current Density of the Proposed Antenna

The surface current density of an antenna indicates which part of the antenna is
playing a significant role in making it resonate at the desired frequency. The current
distribution of the antenna without the AMC-plane is shown in Figure 10. From Figure 10,
it can be clearly seen that at a lower frequency band (i.e., 2.45 GHz), most of the current
flows through the back radiating elements inside the ground plane (see Figure 10a). In
contrast, at the higher frequency band (i.e., 5.8 GHz), most of the current flows through the
parasitic element on the top of the substrate, the feed line, and the defected ground plane,
as shown in Figure 10b.
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3. Design of an AMC Unit Cell

An artificial magnetic conductor (AMC) can be used to control the propagation of
electromagnetic waves, which makes them suitable to improve gain and ensure a directional
radiation pattern [12]. A simple and miniaturized AMC unit cell was designed on a Roger
3003C substrate (keeping the thickness of the substrate (ts) equal to 1.58 mm and the tangent
loss (tanδ) equal to 0.002), with volumetric dimensions of 19.22 × 19.22 × 1.58 mm3, as
shown in Figure 11. Moreover, its optimized dimensions are summarized in Table 3 and its
zero-reflection phase at 2.45 and 5.8 GHz can be seen in Figure 12. A parametric study of
the unit cell is also presented to understand its design procedures.
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Table 3. Dimensions of the unit cell.

Dimensions Values (mm) Dimensions Values (mm)

Uw 19.22 Ul 19.22
Uw1 18.79 Ul1 18.79
Ul2 2.90 Ul3 13
Ul4 9.87 Ul5 7.79

Uw2 9.87 Uw3 13
Uw4 7.79 Uw5 8.10
Uw6 5.20
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As the first step, Figure 13a illustrates the design of a simple square patch (AMC I). It
can be observed that this unit cell provided zero-phase reflection at 2.8 GHz, as illustrated
in Figure 13b. In the next step, a square slotted patch (AMC II) was designed to make a
dual reflection phase. It can be seen in Figure 13b that this modification in design produced
zero-reflection phases at 2.5 and 6.6 GHz. Then, in the third step, an inner square copper
patch with slots on the upper side was introduced (AMC III). To accomplish the objective,
a second modification resulted in a zero-reflection phase at 2.45 and 5.8 GHz, as illustrated
in Figure 13b. This unit cell exhibited a zero-reflection phase at 2.45 and 5.8 GHz in a
miniaturized form to operate as a dual-band reflector for the proposed antenna. Simulated
reflection phases for the different design steps are summarized in Figure 13b.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 12. Zero-phase reflection coefficient of the unit cell. 

Table 3. Dimensions of the unit cell. 

Dimensions Values (mm) Dimensions Values (mm) 
Uw 19.22 Ul 19.22 
Uw1 18.79 Ul1 18.79 
Ul2 2.90 Ul3 13 
Ul4 9.87 Ul5 7.79 

Uw2 9.87 Uw3 13 
Uw4 7.79 Uw5 8.10 
Uw6 5.20   

As the first step, Figure 13a illustrates the design of a simple square patch (AMC I). 
It can be observed that this unit cell provided zero-phase reflection at 2.8 GHz, as illus-
trated in Figure 13b. In the next step, a square slotted patch (AMC II) was designed to 
make a dual reflection phase. It can be seen in Figure 13b that this modification in design 
produced zero-reflection phases at 2.5 and 6.6 GHz. Then, in the third step, an inner 
square copper patch with slots on the upper side was introduced (AMC III). To accom-
plish the objective, a second modification resulted in a zero-reflection phase at 2.45 and 
5.8 GHz, as illustrated in Figure 13b. This unit cell exhibited a zero-reflection phase at 2.45 
and 5.8 GHz in a miniaturized form to operate as a dual-band reflector for the proposed 
antenna. Simulated reflection phases for the different design steps are summarized in Fig-
ure 13b.  

AMC I AMC II AMC III

 
(a) 

Electronics 2021, 10, x FOR PEER REVIEW 13 of 26 
 

 

 
(b) 

Figure 13. Unit cell (a) design steps; (b) unit cell phase. 

3.1. Surface Current Distribution 
The surface current distribution of the unit cell is presented in Figure 14. The surface 

current density shows that the outer slots play a significant role in this unit cell, having 
phase zero at 2.45 GHz (see Figure 14a). Figure 14b illustrates that the current distribution 
in the inner square patch is greater than in any other region, implying that this portion is 
crucial in ensuring that this unit cell has zero-phase difference at 5.8 GHz. 

  
(a) (b) 

Figure 14. Surface current distribution of the AMC unit cell at: (a) 2.45 GHz; (b) 5.8 GHz. 

3.2. Parametric Analysis of the AMC Unit Cell 
Three key parameters of the AMC unit cell are studied in this section: the length of 

the inner square patch ‘ul4′, the lower width of the outer square patch ’uw5′ and its upper 
width ‘uw3′. Figure 15a illustrates that when length ‘ul4′ was changed from 8.87 to 10.87 
mm, the zero-phase difference does not change at the upper frequency band. However, it 
slightly changes in the lower band as it starts moving towards the frequency of 3 GHz 
when the length is increased, and the optimum value is obtained at 9.87 mm. Thus, this 
value is taken as the length of the inner patch in the design of the unit cell. When ‘uw5′, 
the lower width of the outer patch, was changed from 7.10 to 9.10 mm, it can be seen from 
the parametric graph that a slight shift is observed; the phase difference at the lower band 
shifts below the desired frequency and at the upper band shifts beyond the desired fre-
quency. An optimum value of 8.10 mm was used for this design, at which better results 
were obtained. 

Figure 13. Unit cell (a) design steps; (b) unit cell phase.



Electronics 2021, 10, 2908 13 of 26

3.1. Surface Current Distribution

The surface current distribution of the unit cell is presented in Figure 14. The surface
current density shows that the outer slots play a significant role in this unit cell, having
phase zero at 2.45 GHz (see Figure 14a). Figure 14b illustrates that the current distribution
in the inner square patch is greater than in any other region, implying that this portion is
crucial in ensuring that this unit cell has zero-phase difference at 5.8 GHz.
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3.2. Parametric Analysis of the AMC Unit Cell

Three key parameters of the AMC unit cell are studied in this section: the length of the
inner square patch ‘ul4’, the lower width of the outer square patch ‘uw5’ and its upper width
‘uw3’. Figure 15a illustrates that when length ‘ul4’ was changed from 8.87 to 10.87 mm, the
zero-phase difference does not change at the upper frequency band. However, it slightly
changes in the lower band as it starts moving towards the frequency of 3 GHz when the
length is increased, and the optimum value is obtained at 9.87 mm. Thus, this value is taken
as the length of the inner patch in the design of the unit cell. When ‘uw5’, the lower width
of the outer patch, was changed from 7.10 to 9.10 mm, it can be seen from the parametric
graph that a slight shift is observed; the phase difference at the lower band shifts below the
desired frequency and at the upper band shifts beyond the desired frequency. An optimum
value of 8.10 mm was used for this design, at which better results were obtained.

3.3. Design of an AMC-Backed Antenna

In order to decrease the potential entanglement of the design with human bodies, an
AMC is employed as the back plane. Figure 1a depicts the proposed AMC-backed antenna
configuration, where the proposed antenna is maintained at a short distance “D” from the
AMC plane. The AMC plane works as an electro-magnetic reflector. The AMC is placed
behind the substrate at a distance of 10 mm. By changing the values of “D”, the difference
in the |S11| values are presented in the Figure 16c. From the graph, it can be noted that
the reflection coefficient of the antenna is enhanced by increasing the distance “D” from
the AMC plane. Practically, a foam material having the electrical properties of air is used
to replace the air gap. The foam is placed between the antenna and the AMC, and has a
thickness of 10 mm, as presented in Figure 16b for practical demonstration.
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Figure 16. Designed antenna with an AMC at the back: (a) antenna with the AMC; (b) foam covering cap between the AMC
and the antenna; (c) S11 at different distances from the AMC.

Figure 17 depicts the surface current distribution of an AMC-backed antenna. At
2.45 GHz, the current mostly travels via the patch and the defective ground plane of the
AMC-backed antenna. In the higher frequency band (5.8 GHz), some current passes through
the parasitic patch, the defective ground plane, and the reflector behind the antenna.
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3.4. Bending Analysis of the AMC-Backed Antenna
3.4.1. Bending Analysis along the x-Axis

The bending analysis of the AMC-backed antenna along the x-axis is presented in
this section. Figure 18a presents the bending analysis antenna along the x-axis termed as
“Bx”. The bending analysis was analyzed by using different values of “Bx”, such as 30,
60, and 90 mm, as can be seen in Figure 18. From the graph, it is clear that the reflection
coefficient of the antenna is stable even if it is bent along the x-axis by 90 mm. Bending
along the x-axis has an almost negligible effect on lower band. However, a minor impact
was seen on the higher band, as a slight shift in the S11 curve towards the resonating
frequency below 5.8 GHz; this was considered inconsequential. Overall, the bending effect
was almost negligible and proposed antenna is well suited for a wearable and flexible
electronics application.
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3.4.2. Bending Analysis along y-Axis

This section presents a bending study of the AMC-backed proposed antenna along
the y-axis. In order to observe bending along the y-axis, the bending values were varied in
a range (i.e., 30–90 mm) along the y-axis. It can be seen that bending along the y-axis has a
negligible effect on the antenna reflection coefficient, implying that our antenna is resistant
to changes in bending along the y-axis (see Figure 19).
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4. Specific Absorption Rate (SAR) Analysis

Specific absorption is the amount of radio frequency energy that is absorbed by human
tissue when it is released. It is determined by taking an average over a given volume of 1 or
10 g. The SAR limit in the United States is 1.6 W/kg for 1 g of tissue, whereas in Europe it
is 2 W/kg for 10 g of tissue [21].

The expression for the relationship between the input power and the SAR is evaluated
as follows [23]:

SAR =
σ
∣∣E2

∣∣
ρ

(1)

where ‘σ’ and ‘ρ’ denote the electrical conductivity (S/m) and the mass density (kg/m3),
respectively, and ‘E’ is the electric field intensity (V/m). The electric power intensity is
related to the signal power and is evaluated as follows:

Power
(

W
m2

)
=

(E(V/m))2

377
(2)
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SAR values of the antenna were measured at 2.45 and 5.8 GHz. The SAR value is
important, as is depicts the effect of back radiation on human tissue. If it is more than
the prescribed limit set by the FCC and ICINPR, then it will damage the tissue of the
human body. The SAR values were calculated and found to be 0.95 W/kg at 2.45 GHz
and 1.56 W/kg at 5.8 GHz for 1 g of tissue (see Figure 20), which is less than but close to
the standard limits. However, to further decrease the SAR values, an AMC backing was
utilized. With an AMC backing, it can be seen that the SAR value was calculated to be
0.19 W/kg at 2.45 GHz and 1.18 W/kg at 5.8 GHz for 1 g of tissue (see Figure 21). Thus,
with the input power of 0.5 W, the SAR values of our antenna are within the acceptable
range for both bands.
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5. Fabrication and Measurements
5.1. Fabrication and Measurements of the Proposed Antenna

Figure 22 shows the front and rear views of the fabricated prototype of the proposed
dual-band patch antenna, which was built on a flexible Roger 3003C substrate. In the case
of the simulated results, the antenna reflection coefficient covers the impedance bandwidth
from 2.4 to 2.46 GHz (1.55%) at 2.45 GHz, and from 5.68 to 5.88 GHz (3.44%) at 5.8 GHz. In
the case of the measured results, the antenna covers the bandwidth from 2.39 to 2.43 GHz
(1.6%) at 2.45 GHz, and from 5.64 to 5.85 GHz (3.6%) at 5.8 GHz (see Figure 23). The slight
deviation between the simulated and measured results is due to some unavoidable artifacts
during fabrication. The antennas comprised a semi-flexible material formed on a Roger
3003C substrate in a technology process comprising the following basic stages. First, a
copper annealed conductive coating was deposited onto the Rogers substrate [29,30]. In
the second stage, the pattern of the antenna structure was made on the copper film using
a laser inkjet printing technique. In the third stage, the substrate was cut into individual
samples of specified sizes. The thickness of the copper coating was measured to be about
0.035 mm. The coating had a uniform thickness, without cracks or defects. No detachment
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from the substrate was observed [31,32]. Fabricated examples of flexible antennas for ISM
bands 2.45 and 5.8 GHz are shown in Figure 22.
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Figure 22. Fabricated prototype of the proposed antenna: (a) front view; (b) back view.
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5.2. Fabrication and Measurements of the AMC-Backed Antenna in Free Space

Figure 24 compares the simulated and measured reflection coefficients of the proposed
dual-band antenna with and without the AMC plane, demonstrating their consistency. At
2.45 and 5.8 GHz, the simulated reflection coefficient is near to 20 and 15 dB, respectively.
In free space, the AMC-backed antenna has reflection coefficients of −15 and −20 dB
operating at 2.45 and 5.8 GHz, respectively. The simulated and measured results were
found to be consistent with the proposed response of the antenna.
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Figure 24. (a) Fabricated prototype of the AMC-backed antenna; (b) evaluation setup in an anechoic chamber; (c) comparison
of measured and simulated reflection coefficients of the AMC-backed antenna in free space.

Figure 25 depicts the antenna simulated radiation pattern represented by a solid black
line, whereas the antenna measured results are represented by a dotted red line with the
unit cell in free space. As can be seen from the pattern, the radiation patterns are almost
identical, implying that our fabricated antenna produces nearly the same results as the
proposed design of the simulated antenna.

5.3. Fabrication and Measurements of the AMC-Backed Antenna on a Smart Hand Watch

Ideally, wearable antennas must be designed to avoid significant effects of coupling
from human tissues. A human tissue model consisting of skin, fat, and muscle was used to
assess the robustness of the designed antenna when it comes into contact with human tissue.
The skin had a thickness of about 1 mm, an epsilon of 41.3, and electrical conductivity of
0.88 S/m; fat had a thickness of 3 mm, an epsilon value of 5.3, and electrical conductivity
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of 0.05 S/m; and the muscle tissue had a thickness of 4 mm with permittivity of 54.8 and
electrical conductivity of 0.96 S/m, as given in Table 4. The rubber strap of the smart watch
had a thickness of 2 mm (see Figure 26).
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Table 4. Properties of different human tissue layers [19].

Human Tissues Relative Permittivity Electrical Conductivity (S/m) Thickness (mm)

Skin 41.3 0.88 1
Fat 5.3 0.05 3

Muscle 54.8 0.96 4
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Figure 28 illustrates the simulated and measured radiation patterns of the proposed 
AMC-backed antenna on the E- and H-planes on the watch and human hand. The patterns 
indicate that the antenna is directional at both 2.45 and 5.8 GHz; thus, the antenna has 
almost negligible back radiation. Simulations also showed on-hand realized gains of 2.44 
and 2.27 dB at 2.45 GHz, and 6.17 and 5.62 dB at 5.8 GHz. The total radiation measured 
efficiency was found to be more than 50% when the AMC-backed antenna was placed 
over human tissues. The simulated and measured radiation patterns were almost identical 

Figure 26. Three-dimensional layer model of human tissues with the AMC-backed antenna.

Figure 27 depicts the simulated and measured reflection coefficients of the AMC-
backed antenna on the human phantom. Simulations on the human phantom revealed that
the AMC-backed antenna had a reflection coefficient close to −14 dB at 2.45 GHz for both
simulated and measured outcomes, and close to −16 dB at 5.8 GHz for both simulated and
measured results. This implies that the simulated and measured plots can be regarded as a
good match.
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Figure 27. Comparison of simulated and measured reflection coefficients of the AMC-backed antenna on a human phantom.

Figure 28 illustrates the simulated and measured radiation patterns of the proposed
AMC-backed antenna on the E- and H-planes on the watch and human hand. The patterns
indicate that the antenna is directional at both 2.45 and 5.8 GHz; thus, the antenna has
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almost negligible back radiation. Simulations also showed on-hand realized gains of
2.44 and 2.27 dB at 2.45 GHz, and 6.17 and 5.62 dB at 5.8 GHz. The total radiation measured
efficiency was found to be more than 50% when the AMC-backed antenna was placed
over human tissues. The simulated and measured radiation patterns were almost identical
to each other; thus, the designed antenna can be used practically and implemented for
wireless data communication, and provides good gain, radiation pattern, and efficiency. A
comparison of the antenna with an AMC backing with previous research is given in Table 5.
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Table 5. Comparison of this work with previous research.

Ref.
No. Dimensions (mm3)

Operating
Frequency

(GHz)

Substrate
Material

Realized Gain
(dB)

Total
Efficiency (%)

SAR
(W/kg)
@ 1 g

[8] 40 × 124 × 1.2 0.7, 1.8 Rubber <3.8 - 0.18 and 1.26
[9] 40 × 38 × 0.5 2.47 Metal <3.76 <95 -
[10] 33 × 41 × 1.2 1.5, 2.4 Polycarbonate 2.2 and 4.4 63, 83 0.021
[11] 42 × 32 × 1.6 0.63, 3.21, 3.63 FR-4 <3.69 - -
[12] 31 × 30 × 1.6 2.4, 3.5 FR-4 <2.25 - -
[13] 30 × 15 × 1.6 2.4 FR-4 <4 - -

[14] 35 × 32 × 1.6 1.9, 2.3, 2.4, 2.6,
5.2, 5.8 FR-4 <6.6 <82 -

[15] 35 × 30 × 0.5 1.7, 2.4, 3.5, 5.1 FR-4 <2.04 96, 94, 95, 54 -
[16] 40 × 40 × 0.4 1.57, 1.94, 2.4 FR-4 0.5, 1.4, 2 53, 89, 90 -
[17] 30 × 30 × 1 2.4, 5.2 FR-4 - - -
[18] 49 × 35 × 5 1.68, 1.8, 2.4 FR-4 <1.57 <38 -
[19] 38 × 32 × 1.125 2.4, 5.2 Display glass - 60, 65 -
[20] 32 × 32 × 0.4 2.4, 3.4, 4.9 FR-4 68, 91, 74 -
[21] (3.14 × 212 × 10 2.4 Rogers4050 1.84 <66 0.515
[22] 50 × 40 × 5 2.4 FR-4 1 <67 -
[23] 35 × 35 × 5 1.57, 2.4, 3.5 FR-4 0.84, 1.54, 1.8 75, 86, 86 -

[24] 37.5 × 37.5 × 7.25 2.4 FR-4
(4.3, 0.02) <2.48 <62 1.0569

[25] (3.14 × 232 × 10) 2.4 - <2.6 <65 -
[26] 45 × 25 × 1.5 0.8, 2.55, 3.5 - <4.7 <88 -

[27] 40 × 40 × 1.52
0.9, 1.9,
2.5, 1.5,
2.4, 5

Plastic
0.42, 1.53,
1.79, 1.17,
3.16, 1.63

<50 -

[28] 43.5 × 28.5 × 1.2 0.915 Plastic −0.77 <46 0.004
[This Work] 28.81 × 19.22 × 1.58 2.45, 5.8 Roger 3003C 2.44, 6.17 50, 72 0.19 and 1.18

6. Conclusions

A dual-band AMC-backed miniaturized antenna was designed for ISM frequency bands
of 2.45 and 5.8 GHz. Roger 3003C (3, 0.0019) is used as a substrate to utilize its flexibility.
The proposed antenna was designed with smaller dimensions of 28.81 × 19.22 × 1.58 mm3.
The antenna demonstrated an almost identical performance on a smart watch strap. A
unit cell was designed having a size of 19.19 × 19.19 ×1.58 mm3 to mitigate the effect of
back radiation and to increase gain. The antenna’s SAR value was tested and found to
be within the FCC and ICINPR acceptable limits to ensure that the proposed antenna is
safe to be used as wearable device. Because the antenna was designed to be wearable, the
effect of bending was also evaluated and found to be an insignificant influence on antenna
performance. The antenna is compact and has high gain, making it suitable for wireless
data transfer and wearable electronics. The SAR values were calculated to be 0.19 and
1.18 W/kg at the designed ISM frequencies, and are less than the limits set by the FCC
and ICINPR. Results of the bended analysis proved that bending along the x- and y-axes
had a negligible effect on the antenna’s performance, and the antenna showed excellent
performance in the test of human proximity. The measured results of the fabricated antenna
were comparable with the simulated results. Furthermore, the antenna achieved good
measurement results and is a perfect candidate for smart watch wireless IoT applications.
The antenna can be used to wirelessly transmit and receive data in wearable applications.
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