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Abstract: The pulse carries important physiological and pathological information about the human
body. The piezoresistive sensor used to capture vascular pulsation information has transitioned from
a single-point to a sensor array. However, the interference signal between channels has become a key
bottleneck restricting the development of the sensor array pulse diagnosis equipment. The sensor in
contact with vascular pulsation obtains the pulse signal. When some sensors are displaced due to
vascular pulsation, other sensors will be driven to move, which will produce interference signals.
Signal interference is a common problem for sensor arrays, but few people have analyzed this problem
from the perspective of the algorithm. In this paper, an interference signal recognition algorithm of the
sensor array based on a convolutional neural network (CNN) is proposed. Firstly, a simple mechanical
structure model was established to analyze the generation mechanism of interference signals in one
MEMS sensor array acquisition system. Then, a CNN model with fewer parameters was designed for
identifying interference signals. Finally, the CNN model was implemented on a field-programmable
gate array (FPGA). The results show that the CNN algorithm could identify interference signals
well, and the accuracy of the algorithm was 99.3%. The power consumption of the CNN accelerator
was 0.673 W at a working frequency of 100 MHz. The interference signal identification algorithm is
proposed to ensure the accurate analysis of array signals. FPGA implementation lays the foundation
for the miniaturization and portability of the equipment.

Keywords: sensor array; interference signal; convolutional neural network (CNN); field-programmable
gate array (FPGA)

1. Introduction

The combination of Chinese and Western medical treatments is a characteristic of
Chinese fight against the new coronary pneumonia, and it has received good results.
Chinese medicine, with its several thousand years history, has attracted increasing attention.
A pulse wave is produced by the regular contraction and the relaxation of the heart and
contains a wealth of physiological information about the body [1]. Doctors can detect
pathological changes in various organs in the human body by touching the pulse. Pulse
diagnosis is an important method in Chinese medicine and Ayurveda in India [2,3]. Doctors
can detect the pulse strength, width, length, and frequency of the blood vessel through their
fingers, and analyze a patient’s physical state. However, this method lacks one quantifiable
standard [4,5]. Objective research on pulse diagnosis has emerged at home and abroad.
A single-point sensor, such as a piezoelectric sensor [6], piezoresistive sensor [7], infrared
sensor [8], or ultrasonic sensor [9,10], was used in early pulse wave acquisition equipment.

Because the piezoresistive sensor and piezoelectric sensor can simulate the finger
feeling of traditional Chinese medicine doctors, they occupy a mainstream position in
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pulse diagnostic instruments. However, early single-point sensors could not measure the
pulse width or pulse length. Sensor arrays can measure the information of a blood vessel
more fully; vascular pulsation will produce a three-dimensional topographic map on the
sensor array. By measuring the width and length information on the three-dimensional
topographic map, the indirect measurement of pulse width and pulse length can be real-
ized [11,12]. Therefore, sensor arrays have become the focus of current research.

Ki Young Shin et al. developed a sensor array module containing seven piezoresistive
sensors, through which the position of the radial artery can be determined [13]. Peng et al.
proposed a multi-channel pulse wave signal acquisition system with 12 pressure sensors
arranged in a row to measure the width of the radial artery [12]. Wang et al. designed a
pulse signal acquisition system of a photoelectric sensor array, using nine photoelectric
sensors to detect spatial information to locate the pulse center [14]. The introduction of the
sensor array could obtain more abundant pulse information, and provide an important
basis for the clinical diagnosis and treatment of diseases [15,16]. However, the problem of
signal interference has become a key bottleneck restricting the development of sensor array
pulse diagnosis equipment.

The sensor in contact with vascular pulsation obtains the pulse signal. When some
sensors are displaced due to vascular pulsation, other sensors are driven to move, which
produces interference signals. Matti Kaisti et al. designed a three-channel pulse wave
acquisition system [17]. Three MEMS pressure sensors are assembled in a triangular shape
on a flexible wristband for pulse detection of the radial artery. The three sensors are directly
connected by a rigid structure. When a sensor touches the vibration point of the radial
artery, it produces displacement. The displacement of the sensor drives the displacement
of the rigid structure. The displacement of the rigid structure changes the pressure on
the other sensors, and the signals of other sensors are disturbed. Chen et al. developed
a radial artery pulse acquisition system based on a dense pressure sensor array worn on
the fingers [18]. Eighteen ultra-small MEMS pressure sensors are integrated on a flexible
printed circuit board (FPC). These eighteen sensors are also physically connected, and the
interference phenomena appeared. The most obvious manifestation of this interference is a
kind of interference wave that is axisymmetric with the pulse wave. The problem of array
signal interference is common, but few people have analyzed this problem.

In classification, machine learning and deep learning methods based on statistical
recognition have been widely studied. Compared with other classification algorithms,
convolutional neural networks (CNNs) have a higher accuracy [19]. This paper proposes a
sensor array interference signal recognition algorithm based on a CNN. This work makes
the following contributions:

i. We established a simple mechanical structure model to analyze the generation mecha-
nism of interference signals in the MEMS sensor array acquisition system;

ii. We designed a CNN model with fewer parameters to identify the interference wave;
iii. We implemented the CNN model a on field-programmable gate array (FPGA).

The completion of this work provides help to obtain information, such as pulse width
and pulse length, from the array sensor, which may help doctors better understand the
patient’s physical condition.

2. Materials and Methods
2.1. MEMS Sensor Array Acquisition System

This paper uses a MEMS sensor array acquisition system, as shown in Figure 1a [20].
The sensor array is an important module of the system. The sensor array module was
composed of three components: the sensor array, the inflatable airbag and the bending
structure. The MEMS pressure sensor chip (MPS20N0100D, MEMStek Co., Ltd., Wuxi
City, Jiangsu Province, China) was selected as the sensitive element. The circuit structure
diagram of the sensor chip is shown in Figure 1b. Four identical piezoelectric resistors,
R1–R4, form a Wheatstone bridge. When the sensor is subjected to an external force,
the resistance of the four resistance strain gauges will change, the balance of the original
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Wheatstone bridge circuit will be broken, and the bridge will output a voltage signal
proportional to the pressure. The schematic diagram of the MEMS sensor array is shown
in Figure 1c; Figure 1d is a physical diagram. The MEMS pressure sensor was composed
of 8 MEMS sensors arranged in 4 rows and 2 columns. The sensor contact material was
food-grade silica gel, which has good biocompatibility and will not cause damage to the
wrist after collection. In order to ensure sufficient contact between the acquisition module
and the skin of the wrist, the bending structure was designed to be curved. The acquisition
used airbag pressurization to make the sensor array exert pressure on the subject’s wrist.

Figure 1. Acquisition device for sensor array signals. (a) Photograph of the pulse wave acquisition
system. (b) Schematic diagram of the circuit structure of the sensor. (c) Schematic diagram of the
MEMS sensor array. (d) Photograph of the MEMS sensor array.

The system can provide a static pressure of 0–210 mmHg during the acquisition
process; the pressure applied to the wrist of the subject was increased in steps of 10 mmHg,
and the pressure of each step was maintained for about 15 s to obtain a set of stable pulse
signals. After completing the entire collection process, the airbag was deflated.

2.2. Mechanical Analysis of Interference Signals
2.2.1. Single-Point Vibration Signal Generator

This paper presents the design of a single-point vibration signal generator to study
the generation mechanism of interference signals in the sensor array. The structure of the
generator is shown in Figure 2a, which is mainly composed of a motor, a long contactor,
a vibration point and a frequency regulator. When the motor begins to run, the slider
is driven by the principal axis. Then, the slider drives the long contactor up and down
periodically, with a displacement range of 1 mm. Lastly, the long contactor drives the
vibration point up and down and touches the surface of a sensor lightly. Figure 2b is a
physical diagram of the device.
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Figure 2. Single-point vibration signal generator. (a) Structure of the single-point vibration signal
generator. (b) Photo of the single-point vibration signal generator.

2.2.2. Mechanical Analysis of Interference Signals

The output voltage value of the sensor is related to the pressure on the surface of
the sensor. When the pressure on the sensor increases, the output voltage value increases.
When the pressure decreases, the output voltage value decreases. Vascular pulsation drives
the skin to move up and down and squeezes the sensor to generate a pulse wave signal,
as shown in Figure 3a. Due to the physical connection, the adjacent sensors are forced to
move up and down, which will make the contact pressure between the sensor and the
skin surface change, resulting in interference signals. The interference signal is shown in
Figure 3b.

Figure 3. (a) Pulse wave signal. (b) Interference signal.

In this paper, a mechanical structure model is established by using a sensor array
acquisition system and one single-point signal generator to verify the above hypothesis.
As shown in Figure 4, the sensor array is attached to the curved surface of the signal
generator. The sensor array is attached to the curved surface of the signal generator,
in which sensors B and C are in contact with the vibration point. When the vibration point
moves upward, the pressure on sensors B and C increases, and the output voltage values
of sensors B and C increase. Due to the upward movement of the vibration point, sensors
B and C are displaced upward. Since the sensors are connected together by a bending
structure, the forced movement of sensors B and C reduces the contact pressure between
sensor A, sensor D and the bending surface, resulting in the reduction in the output voltage
of B and C.
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Figure 4. The mechanical structure model of the acquisition system.

When the output voltage values of sensors B and C increase to the maximum value,
the output voltage values of sensors A and D decrease to the minimum value. When the
vibration point moves downward, the situation is reversed.

In order to verify the correctness of the above hypothesis, this study used a single
vibration point signal generator to replace vascular pulsation and analyzed the impact
of a single vibration point on the neighboring sensor from a mechanical point of view.
As shown in Figure 5, for the convenience of description, the sensors of the sensor array
are named: Sensor 1, Sensor 2, Sensor 3, through to Sensor 8. We put the vibration point
at Sensor 1 and Sensor 2 and ensured that all sensors were in contact with the bending
structure for signal collection.

Figure 5. Schematic diagram of the MEMS sensor array.

Figure 6 shows the output signals of Sensors 1–8, respectively. Since Sensors 3, 4, 5, 6,
and 7 were not in contact with the vibration point, they should not have vibration signals.
However, because all the sensors were fixed on the bending structure, the phenomenon
described above occurred. This signal is referred to as an interference wave in this article.
Compared with vibration signal, the interference wave has the same period, the shape is
similar, and the phase difference is 180◦. Due to the attenuation characteristics of signal
transmission, the signal strength of the interference wave is lower than the vibration signal.
As the distance increases, the attenuation of the interference signal increases.
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Figure 6. The signals of Sensor 1–8.

2.3. Interference Signal Recognition Based on CNN
2.3.1. Signal Preprocessing

This study used a MEMS sensor array acquisition system to collect signals from the
radial artery of one subject’s wrist. During the collection process, the data of 11 pressure
sections from 10 to 120 mmHg were collected at a step value of 10 mmHg, and the pressure
was maintained for 15 s in each step. In order to make the classification and labeling of the
data more accurate, preprocessing was necessary. To carry this out, firstly, one data point
from each pressure segment of the original data was selected. Next, a 0.5 Hz–25 Hz band-
pass filter was used to filter the selected data [21]. Then, a data value of a specific length
was intercepted from the filtered data. In order to enhance the model’s anti-interference
ability, the data were normalized. Lastly, the data were labeled and inputted into the
data set.

2.3.2. CNN Model

CNNs are models of deep learning that are good at extracting global features. CNNs
also show strong adaptability in the recognition of one-dimensional pulse wave signals.

Figure 7 is a one-dimensional CNN model. The input of the one-dimensional CNN
model is a one-dimensional form of data, so the convolution kernel adopts a one-dimensional
structure accordingly. The output of each convolution and pooling is also a one-dimensional
feature vector. The model is mainly composed of a CONV (convolutional) layer and an FC
(fully connected) layer. The CONV layer mainly implements feature extraction, which in-
cludes three operations: convolution operation, activation operation, and pooling operation.
After the CONV layer, the FC layer fuses the feature and finds the relationship between the
“learned” output vector and the feature vector.
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Figure 7. A one-dimensional CNN model.

2.3.3. CNN Model Design

In order to design a CNN with high accuracy and fewer parameters, and find the
relevant model parameters, we conducted a set of experiments. The experimental software
and hardware development environment is: PyTorch 1.4.0 (CUDA version), Python 3.8.5,
and an NVIDIA GeForce GTX 1660Ti GPU.

In order to reduce the number of calculations, this article down-sampled the original
input signal of 1024 sampling points, and used signals with lengths of 512, 256, 128, 64,
and 32, respectively. The corresponding sampling frequencies of 109 Hz, 54.5 Hz, 27.25 Hz,
13.625 Hz and 6.8125 Hz satisfied the Nyquist sampling theorem. As shown in Figure 8,
the results show that when the input signal length was less than 128, the accuracy of the
model was reduced.

Figure 8. The influence of the length of data.

In CNN, a large part of the weight parameters and calculations come from the first
fully connected layer. In order to reduce the weight parameters, this paper proposes
reducing the number of FC layers and neurons. This paper proposes two structures of the
FC layer; the experiment results are shown in Table 1.

Table 1. Different structures of FC layers.

Structure of FC Layers Accuracy (%) Train Time(s) Number of Weights

FC1 (20) + FC2 (3) 99.8 61.5 3848

FC1 (3) 99.87 61.3 2700

In order to reduce the weight parameters and computational complexity, this paper
proposes four structures by modifying the ratio of input and output channels, as shown in
Table 2. In this case, m and n represent the number of input channels and the number of
output channels, respectively. As shown in Figure 9a, under the premise of high accuracy
and low training time, structure 1 had fewer weight parameters.



Electronics 2021, 10, 2867 8 of 13

Table 2. Different structures of CNN models.

Structure CONV1 CONV2 CONV3 CONV4 CONV5

1 (1-2) (2-4) (4-8) (8-16) (16-16)
2 (1-4) (4-8) (8-16) (16-16) (16-16)
3 (1-4) (4-16) (16-16) (16-16) (16-16)
4 (1-8) (1-16) (16-16) (16-16) (16-16)

Figure 9. The influence of 4 different structures and the number of CONV layers. (a) The influence of
4 different structures. (b) The influence of the number of CONV layers.

When the number of CNOV layers is 2, 3, 4, 5, 6, and 7, the influence of the number
of convolutional layers on the model is shown in Figure 9b. It can be seen that when the
number of layers is 3, the number of weight parameters is the least and the number of
layers has little effect on the accuracy of the model.

According to the above experiment, the final CNN selected is shown in Figure 10,
which contains five CONV layers, one FC layer, and 1470 parameters.

Figure 10. The CNN model has relatively high accuracy, shorter training time, and less weight.

2.4. Design of CNN Accelerator Based on FPGA
2.4.1. Overall Architecture

As shown in Figure 11a, the CNN hardware acceleration structure includes three
parts: the arithmetic module, the storage module and the control module. The arithmetic
module includes the convolution kernel (CK) module, the post-processing (PP) module
and the FC module. The CK module is used to perform convolution sliding window
operations. The PP module is used to implement the accumulation of multiple input
feature maps, the ReLU activation function and the calculation of maximum pooling.
The FC module implements the fully connected layer. These computing modules all use
pipelined calculations.
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Figure 11. (a) CNN accelerator structure. (b) State transition diagram of controller.

The trained weight parameters and bias parameters are stored in two ROMs, and the
input data are stored in a RAM. In this study, the output of each computing module was
placed in the on-chip buffer area, which helped to reduce the data access. We used two
BRAM blocks to form a ping-pong structure. There are two sets of read and write ports.
The first layer can read RAM1 and write RAM2, and the next layer can write RAM1 and
read RAM2. Therefore, the ping-pong buffer can avoid overlap and improve performance.

The input data of the CONV layer of the first layer are read from the RAM, and the
input data of other layers are from the on-chip BRAM. In order to distinguish the first
CONV layer, a state machine is used in the control module. As shown in Figure 11b,
the system first executes the CK and PP of the first CONV layer, and then executes the CK
and PP of the other layers in the sequence. When the final FC finished, one result is output.

2.4.2. Computing Module Design

The CK module is a computationally intensive component in the system. In order to
increase the performance, a pipelined design was adopted. In the convolution window,
each cycle completes the multiplication and accumulation of a unit. After the calculation
of a convolution window is completed, the convolution window moves forward to the
next operation. The structure of the processing element (PE) in the CK module is shown in
Figure 12. In the CNN algorithm, we fill 0 before and after the input signal.

Figure 12. The structure of PE in the CK module. (a) PE’s timing diagram. (b) PE’s RTL circuit
design.

After the convolution operation, a PP (post-processing) module was used to imple-
ment accumulation, ReLU and max-pooling. The accumulation after the convolution
operation and the accumulation of the offset are all realized by the accumulator. The ReLU
activation function is realized by judging the sign bit of the data. The maximum pooling is
completed by using a comparator.

As shown in Figure 13, in the FC module, the calculations between the output neuron
nodes are parallel, and the calculation of a single output neuron node adopts a pipeline
method. An input node read in each cycle is multiplied by the weight and then accumulated.
When the product of all inputs and weights is added, it is output after offset. After the
accumulation finished, the offset was added. The whole module is implemented with
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multipliers and accumulators. At the falling edge of valid, the input data were filled with
0, and the weight with 1.

Figure 13. FC’s timing diagram.

3. Results
3.1. Interference Signal Recognition Based on CNN
3.1.1. Data Sources

In this experiment, 50 cases of data were collected with the MEMS sensor array
collection system, including 38 male subjects and 12 female subjects. All subjects were in the
age range of 20–40 years old. There were three types of raw data: pulse wave, interference
wave, and irregular noise. The final data set was composed of 1650 samples, including
550 pulse waves, 550 interference waves, and 550 irregular noise waves. We randomly
sampled 500 pulse waves, 500 interference waves, and 500 noise waves as the training set,
and the remaining samples were composed of the test set. The platform for generating the
data set was MATLAB 2019a.

3.1.2. Model Training

Other parameter settings of this model are shown in Table 3. The loss curve and
accuracy curve obtained during one training session are shown in Figure 14.

Table 3. Parameter settings of the CNN model.

Parameter Name Value

Kernel size 1 × 3
Pooling size 1 × 2

Loss function CrossEntropyLoss
Optimizer Adam

Learning rate 0.001
Batch size 100

epochs 50

Figure 14. The trend curves of loss and accuracy during training. (a) The trend curves of loss. (b) The
trend curves of accuracy.
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3.1.3. Test Results

Confusion matrixes are usually used to evaluate the performance of the model.
For each category i in the multi-class problem, all samples except the ith category can
be regarded as negative samples. The accuracy, precision, recall, F1, and macro − F1 can be
calculated by the following equation:

Accuracyi =
TP + TN

TP + TN + FP + FN
. (1)

Precisioni =
TP

TP + FP
, (2)

Recalli =
TP

TP + FN
, (3)

F1i =
2 × Precisioni × Recalli

Precisioni + Recalli
, (4)

macro–F1 =
1
n ∑n

i=1 F1i, (5)

TP is true positive: the number of positive segments classified correctly. TN is
true negative: the number of negative segments classified correctly. FP is false positive:
the number of negative segments classified incorrectly. FN is false negative: the number of
positive segments classified incorrectly.

As shown in Table 4, we obtained a confusion matrix after testing 150 samples.

Table 4. Confusion matrix for the test.

Predicted Class

Interference Pulse Noise

Actual class

Interference 50 0 0

Pulse 0 50 0

Noise 1 0 49

The classification accuracy of this model was 99.3%. The macro − F1 calculated by
the formula was 0.99, which shows that the model has a highly stable classification ability
for the interference wave.

3.2. FPGA Simulation and Testing

We implemented the CNN accelerator on the Xilinx FPGA platform. This design
was implemented on the Xilinx xc7a100tfgg484-2 platform, using a pipeline structure.
The synthesis tool was Vivado2018.03.

The resource utilization rate of the CNN accelerator in this paper at 100 MHz operating
frequency is shown in Table 5.

Table 5. Resource utilization in vivado synthesis report.

Resource Utilization Available Utilization%

LUT 18,761 63,400 29.59

FF 30,063 126,800 23.71

BRAM 53.50 135 39.63

DSP 147 240 61.25

BUFG 2 32 6.25

Although our CNN model was relatively simple, the power consumption of the CNN
accelerator was also very low, consuming only 0.673 W at a working frequency of 100 MHz.
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4. Conclusions

In this paper, we propose an FPGA-based CNN accelerator to identify interference
signals. Firstly, we performed a mechanical analysis of the interference phenomenon
between channels and discussed the reason for the interference signal. Then, we used CNN
to identify the interference signal. In order to reduce the weight parameters, we specially
designed a CNN model based on experiments. The classification accuracy of the model is
99.3%. Finally, we implemented a CNN accelerator on Artix XC7A100T, which cost only
0.673 W under a working frequency of 100 MHz.

Signal interference in multi-channel systems is an unavoidable natural phenomenon,
especially in communication systems. Due to some factors on the signal transmission
path, the signal interference appears on adjacent channels and sub-adjacent channels,
which affects the entire communication system. In Chinese medicine, the human wrist is
divided into three positions, called Cun, Guan, and Chi. The three positions carry different
physiological and pathological information. The sensor array group covering the three
positions has one physical connection. The vibration of one sensor array forces the other
sensor array to move, which creates channel interference. In future research, our team will
explore the formation mechanism of the adjacent channel interference and suppress this
phenomenon algorithmically.

Author Contributions: Conceptualization, L.H., X.G., Y.Z., Z.L. and H.Z.; methodology, L.H. and
X.G.; software, L.H. and H.X.; validation, L.H. and H.X.; formal analysis, L.H. and X.G.; investigation,
L.H.; resources, Y.Z., Z.L., J.Z. and H.Z.; data curation, L.H., X.G. and Y.Z.; writing—original draft
preparation, L.H.; writing—review and editing, L.H., X.G., H.X., Y.Z. and H.Z.; project administration,
Y.Z., Z.L., J.Z. and H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Deployment Project of the Chinese Academy of
Sciences, grant number ZDRW-ZS-2021-1.

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also form part of an ongoing study.

Acknowledgments: All authors of this manuscript have directly participated in the planning, execu-
tion, and/or analysis of this study. The contents of this manuscript have not been copyrighted or
published previously. All authors have no objection to the ranking order.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Che, X.S.; Xu, X.Q.; Sun, J.; Xu, H. Research on Pulse Power Spectrum Calculation Method Based on TCM. In Proceedings of the

IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 6–7 June 2015; pp. 333–337.
2. Khandai, S.K.; Jain, S.K. Comparison of Sensors Performance for the Development of Wrist Pulse Acquisition System. In Proceed-

ings of the IEEE Region 10 Conference (TENCON), Penang, Malaysia, 5–8 November 2017; pp. 2870–2875.
3. Thakker, B.; Vyas, A.L. Frequency domain analysis of radial pulse in abnormal health conditions. In Proceedings of the IEEE

EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010;
pp. 227–231. [CrossRef]

4. Hu, C.-S.; Chung, Y.-F.; Yeh, C.-C.; Luo, C.-H. Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure
Sensor Array. Evid. Based Complement. Altern. Med. 2012, 2012, 1–9. [CrossRef] [PubMed]

5. Peng, J.-Y.; Lu, M.S.C. A Flexible Capacitive Tactile Sensor Array with CMOS Readout Circuits for Pulse Diagnosis. IEEE Sens. J.
2015, 15, 1170–1177. [CrossRef]

6. Ji, M.N.; Meng, X.F.; Nie, J.; Wang, Y.Q.; Lin, L.W. A new type of bionics based piezoelectric heartbeat sensor used in pulse-taking
for health warning. In Proceedings of the 17th IEEE SENSORS Conference, New Delhi, India, 28–31 October 2018; pp. 752–755.

7. Nguyen, T.V.; Mizuki, Y.; Tsukagoshi, T.; Takahata, T.; Ichiki, M.; Shimoyama, I. MEMS-Based Pulse Wave Sensor Utilizing a
Piezoresistive Cantilever. Sensors 2020, 20, 1052. [CrossRef] [PubMed]

8. Loukogeorgakis, S.; Dawson, R.; Phillips, N.; Martyn, C.N.; Greenwald, S.E. Validation of a device to measure arterial pulse wave
velocity by a photoplethysmographic method. Physiol. Meas. 2002, 23, 581–596. [CrossRef] [PubMed]

9. Zhang, D.Y.; Zhang, L.; Zhang, D.; Zheng, Y.P. Wavelet based analysis of Doppler ultrasonic wrist-pulse signals. In Proceedings
of the 1st International Conference on Biomedical Engineering and Informatics, Sanya, China, 27–30 May 2008; p. 539.

10. Zhang, H.; An, M.; Bu, Z.; Zheng, Z. Fingertip pulse wave extraction based on ultrasonic echo signal. Chin. J. Med. Phys. 2020, 37,
1306–1311.

http://doi.org/10.1109/IECBES.2010.5742233
http://doi.org/10.1155/2012/745127
http://www.ncbi.nlm.nih.gov/pubmed/21754947
http://doi.org/10.1109/JSEN.2014.2360777
http://doi.org/10.3390/s20041052
http://www.ncbi.nlm.nih.gov/pubmed/32075243
http://doi.org/10.1088/0967-3334/23/3/309
http://www.ncbi.nlm.nih.gov/pubmed/12214765


Electronics 2021, 10, 2867 13 of 13

11. Liu, S.; Zhang, S.; Zhang, Y.; Geng, X.; Zhang, J.; Zhang, H. A novel flexible pressure sensor array for depth information of radial
artery. Sens. Actuators Phys. 2018, 272, 92–101. [CrossRef]

12. Wang, P.; Zuo, W.M.; Zhang, D. A Compound Pressure Signal Acquisition System for Multichannel Wrist Pulse Signal Analysis.
IEEE Trans. Instrum. Meas. 2014, 63, 1556–1565. [CrossRef]

13. Shin, K.Y.; Jeon, S.C.; Nam, K.C.; Huh, Y. Implementation of Array Sensor Module for a Radial Artery Tonometry. In Proceedings
of the 32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBC 10), Buenos Aires,
Argentina, 30 August–4 September 2010; pp. 6397–6400.

14. Wang, D.M.; Zhang, D. Analysis of pulse waveforms preprocessing. In Proceedings of the International Conference on Computer-
ized Healthcare (ICCH), Hong Kong, China, 17–18 December 2012; pp. 174–179.

15. Katsuura, T.; Izumi, S.; Yoshimoto, M.; Kawaguchi, H.; Yoshimoto, S.; Sekitani, T. Wearable pulse wave velocity sensor using
flexible piezoelectric film array. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy,
19–21 October 2017; pp. 1–4. [CrossRef]

16. Wang, D.M.; Zhang, D.; Lu, G.M. An Optimal Pulse System Design by Multichannel Sensors Fusion. IEEE J. Biomed. Health Inform.
2016, 20, 450–459. [CrossRef] [PubMed]

17. Kaisti, M.; Leppanen, J.; Lahdenoja, O.; Kostiainen, P.; Pankaala, M.; Meriheina, U.; Koivisto, T.; IEEE. Wearable Pressure
Sensor Array for Health Monitoring. In Proceedings of the 44th Computing in Cardiology Conference (CinC), Rennes, France,
24–27 September 2017.

18. Chen, J.Z.; Sun, K.; Zheng, R.; Sun, Y.; Yang, H.; Zhong, Y.F.; Li, X.X. Three-Dimensional Arterial Pulse Signal Acquisition in Time
Domain Using Flexible Pressure-Sensor Dense Arrays. Micromachines 2021, 12, 569. [CrossRef] [PubMed]

19. Hu, X.; Zhu, H.; Xu, J.; Xu, D.; Dong, J.; IEEE. Wrist Pulse Signals Analysis based on Deep Convolutional Neural Networks. In Pro-
ceedings of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Honolulu, HI, USA,
21–24 May 2014.

20. Chen, C.L.; Li, Z.Q.; Zhang, Y.T.; Zhang, S.L.; Hou, J.N.; Zhang, H.Y. A 3D Wrist Pulse Signal Acquisition System for Width
Information of Pulse Wave. Sensors 2020, 20, 11. [CrossRef] [PubMed]

21. Zou, H.; Zhang, Y.; Zhang, J.; Chen, C.; Geng, X.; Zhang, S.; Zhang, H. A Novel Multi-Dimensional Composition Method Based
on Time Series Similarity for Array Pulse Wave Signals Detecting. Algorithms 2020, 13, 297. [CrossRef]

http://doi.org/10.1016/j.sna.2017.12.038
http://doi.org/10.1109/TIM.2013.2267458
http://doi.org/10.1109/BIOCAS.2017.8325551
http://doi.org/10.1109/JBHI.2015.2392132
http://www.ncbi.nlm.nih.gov/pubmed/25608317
http://doi.org/10.3390/mi12050569
http://www.ncbi.nlm.nih.gov/pubmed/34067840
http://doi.org/10.3390/s20010011
http://www.ncbi.nlm.nih.gov/pubmed/31861412
http://doi.org/10.3390/a13110297

	Introduction 
	Materials and Methods 
	MEMS Sensor Array Acquisition System 
	Mechanical Analysis of Interference Signals 
	Single-Point Vibration Signal Generator 
	Mechanical Analysis of Interference Signals 

	Interference Signal Recognition Based on CNN 
	Signal Preprocessing 
	CNN Model 
	CNN Model Design 

	Design of CNN Accelerator Based on FPGA 
	Overall Architecture 
	Computing Module Design 


	Results 
	Interference Signal Recognition Based on CNN 
	Data Sources 
	Model Training 
	Test Results 

	FPGA Simulation and Testing 

	Conclusions 
	References

