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Abstract: This article proposes a high-frequency, area-efficient high-side bootstrap circuit with
threshold-based digital control (TBDC) that is directly charged by BUS voltage (DCBV). In the circuit,
the voltage of the bootstrap is directly obtained from the BUS voltage instead of the on-chip low
dropout regulator (LDO), which is more suitable for a high operating frequency. An area-efficient
threshold-based digital control structure is used to detect the bootstrap voltage, thereby effectively
preventing bootstrap under-voltage or over-voltage that may result in insufficient driving capability,
increased loss, or breakdown of the power device. The design and implementation of the circuit are
based on CSMC 0.25 µm 60 V BCD technology, with an overall chip area of 1.4 × 1.3 mm2, of which
the bootstrap area is 0.149 mm2 and the figure-of-merit (FOM) is 0.074. The experimental results
suggest that the bootstrap circuit can normally operate at 5 MHz with a maximum buck converter
efficiency of 83.6%. This work plays a vital role in promoting the development of a wide range of
new products and new technologies, such as integrated power supplies, new energy vehicles, and
data storage centers.

Keywords: bootstrap circuit; high voltage; buck converter; high frequency; area-efficient

1. Introduction

With the continuous development of modern electronic equipment power supplies, minia-
turized and high-performance power drivers have become a current research hotspot [1–6].
Regarding traditional silicon complementary metal-oxide-semiconductor (CMOS) technology,
NMOS (n-channel metal-oxide-semiconductor) is usually selected as the power device [7–9],
which is mainly attributed to its high carrier mobility and desirable device area [10]. Ad-
ditionally, third-generation semiconductor power devices with the characteristics of high
speed and low on-resistance, such as GaN HEMTs (gallium nitride high-electron-mobility
transistors) [11–14], are also dominated by N-type devices.

LDOs [15], dc-dc converters (such as charge pumps [16–18]) and pre-regulators [19]
are mainly employed in a low-side N-Type power MOS structure with the power sup-
ply relative to ground. Regarding a high-side N-type power device, the floating source
demonstrates the high-side driving problem of the device [20,21], which is usually solved
by bootstrap charging circuits [22–24]. The principle of these circuits is to provide a voltage
that is relative to the floating source, namely the switching node (VSW), for driver and
power MOS [25]. Although the traditional bootstrap charging circuit shown in Figure 1
has a simple structure, there are still a series of problems to be solved.

The traditional bootstrap charging circuit needs a fixed charging voltage VDD, which
is generally set between 5 and 6 V, and it is generated by the on-chip power supply. In
the case of a large driving capability and high switching frequency, the requirements for
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the load current, bandwidth, and stability of the on-chip regulator are relatively high,
which increases the design difficulty of the LDO. On the other hand, the change in the
VDD will cause a certain offset in the Vboot voltage of the traditional bootstrap circuit.
When the bootstrap voltage is too high, the gate of the power device, especially the GaN
HEMT, easily breaks down. Conversely, a bootstrap voltage that is too low will affect the
driving capability of the circuit, resulting in excessive on-resistance of the power device
and increasing power loss. Li, S.T. et al., proposed the theory of active bootstrap control
(ABC) [26], that is, the logic control of the high-side signal, low-side signal, and dead
time ensures that the bootstrap capacitor is charged only when the low-side power device
is turned on. Ke, X. et al., proposed an active BST balancing (ABB) method to achieve
bootstrap voltage control [27].
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Figure 1. Traditional bootstrap structure charging from an LDO, which brings bandwidth and sta-
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Figure 1. Traditional bootstrap structure charging from an LDO, which brings bandwidth and
stability pressure to LDO.

Although a series of considerable research results have been achieved in bootstrap
voltage control, there are still certain challenges in reducing the pressure on LDO design.
Ming, X. et al., proposed an advanced bootstrap circuit structure that does not depend on
the voltage of the on-chip low dropout linear regulator, which also ensures the stability
of the high-side power rail by using the directly sensed bootstrap voltage (DSBV) [28]. A
bootstrap structure is proposed by Liu, Y. et al., the bootstrap voltage of which is charged
by input power and regulated by a feedback loop [29]. The conventional structure employs
an analog feedback loop, the speed of which is influenced by the loop bandwidth, while
high bandwidth and high stability are hard to achieve at the same time. Herein, based
on the above-mentioned research, this paper presents a bootstrap circuit structure with
the following advantages: a small area, high frequency, and good figure-of-merit (FOM).
Without an analog loop, the speed of the structure is only determined by the threshold-
based detection circuit, avoiding the trade-off between bandwidth and stability. The DCBV
circuit is used to directly charge the bootstrap capacitor from the BUS voltage VIN, which
greatly reduces the design difficulty of the low dropout linear regulator. The TBDC circuit
is used to detect the voltage of the high-side bootstrap power rail, which can control the
on–off of the PMOS switch in the DCBV circuit, thereby ensuring that the bootstrap voltage
is within the required range.

2. Materials and Methods
2.1. Concept of the Proposed Bootstrap Architecture

As shown in Figure 2, the DCBV is directly used in the bootstrap charging of the
proposed structure, which reduces the pressure on the bandwidth and load capacity of the
on-chip LDO at high frequency. The TBDC circuit is used to detect the bootstrap voltage,
which is mainly composed of isolated MOSFETs instead of high-voltage devices, and
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controls the charging path of the bootstrap. Moreover, the logic control module is related
to the detection result of the TBDC.
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Figure 2. Proposed bootstrap structure with TBDC and DCBV.

When the TBDC detects that the bootstrap voltage is lower than the under-voltage
threshold VTHL, the under-voltage signal uv will pull down the driving signal in the control
logic circuit to turn off the power device, thereby avoiding the efficiency loss caused by
insufficient driving voltage.

When the TBDC detects that the bootstrap voltage exceeds the over-voltage threshold
VTHH, the non-over-voltage signal _ov is set to 0, and the gate of the PMOS switch (PM) is
pulled up to VIN by the bias resistor Rb, resulting in the shutdown of PM and charging path.
Moreover, the bootstrap voltage slowly decreases until the TBDC detects that the bootstrap
is lower than the over-voltage threshold VTHH. Additionally, the _ov signal remains high.
The high-voltage NMOS (NM) is turned on, and the bias current Ib causes a voltage drop
on the bias resistor Rb. Next, the PM is turned on, and the BUS voltage VIN charges the
bootstrap capacitor Cboot through the bootstrap diode Dboot. The charging path is shown
as a red arrow, and the bootstrap voltage increases immediately. The above processes are
repeated during normal operation. Due to a slight delay in the DCBV circuit, the bootstrap
voltage is controlled within a voltage range with a small ripple (VTHH ± ∆V).

In the case of high-frequency operation, the traditional structure has relatively high re-
quirements for the bandwidth and load regulation rate of the LDO. However, the structure
designed in this work does not rely on an LDO power supply, which is more suitable for
higher frequency.

The working sequence of this circuit is shown in Figure 3.

2.1.1. Power on (Under-Voltage)

When the BUS voltage VIN is powered on, the LDO starts to work, and then the
low-voltage power supply VDD increases to 5 V as shown in Figure 3, status 1©. The enable
signal EN then turns from low to high. At this time, the external input signal pwm is low.
The high-side power NMOS remains off, and the switch node VSW is 0. Moreover, the
bootstrap voltage is lower than the under-voltage threshold VTHL, and the under-voltage
signal uv is the VDD. The uv signal turns off the high-side N-type power device in the
control logic circuit.

The _ov signal is also the VDD, so the bootstrap charging path is opened, and the
bootstrap voltage increases.
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2.1.2. Charging

When the bootstrap voltage increases to the under-voltage threshold VTHL as shown
in Figure 3, status 2©, the under-voltage signal uv reverses from the VDD to the GND, and
the pwm signal can normally control the high-side power NMOS.

Additionally, the _ov signal is still the VDD, and the bootstrap charging path remains
open, causing the bootstrap voltage to continue increasing.

2.1.3. Discharging (Over-Voltage)

When the bootstrap voltage exceeds the over-voltage threshold VTHH as shown in
Figure 3, status 3©, the _ov signal is flipped from the VDD to the GND. Therefore, the
charging path is turned off, and the bootstrap voltage slowly decreases.

2.1.4. Repeating (pwm Remains Low)

When the external input signal pwm continues to be low and the bootstrap voltage
decreases to less than the over-voltage threshold VTHH as shown in Figure 3, status 4©,
processes Charging (status 2©) and Discharging (status 3©) are repeated.
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2.1.5. pwm Becoming High

When the external input signal pwm becomes high, the high-side power NMOS is
turned on, and the switch node VSW voltage is pulled up to the BUS voltage VIN as
shown in Figure 3, status 5©. At this time, since the voltage at the anode of the bootstrap
diode Dboot is the BUS voltage VIN and the voltage at the negative terminal of Dboot is
the high-side bootstrap power rail voltage Vboot, the charging path cannot be charged.
Additionally, the high-side bootstrap power rail slowly decreases due to the power supply
to the high-side driver and the leakage of the bootstrap capacitor Cboot.

2.1.6. pwm Becoming Low

As status 6© shows in Figure 3, after the input signal pwm becomes low, processes
Charging and Discharging are repeated, which behaves the same as status 4©.

2.2. Circuit Realization

The TBDC circuit is used to detect the over-voltage and under-voltage conditions of the
bootstrap voltage, which is composed of three parts as shown in Figure 4, including a current
bias and start-up circuit, an under-voltage detection circuit, and an over-voltage detection
circuit. In addition, level shifter and driver are shown in Figures 5 and 6, respectively.
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2.2.1. TBDC Circuit

• Current bias and start-up circuit

The current bias and start-up circuit are shown in the left part in Figure 4, which are
composed of isolated PMOS PM1–PM2, isolated NMOS NM1–NM2, and a resistor R1. PM1
mirrors the current of PM2, and resistor R1 is used to control the magnitude of the bias
current. The bias current increases as the bootstrap voltage increases until it stabilizes. The
stable bias current is [30]:

Iout =
2

µnCox(W/L)1
× 1

R2
1
×

(
1− 1√

K

)2
(1)

where µn is the electron mobility of NM1, Cox is the gate-oxide capacitance per unit area,
(W/L)1 is the ratio of width and length of NM1, and K is the ratio of NM2 and NM1. The
value of Iout is set to 1 µA to balance the power consumption and area. The length of NM1
is set to 2 µm so that the channel length modulation effect can be reduced. The value of K is
set to 32 and resistance of R1 is about 170 KΩ by calculation. To avoid the degenerate state
when the current is 0, a start-up structure is introduced with isolated NMOS NM3–NM4
and isolated PMOS PM3–PM4. When the bias current is 0, the gate-source voltage VGS2 of
NM2 is 0 V. At this time, the gate voltages of PM3 and PM4 are 0 V, and they are turned on.
Then, the gate of NM3 is pulled high and turned on, and there is current that flows through
resistor R1. Therefore, the bias current is not 0, and the degenerate state is eliminated. Once
there is flowing current, the gate-source voltage VGS2 of NM2 increases to a value greater
than the threshold voltage VTHN, and then NM4 is turned on. Moreover, the gate voltage
of NM3 is pulled down, and the start-up circuit is turned off.

• Under-voltage detection circuit

The under-voltage detection circuit is shown in the middle part of Figure 4, which is
composed of isolated PMOS PM5–PM6, isolated NMOS NM5–NM7, resistors R2–R3, and a
level shifter circuit.
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As the bootstrap voltage gradually increases from 0, the bias current Iout rises. PM5
mirrors the current of PM2, and the gate-source voltage VGS5 of PM5 is equal to the VGS2 of
PM2. Due to the existence of R3 and PM5, NM6 cannot be turned on immediately at a low
current. At this time, the drain voltage of PM6 is pulled up to Vboot. After the first level
shifter circuit, the output of the under-voltage signal uv is VDD.

By adjusting the size of PM5, NM5, R2, and R3, the under-voltage threshold VTHL
voltage can be set to 2.2 V to ensure a low on-resistance of the power NMOS. When the
bootstrap voltage reaches VTHL, which can be expressed as:

VTHL = VDSP5 + VGSN5 + Iout × (R2 + R3) + VTHN (2)

NM6 and NM7 are turned on, and the drain voltage of NM7 gradually decreases until it is
lower than the threshold of the level shifter. At this time, the output of the under-voltage
signal uv is GND. In this case, NM5 is assumed to be critical saturation, and VDSP5 could be
set to the overdrive voltage (about 200 mV to 300 mV). VTHN is about 900 mV, and VGSN5
should be larger than threshold voltage. The above data are substituted in equation 2, and
then the value of R2 and R3 is estimated at about 200 KΩ.

• Over-voltage detection circuit

Isolated PMOS PM7-PM9, isolated NMOS NM8-NM15, resistors R4-R5, Zener diode
DZ, and another level shifter circuit constitute an over-voltage detection circuit, as shown
in the right part of Figure 4.

The gate voltage of NM9 is a fixed value when the bias current Iout is determined,
which is:

VGN9 = Iout × R4 + VGSN8 (3)

The source voltage of NM9 is:

VSN9 = Vboot − (VGSN10 + VGSN11 + VGSN12 + VGSN13 + VGSN14) = Vboot − 5×VGSN (4)

Therefore, the gate-source voltage of NM9 is:

VGSN9 = Iout × R4 + VGSN8 + 5×VGSN −Vboot (5)

When the gate-source voltage of NM9 is lower than VTHN, NM9 will be turned off, and
the gate voltage of NM15 will be pulled up to Vboot, while the drain voltage will be pulled
low. Therefore, the output of _ov signal is GND after the level shifter circuit. Therefore, the
over-voltage threshold is deduced as:

VTHH = IoutR4 + 5×VGSN + VGS8 −VTHN (6)

However, there is another device, a Zener diode DZ, used in the over-voltage circuit,
which double guarantees _ov signal to be low during its over-voltage. DZ will clamp the
source voltage of NM9 through providing enough current when the bootstrap voltage
reaches its threshold. At this time, the threshold voltage is:

V′THH = VDZ + IoutR4 (7)

where VDZ is the clamp voltage of Zener diode.
The constant current of this circuit is set to 1 µA each branch, and the size of PM7 and

PM8 is the same as PM1 and PM2. By adjusting the size of NM8, NM10–NM14, and R4, the
VTHH voltage is set to 6 V, thereby avoiding the breakdown of the power NMOS.

The TBDC circuit is designed with fully isolated devices due to area consideration,
and the bootstrap capacitor is directly charged from the BUS voltage with the DCBV circuit,
which can be used for higher frequency. Due to the usage of a digital control method, the
bootstrap voltage is stable when VIN varies from 6 V to 48 V; therefore, the line regulation
of this circuit can be considered close to 0.
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2.2.2. Level Shifters

There are two types of level shifters employed in the proposed bootstrap structure.
One is a level-up shifter used to control the power NMOS, and the other is a level-down
shifter in the TBDC circuit.

• Level-up shifter

The pwm_in signal is the output of control logic, and it is 3.3 V or 5 V relative to
ground, which is not suitable to control the driver directly. Therefore, the level-up shifter is
adopted to shift the voltage relative to ground to the voltage relative to VSW. The level-up
shifter used in the proposed structure is illustrated in Figure 5a. HPM1, HPM2, HNM1, and
HNM2 are the only high-voltage devices in this circuit, and other devices are low-voltage
devices (INV1) or isolated devices (PM11, PM12 and INV2). R7 is a pull-up resistor to
ensure the initial condition of hs_in, preventing from floating gate of INV2.

• Level-down shifter

A level-down shifter is used in the TBDC circuit to shift the uv and _ov signal from
floating voltage to voltage relative to ground, so that uv can be an input of control logic
and _uv is appropriate for controlling NM in the DCBV. The principle of the level-down
shifter is similar to that of the level-up shifter, and the circuit is shown in Figure 5b.

2.2.3. Driver

The driver circuit shown in Figure 6 provides sufficient driving current for the power
device through PM10 and NM16. The source and sink current are determined by the gate
capacitance CGS of the power device, turn-on/off voltage of the power device and required
rising/falling time, and can be adjusted by changing the size of PM10 and NM16. Deadtime
is used to prevent the power rail from shooting through, and the waveforms of hs_in, gate
of PM10, and NM16 are also shown in Figure 6.

3. Results

The circuit is implemented by the CSMC 0.25 µm 60 V BCD process. Figure 7 shows
the micrograph and testbench photos using the proposed bootstrap structure. The chip area
is 1.4 × 1.3 mm2, of which the bootstrap circuit only occupies 0.149 mm2. The maximum
input voltage can be up to 48 V, and the operating frequency can reach 5 MHz.
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3.1. Simulation Results

Figure 8 shows the DC simulation result of the TBDC circuit. When the bootstrap
voltage is lower than VTHL (2.101 V), uv and _ov are high. When the voltage is between the
VTHL and VTHH (2.101–6.099 V), the uv output is low and the _ov output is high. When the
voltage between Vboot and VSW is higher than the VTHH (6.099 V), the uv output is low and
the _ov output is low.
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The overall and enlarged simulation results are shown in Figure 9a,b. When the pwm
is 0 and the bootstrap voltage is higher than VTHH (6 V), the output of the _ov signal is 0 V
and NM is turned off. Therefore, there is no voltage drop on the bias resistor Rb, and the
voltage of VSGP is 0 V, which causes the charging path to be turned off. When the bootstrap
voltage is lower than VTHH, the output of the _ov signal is 5 V and NM is turned on. A
voltage drop can be formed on the bias resistor Rb, and the voltage of VSGP can increase to
3 V, causing the charging path to be opened. However, the voltage of VSGP only increases
to 3 V instead of 5 V, which can be attributed to the fact that the bootstrap voltage is quickly
charged to 6 V by the VIN when the PM is turned on. During this period, the ripple of
Vboot-VSW is only 1.583 mV.

The temperature simulation result is shown in Figure 10a. The minimum bootstrap
voltage is 5.866 V at −40 ◦C, and the maximum bootstrap voltage is 6.210 V at 120 ◦C.
The bootstrap voltage is positively correlated with the temperature, and the temperature
coefficient is calculated as:

TC =
∆Vout

(Tmax − Tmin)×Vnom
× 106 = 348 ppm/°C (8)

The simulation results for different load currents are shown in Figure 10b, indicating a
good load regulation. The maximum bootstrap voltage is 6.210 V at 1 A, and the minimum
voltage is 6.208 V at 1 mA. The load regulation Sv can be calculated as:

Sv =
∆Vout

Vnom × ∆Iout
= 0.03%/mA (9)

The simulated result of the buck converter at Iload = 1 A configured by this bootstrap
structure is shown in Figure 11. The input and output voltages are 14.5 V and 5 V, respec-
tively. The ripple of the output voltage is 2.612 mV with an efficiency of 92.7%. The highest
simulated efficiency is 94.87% at 600 mA.
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3.2. Test Results

The test result, as shown in Figure 12a, indicates that the voltage power-up time
of bootstrap voltage is approximately 170 µs, and the stable voltage is approximately
6 V, which are consistent with the simulation result. The results of different operation
frequencies are shown in Figure 12b, indicating good support over a wide frequency range.
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pwm = 0 Hz, 1 MHz, and 5 MHz.

A comparison of the simulation and actual measurement results of the buck converter
are shown in Figure 13. Under the following conditions, VIN = 14.5 V and VOUT = 5 V, the
highest tested efficiency of the circuit is 83.6% (Iload = 400 mA). The figure-of-merit (FOM)
is defined as:

FOM =
A

Iload,max × η0.5 (10)

where A is the silicon area, Iload,max is the maximum load, and η is the efficiency at
maximum load [31]. For this definition, a low value indicates a better performance and
the circuit achieves a good FOM of 0.074. Due to diode conduction loss, MOS conduction
loss, and MOS switching loss, there is a certain gap between the simulation results and the
actual measurement results.
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4. Discussion

Table 1 shows the comparison results between the structure designed in this paper
and those reported in previous literature. Compared with the previous research, this work
has the advantages of a wider input voltage from 3.6 V to 48 V, higher switching frequency
up to 5 MHz, larger output current of 2.7 A, and a smaller chip area of 1.82 mm2 with a
good FOM of 0.074 while maintaining the same efficiency. With the digital control method
being different from previous research, the simulation and test result implicate that the
novel DCBV and TBDC methods in the proposed bootstrap structure is feasible and stable.
The proposed circuit can be applied to some power areas such as dc–dc converters.

Table 1. Comparison with previously published works is shown, indicating wider input voltage,
higher switching frequency, larger output current, and smaller chip area with a good FOM while
maintaining the same efficiency.

Parameter This Work Ref [23] Ref [32] Ref [22]

Technology
(µm)

0.25 µm 60 V
BCD

0.35 µm 40 V
CMOS

0.18 µm HV
BiCMOS

0.35 µm HV
BCD

Input voltage
VIN (V) 3.6–48 3.6–36 15 3–40

Switching
frequency (MHz) 0.1–5 0.2–2.4 2 10–30

Output current (A) 2.7 2 2.6 1.2
Efficiency η (%) 83.6 85.98 N/A N/A

Chip area A (mm2) 1.82 4.78 N/A N/A
Bootstrap circuit area (mm2) 0.149 0.062 0.42 0.48

Dropout voltage (mV) 1.583
(simulation)

4.6
(simulation) N/A N/A

LDO type Capless Capless External cap N/A
FOM (A/Iload,max×η0.5) 0.074 0.258 N/A N/A

Bootstrap rail
control TBDC DVS N/A ABB

However, due to the lack of research on temperature compensation, the temperature
coefficient of this structure is not as low as traditional LDOs. Therefore, future research on
this circuit include decreasing the temperature coefficient and scaling higher power.

5. Conclusions

Bootstrap is a key structure for driving and protecting a high-side N-type power device.
In this paper, a novel bootstrap circuit has been proposed, which is directly charged by the BUS
voltage and employs a digital method to achieve a stable output. With an area of 1.82 mm2,
this structure exhibits strict voltage control in a wide range of input voltages and frequencies.
It is found that when using the dc–dc asynchronous buck converter, the maximum efficiency
of the protype is 83.6%, and the FOM is 0.074, showing its future potential in a wide range of
scenarios, such as in power converters, motor drivers, and automobiles.
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