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Abstract: This paper investigates the use of an electroencephalogram (EEG) signal to classify a
subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition
protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation,
accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation
scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral
stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group
of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal
was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the
session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood.
Then, we classified the stress level using a convolutional neural network (CNN) and compared the
classification performance with conventional machine learning algorithms. The best results were
obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support
Vector Machine (SVM) classifiers.

Keywords: virtual reality (VR); mental stress detection; electroencephalography (EEG); eye movement
desensitization and reprocessing (EMDR); affective computing; machine learning; deep learning

1. Introduction

The feeling of stress is inherent to human beings and cannot be separated from human
existence. It is evoked and associated with a multitude of issues humans struggle with
such as surgical trauma, emotional arousal, mental or physical effort, fatigue, pain, fear,
need for concentration, humiliation, frustration, intoxication with drugs or environmental
pollutants [1]. However, it is not only negative emotions or events that trigger the feeling
of stress, as it can also accompany unexpected success, a lifestyle change or unpredicted
opportunities. Stress can also have a positive and motivating effect since the increased
value of so-called healthy stress brings about higher productivity. A very general definition
of stress can describe it as the perception of threat, causing anxiety discomfort, emotional
tension, and difficulty in adjustment [2]. Our ancestors’ neural system developed an
automatic mechanism called a fight-or-flight response in order to facilitate making a split-
second decision about the reaction to a perceived attack, harmful event or threat to survival.
The sympathetic nervous system immediately releases hormones such as adrenaline and
cortisol as a way of preparing the body for emergency and the physical symptoms that
follow include a faster heartbeat, tightening of muscles, rising blood pressure, quickened
breath and the sharpening of senses. These physical changes increase strength and stamina,
speed up reaction time and enhance focus, preparing for confrontation [3]. The nervous
system reacts in a similar fashion during non-life-threatening adversities such as daily
struggles with traffic jams or work. If this automated response is triggered too quickly or
exceeds a certain level of intensity, it can be damaging to mental and physical health, alter
the emotional state negatively and have a detrimental effect on productivity and the quality
of life of an individual [4]. Chronic or exceedingly intensive stress can lead to a variety of
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negative effects on human health such as anxiety, depression, irritability, sleeping disorders
or headaches. What is more, it contributes to many disabilities worldwide and represents a
severe economic burden [5]. The longer the period of exceeded stress, the more negative
the impact is on both mind and body. The annual stress study conducted by the American
Institute of Stress reported that the average stress level in the United States grew from 4.9
to 5.1 on a scale from 1 to 10 in 2015, the main stressors being employment and money [6].
Recently, the World Health Organization (WHO) has named stress as the “Health Epidemic
of the 21st Century” [2].

VR is a computer-generated three-dimensional interactive artificial environment. Its
physical expression is a computer simulation presenting a fully explorable environment
which allows interaction with objects and avatars. It is usually three-dimensional and aims
at creating a mirror image of the real world, with its appearance and physical phenom-
ena [7]. Currently, the most effective way of experiencing VR is by using head-mounted
display (HMD) systems, which comprise a device worn on the head or a helmet with a built-
in display and lenses. It allows the user to immerse themselves in the virtual world with the
help of a wide viewing angle, head and hand movement tracking and controllers [8]. What
is more, HMD not only provides visual feedback, but may also include other modalities
such as aural, haptic, etc. [9].

From the review of research using VR in the therapy of mental disorders, it appears
that this type of technology may be conducive to alleviating the symptoms of stress-
related [10–12] and anxiety disorders [13,14]. Since VR-generated environments may reflect
real situations, they can be used as a trigger of various thoughts, feelings and behavioral
responses in the context of affective computing. For example, in [15], anxiety was triggered
by a VR environment scenario presenting a stressful job interview, and in [16] by virtual
traffic lights.

The literature regarding stress recognition is extensive and may consider differ-
ent information such as facial expressions [17], speech [18], gestures [19], and psycho-
physiological signals [20]. Another method that proves reliable in stress recognition is EEG,
which tends to provide informative characteristics in responses to the subject’s mental state.

In general, an EEG records the changes in the electrical potential on the skin surface
resulting from the activity of neurons of the cerebral cortex, through electrodes arranged
along the scalp [21]. The examination is usually performed for monitoring and diagnosing a
number of diseases, although it is being more and more frequently used in biofeedback [22]
and in brain–computer interfaces [23], for example, in cognitive state recognition [24,25].

This paper investigates using an EEG signal to classify a subject’s stress level using a
VR environment. For this purpose, we designed an acquisition protocol based on alternat-
ing relaxing and stressful scenes in the form of a VR interactive simulation, accompanied
by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes
were developed based on scenarios created for psychotherapy treatment utilizing bilateral
stimulation [26–28], while the Stroop [29] test worked as a stressor. The experiment was
conducted on 28 healthy adult volunteers (office workers) participating in a VR session.
Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless
EEG head cap system. Then, we classified the stress level using a convolutional neural
network (CNN) and compared the classification performance with conventional machine
learning algorithms.

Several experiments were conducted to assess emotional responses induced in VR
environments using different EEG headsets (for example, [30–32]). However, according to
our best knowledge, none of them investigate automatic emotion recognition. This work
combines both areas, a VR-based emotion induction and automatic response recognition,
with the following contributions:

• Investigation of automatic stress recognition induced in a VR space for the purpose of
the analysis of brain wave parameters that are the most discriminative for such an
analysis.
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• Analysis of classification performance for individual electrodes to investigate how
their number can be minimized without affecting the recognition quality.

• Analysis of the EMDR method’s effectiveness in VR on decreasing stress levels.

The rest of the paper is organized as follows: Section 2 reviews the related work in
the field of stress recognition methods; we review the literature on both stress recognition
approaches in virtual environments and the EEG signal analysis in the context of stress
recognition. Then, in Section 3, our experiment’s protocol as well as details of the pro-
posed method are described, followed by the experimental results and discussion. Finally,
conclusions and a comparative analysis of our study are presented in Section 5.

2. Related Studies

Electrical activity of the brain recorded as an electroencephalograph (EEG) indicates
the link between mental states and brain activity by providing rich information about
the central nervous system activities [33]. Thus, researchers’ attention has been directed
towards the recognition of an individual’s mental state (emotions, anxiety, stress) based on
an EEG. For example, in [34], the authors propose a new approach to classify emotional
stress in two main areas of the valence-arousal space using an EEG as the main signal—
negatively excited and calm–neutral. Wavelet coefficients and chaotic invariants were used
as the input to the Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM)
classifiers. The average classification accuracy was 80.1% and 84.9% for two categories
of emotional stress states using the LDA and SVM, respectively. A similar approach is
demonstrated in [35], where the authors present a framework to recognize construction
workers’ stress levels using a wearable EEG device. The framework applies an SVM
algorithm to detect low and high stress levels while working in different conditions.

Hou et al. [36] present an algorithm identifying four different stress levels (relaxed,
engrossed, stressful and anxious) induced by a Stroop Color and Word Test (SCWT).
The results of 67.06% were obtained by combining fractal dimension and statistical features
and using SVM as the classifier. The SCWT was also used as a stressor in [37]. The authors
designed an automatic EEG-based stress recognition systemrelying on an EMOTIV EPOC
wireless device. Using the relative difference of beta and alpha power as a feature, along
with SVM as a classifier, three-levels of stress were recognized with an accuracy of 75%.

In [33], the authors propose an EEG-based stress recognition application, whose
training set is continuously updated with new input signals in near real-time. The authors
applied different online multitask learning (OMTL) algorithms to recognize the stress level.
The EEG signal was collected in two different environments: a controlled lab environment
using a wired EEG and the field using a wearable EEG device. Among all tested algorithms,
the OMTL–VonNeuman algorithm resulted in the best prediction accuracy on both datasets
(71.14% on the first dataset and 77.61% on the second one).

The scope of the use of deep learning has expanded greatly to different application
domains, including the classification of various signals representing emotional states [38,39].
This kind of approach is able to determine the most distinctive features based on enormous
sets of data. Thus, similar methods are more and more frequently used in EEG signal
analyses in the context of mental state recognition. The effectiveness of such an approach
was proven in a subsequent paper by Jebelli [40]. The authors compared two deep learning
structures: a convolutional deep learning neural network (CNN) and a Fully Connected
Deep Neural Network (FC-DNN). The optimally configured DNN resulted in a maximum
of 86.62% accuracy in recognizing workers’ stress. It was at least six percent points more
accurate when compared with their previous handcrafted feature-based methods [33]. A
similar discussion is presented in [41]. The multi-column CNN-based model delivered an
improved performance with respect to the conventional manual feature-based modules.
Apart from the aforementioned studies, there has not been much research conducted on
the subject, which leaves room for a further examination of using deep learning to classify
emotional stress throughput EEG signals.
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In all the above-mentioned studies, stress was induced using short movies, logical
tasks and games or triggered by real-world circumstances. Since VR can easily reproduce
natural environments, allowing the user to experience a deeper immersion than in front
of the screen, evoking emotions in VR becomes a natural approach. For example, in [42],
the authors develop an emotion recognition system for affective states evoked through VR.
A virtual environment was designed to elicit four possible arousal–valence combinations,
according to the Circumplex Model of Affects. The examination involved the recording
of the EEG and electrocardiography (ECG) of sixty participants. The features were ex-
tracted from these signals using various state-of-the-art metrics that quantify brain and
cardiovascular linear and nonlinear dynamics. The SVM classifier predicted the subject’s
arousal and valence perception with the accuracy of 75% along the arousal dimension and
71.21% along the valence dimension. A similar approach is presented in [43], where frontal
EEG data were collected using textile dry electrodes during VR affective stimuli. Based
on features extracted from the time, frequency and space domains and three ensemble
models, including Gradient-Boosted Decision Trees (GBDT), Radio Frequencies (RF) the
and SVM, they achieved a 81.30% accuracy performance. However, when it comes to
stress recognition, only several papers are relevant. One of the most important research is
presented in [44], where the authors tested 19 healthy young subjects performing a balance
beam walking task in VR conditions to determine if exposure to high altitudes in VR
induced stress. They recorded the number of steps on the beam, heart rate, electrodermal
activity, response time to an auditory cue, and high-density EEG. Their findings indicate
that VR provides realistic experiences that can induce physiological stress in humans.

3. Materials and Methods

In this section, we present the main components of the proposed research, starting
with data collection protocol, followed by experiment description and ending with signals
analysis and classification methods. The structures of proposed mental stress recognition
approaches are presented in Figure 1. All steps of the pipelines are presented in details in
the following sections.

Figure 1. The structure of proposed mental stress recognition approach (a) using machine learning
(b) using deep learning.

3.1. Data Collection Protocol

Twenty-eight (9 females and 19 males) healthy volunteers (age: 36.53 ± 10.48 standard
deviations (SD) years) from bank branches in Łódź were recruited for the purpose of this
experiment (see Table 1). They were selected based on the following inclusion criteria:
(1) they had no neurological or mental disorders, (2) they were using VR before and did not
report VR sickness symptoms, and (3) they had normal or corrected (contact lenses) vision
and no color blindness. All participants were informed about the purpose of the study
and the procedure of the experiment was explained to them step by step. Subjects were
informed about their right to stop the study and withdraw their consent at any moment.
They authorized informed consent in writing. All participants performed the tests in a
quiet and well lit environment with room temperature (23–25 ◦C). The process of mounting
EPOC Flex headset and VR HMDs is presented in Figure 2.
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Table 1. Participants characteristics (F—female; M—male).

Participant #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28

Sex M M M M M M M M M F F F M M F F M F M M M M F M M M F F

Age 32 27 42 60 29 50 45 30 37 48 47 26 29 49 25 50 23 22 24 35 37 42 37 24 46 33 27 47
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Figure 2. The process of mounting EPOC Flex headset and VR HMDs.

Each experiment set took about 20 min and it was divided into two main scenes: stress-
ful and relaxing. Each set was repeated three times. Thus, we gathered data representing
three mental stress and three relaxation (six in total) conditions per person from the whole
experiment. The timing of the whole experiment is described in more detail in Figure 3.

Figure 3. Timing protocol of the experiment. EMDR—Eye Movement Desensitization and Reprocessing.

The first scene (stressful) consisted of a Stroop test comprising typical tasks that have
been used to induce stress in many previous researches [45] and the publication was one of
the most cited works in the field of experimental psychology [46]. The aim of this test was
to determine the color of the text. If the color of the text and the text did not match (e.g.,
the word “green” printed in blue font, or “red” printed in green) a subject who was asked
to specify the color of the text was going to perform it more slowly and with a greater
probability of error than if the text and its color were compatible (see Figure 4). Every next
scene was more stressful (more difficult) and it was directly followed by relaxation scene.

(a) (b)

Figure 4. Stroop test (a) a psychological test definition; (b) screenshot from the VR application
(3rd level).
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The second scene had a purely relaxation purpose. The VR environment was com-
posed of forest scenery (see Figure 5) enriched by a delicate, instrumental theme with the
sounds of chirping birds. Therapeutic exercise involved following the sphere, which was
moving horizontally. The sphere moved constantly in the subject’s field of view, and a
properly performed exercise denied the possibility of head movement. In contrast to
stressful scenes, every next relaxation scene was identical.

Figure 5. Subsequent scenes of Eye Movement Desensitisation and Reprocessing (EMDR) relaxation session.

At the beginning of the experiment, the operator presented the subject with the
standard protocol of experiment. The protocol included information on the procedure
of EEG and VR headset installation and time of VR immersion. All subjects were free to
ask any questions they deemed necessary. The sequence of the actions was the following:
information to the subject, EEG and VR headset mounting, immersion, VR and EEG
headset unmounting. The target platform was Oculus Quest [47] (individual resolution of
1440 × 1600, refresh rate of 72 Hz, 104 horizontal and 98 vertical FOV).

3.2. Compliance with Ethical Standards

All objectives of the experiment were achieved with low ethics level, according to the
Polish National Science Center. Participants were informed (1) about the purpose of the
study, (2) that they had the right to stop the experiment at any time without providing any
reason and (3) that they could stop the experiment if they felt sick or had any discomfort.
All the training sessions were performed under the supervision of a researcher in case there
was an emergency. All participants signed informed consent, a Participant information
sheet and consent form before undertaking the VR training. Additionally, we applied to the
Commission on the Ethics of Scientific Research from the Lodz University of Technology
and received a positive decision (#2/2021).

3.3. EEE System

The EMOTIV EPOC Flex (see Figure 6a) is a flexible 32-channel EEG system, with
16 electrodes terminating in a left wiring harness and 16 in a right wiring harness. There
was an additional common-mode sensor (CMS) and driven-right-leg (DRL) sensor, which
served as the reference. The electrodes were located at the positions presented in Figure 6b.
The device had an internal sampling rate of 1024 Hz and, after filtering, the data collected
by the controller were sent to the computer at approximately 128 Hz. The signal was
transferred wirelessly, which offered much greater mobility, as well as ease of mounting
the headset. EEG resolution in Epoc Flex was 14 bits, 1 LSB = 0.51 µV (16 bit ADC, 2 bits
instrumental noise floor discarded).

The EMOTIV EPOC Flex was supplied with an application called EmotivPRO, which
allowed the user to view data streams and frequency analysis in real time. Raw EEG
graphs were displayed as µV per sample and frequency analysis view allowed the user
to observe frequency information of a particular EEG channel [48]. Flex has in-built EEG
signal pre-processing such as a high-pass filter of 0.2 Hz and low-pass filter of 45 Hz. It has
been proven that EMOTIV EPOC Flex is able of capturing data similar to research-grade
EEG system [49].
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(a) (b)

Figure 6. The EMOTIV EPOC Flex: (a) a subject in EEG head cap system; (b) electrode positioning.

All of the above-mentioned functionality could be used without a custom application
through the supplied control panel. The panel had a tab for each suite with a simple
interface for visualizing and controlling, along with a display of the contact quality of
each sensor. Additionally, Emotive provides an API powerhouse, enabling developers and
researchers to create personalized applications using real-time brain data.

3.4. Background on EEG Wave Analysis

EEG signal can be analyzed taking into consideration how often and where the oscilla-
tions occurred. The first approach was based on spectrum analysis and the oscillations were
characterized by the frequency. Many previous research allowed to form norms describing
average values and physiological extremes of basic recording parameters. The basic rhythm
of correct EEG signal of an adult is described as Alpha rhythm, which is registered in the
back side of the head (in occipital, occipito-parietal and temporo-occipital areas). It is
characterized by a signal change frequency from 8 Hz to 12 Hz and an amplitude of approx.
35 µV. Alpha waves are the default ‘relaxed and alert’ modes of the brain. Comparable
conditions are valid for other parts of the brain. In the frontal lobes, during time of relax-
ation, high alpha levels could be measured as well, and they were suppressed when the
subject started being involved in other activity. A common EEG practice is the comparison
of Alpha suppression levels between different parts of the brain, so as to identify the areas
currently in use [50].

Another distinctive parameter of EEG recording is Beta waves (13–28 Hz) present
in frontal parts of the brain in the state of conscious relaxation. Beta activity of multiple
and volatile frequencies is an indicator of brain activity, problem solving, anxiety or
active concentration.

Theta rhythm (4–8 Hz) with an amplitude reaching 30 µV is commonly observed
in the hippocampus and rhythm generation is dependent on medial septal area. Theta
activity can be recorded in the arousal, drowsiness and meditation-like states, and it is
often associated with creative, mindfull or meditative conditions. Delta waves (less than
4 Hz) with an amplitude approx. 50 µV should not be observable in a healthy subject’s
EEG record, and they indicate pathology [49].

Gamma rhythm (greater than 30 Hz) indicates physical activity, motoric functions
and cognitive processes characterized by heightened activity of neural network. Basically,
Gamma waves are recorded in the frontal brain parts during a quick, coupled processing
such as fight/flight reaction or multitasking and task switching. In the case of the latter,
Gamma bursts are easily identified when the ongoing task is moved to the short-term
memory and a new task becomes processed concurrently [51,52]. Full description of
individual waves is included in Table 2.
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Table 2. Summary of brain wave activity [53–55].

Name Band Amplitude Description

Delta 0.5–4 Hz 100–200 µV

The state of deep sleep without dreams.
Too much content may indicate a brain injury, and may also be
an indicator of learning disabilities. Too little content may
indicate an inability to enlighten the brain.

Theta 4–8 Hz 30–100 µV

They are found in most of the sleep.
They can occur during deep meditation and concentration,
as well as under conditions of emotional stress [56].
Depression, hyperactivity, impulsiveness, hopelessness and
inattention are observed when theta waves are visible; if they
are suppressed, anxiety, poor emotional awareness and stress
can be observed [57].

Alpha 8–12 Hz ≤50 µV

The state of relaxation, alpha waves appear just before falling
asleep and immediately after waking up.
They are also related to the state of deep reflection, reflecting on
something in concentration, related to creative thinking.
They testify to well-being, peace and positive thinking. They
are present in a resting position with eyes closed during ERP
(event-related potential) experiments [56].
They disappear during increased mental effort, e.g., performing
mathematical operations [58].
Too little of them may indicate anxiety, high stress and
insomnia [57], too much content may indicate inattention and
too much relaxation.

Beta
(SMR, sensorimotor rhythm)
or beta 0

13–15 Hz ≤30 µV

The state of concentration of attention, increased mental activity
and alertness. Generally for beta waves, the low amplitude of
this wave may indicate problems related to concentration,
dreams and depression. Too high a content will be associated
with nervousness, inability to relax and stress.

Low beta
or beta 1 15–18 Hz ≤30 µV A state of very intense attention and concentration, logical

thinking and controlling emotions.

High beta
or beta 2 >18–28 Hz ≤30 µV

State of nervousness, excitement and irritation and increased
mental activity. In a healthy person it may be a symptom of
panic [56].

Gamma 30–200 Hz 3–55 µV

Numerous studies show that the amplitude of these waves
increases when the subject focuses on the source of the stimulus.
The duration of the gamma wave is very short and amounts to
several dozen ms.
Too much of them may indicate anxiety, high agitation and
stress, too little may be associated with depression and be an
indicator of learning disabilities.

One should also mention artifacts registered during EEG signal recording, which
can have various causes and can be divided into biological and technical. In case of
biological artifacts, they stem from organs other than the brain which exhibit electric
activity. For example, artifacts connected with muscle tension appear in almost every EEG
recording and they demonstrate highest values in frontal and temporal areas [59]. Thus,
before every EEG examination, a closed/open eyes trial was performed. On the other hand,
technical artifacts are registered in connection with activity of electric devices. The most
common source is an incomplete contact of an electrode with skin [52]. It was observable
in subjects with thick or long hair and in the situation of subjects’ movements.

3.5. Data Pre-Processing

The high-density EEG files (.csv) extracted directly from the Emotive EPOC FLEX
system were converted to .fif files using methods from the MNE-Python library [60]. These
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are data structures based on Neuromag’s FIF file format. As mentioned earlier, the signal
at the earlier stage was processed by the high-pass filter of 0.2 Hz and the low-pass filter of
45 Hz built into the EPOC Flex device.

The data were pre-processed and the signal values were adjusted to the level of units
required in the .fif files (the EMOTIV EPOC device records in µV, whereas MNE library
requires V). Figure 7 shows the raw signals registered for a sample person with the ranges
of characteristic events marked.

Figure 7. Signals recorded for a sample participant (RAW file).

Recorded EEG signals can be potentially influenced by many factors, some of them
being activity of different parts of the brain, heartbeat, blinking, etc. However, as long as
these various source signals are statistically independent and non-gaussian, it is usually
possible to separate the sources using independent components analysis (ICA), and then
re-construct the sensor signals after excluding the sources that are undesired [61,62].

ICA is a technique for unsupervised exploration of multichannel data widely used
in many areas of science. The use of ICA can be found, for example, in biology and
medicine [63–67], chemistry [68–70], astronomy [71,72], financial analysis [73,74], market-
ing [75], engineering [76], etc. ICA is also often used to preprocess data obtained from
EEG [77–80].

The used MNE-Python library implements three different ICA algorithms: Infomax,
FastICA and Preconditioned ICA for Real Data (Picard). The most modern one is Picard
and it is more robust than other algorithms in cases where the sources are not completely
independent, which typically happens with real EEG data [81]. Therefore, this algorithm
was used to prepare the data in our research. Figure 8 shows a fragment of the signals
recorded for a sample participant before and after applying ICA.
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Figure 8. Signals recorded for a sample participant before and after the application of ICA (se-
lected 6 channels limited to 18 s). Disruptions in the signal were related to the exceeding of the
maximum range.

For all signals from each session, fitting ICA to data was performed using 32 channels.
Channels were scaled to unit variance (“z-standardized”) as a group by channel type
prior to the whitening by PCA (Principal Component Analysis). Number of principal
components (from the pre-whitening PCA step) that were passed to the ICA algorithm
during fitting was 16. The ICA method to use in the fit method was Picard. Maximum
number of iterations during fit was 500.

A zero-phase finite impulse response (FIR) filter was applied using the window design
method (firwin from the SciPy library; Hamming window). The parameters of the filters
used (one-pass, zero-phase, non-causal high pass filter) are provided below:

• Windowed time-domain design (firwin) method;
• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation;
• Lower passband edge: 1.00;
• Lower transition bandwidth: 1.00 Hz (−6 dB cutoff frequency: 0.50 Hz);
• Upper passband edge: 4.00 Hz;
• Upper transition bandwidth: 1.00 Hz (−6 dB cutoff frequency: 4.50 Hz);
• Filter length: 423 samples (3.305 s).

Detailed information about filtering EEG signals can be found in the Python-MNE
library documentation and in [82].

The MNE software also includes a number of graphical tools that facilitate data
preprocessing and post-analysis. Figure 9a shows the power spectral density (PSD) for
each electrode. The PSD analysis, determined by the Welch method [83] in MNE software,
provides a quick method of finding spectral artifacts and and outlier channels [82].

Rejection based on interpeak amplitude was also used during analyses. EEG data are
inherently noisy, and trials can sometimes be contaminated due to high-amplitude artifacts,
reducing the effectiveness of the search for the required information. Existing software
(including MNE library), for processing M/EEG data, offer a rudimentary solution by
marking a trial as bad if the peak-to-peak amplitude in any sensor exceeded a certain
threshold. However, the threshold was usually set manually after a visual inspection
of the data. We imposed a limitation on data quality: we rejected any epoch where the
peak-to-peak signal amplitude exceeded reasonable limits for this type of channel. This
was performed using the values in the rejection dictionary. These values depended on the
set of equipment and recording conditions. It was necessary to find the correct balance
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between data quality and loss of power due to too many dropped epochs. Fortunately, we
knew the event points to be analyzed and distinguished as individual epochs. Hence, it
was easier to select the required rejection threshold for the methods from the MNE library.
It was chosen at the level of 600 micro-Volts. At this level, all events (about 90%) were
correctly detected, and no additional events resulting from disturbances in the signal of
some of the electrodes were detected.

Figure 9. Example of (a) the power spectral density for each electrode and (b) power spectral density
after applying filters for individual frequency bands (participant 1).

Event markers related to the beginning of the stressful situation (starting to perform
indicated tasks) and to the beginning of relaxation between tasks were also included in
the data structure. To facilitate the analysis, the stress-related markers were divided into
individual signals. Ultimately, a single data structure consisted of EEG signals (32 channels
in the international 10–20 system described with names according to the standard) in
Figure 6b and event signals EMDR, Stroop1, Stroop2 and Stroop3. According to the descrip-
tion, a maximum of three stress-inducing events and three relaxations occurred during
one session.

3.6. Classification

The final step of the proposed method was classification, which aimed to assign
unknown data to a specific category (in this case: stress and relaxation response). We
applied two different approaches—machine learning as well as deep learning Neural
Network (NN)—in order to compare their performances based on the recognition rates.
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In case of machine learning methods, the feature vector consisted of the average GFP
values of a given frequency group for the first, second and third minutes of a particular
event. The verification of efficiency of feature subsets (subsets consisted of separate brain
wave groups) was carried out using several types of classifiers such as k-nearest neighbors
algorithm (k-NN), support-vector machines (SVM) [84], Multilayer Perceptron (MLP) [85]
and Random Forest (RF) [86] using Weka [87], with 10-fold cross-validation [88]. This
approach allowed the evaluation of the efficacy of particular features set and determined
the most efficient ones. In the course of the research, the parameters for each classifier were
identified and selected to achieve the highest recognition results.

In case of second approach, we used a CNN based on low-level features (raw signal
and frequency information) in terms of stress recognition efficiency. The application of
CNN for EEG-based stress recognition is illustrated in Figure 10. The input was in a
form of time-frequency representation (TFR) images—averaged values from all electrodes.
Morlet wavelet transform, which is equivalent to a complex sinusoid with Gaussian
envelope [89,90], generating a time–frequency representation of the EEG signal was used
to create the images. An example of a set of images can be seen in Figures A1 and A2.
When creating the images, the frequency range (Y axis) was adopted from 1 Hz to 28 Hz,
with the same 3 Hz step that was chosen because such a division provided practically
correct boundaries at the dividing points between alpha, beta waves, etc. The time was set
at the first minute from the beginning of the event. According to the EEG record analysis,
this was a sufficient time to notice the differences between the analyzed emotions.

(a)

(b)

Figure 10. The process of using a CNN for EEG-based stress recognition (a) shows the process of
making the heat-map image based on EEG signals, and (b) the structure of the CNN classifier, which
uses the heat-map images as its input.

For CNN’s following architectures were tested: containing from 2 to 3 convolution
layers (each convolution layer was followed by a max pooling layer) followed by 1 to
2 dense layers, from 50 to 400 neurons for convolution and 50 to 200 for dense neurons.
For all CNN types, separate models were built, increasing the neuron count on each layer
by 25 for each new model. The best results (87.5%) were obtained for a network of 4 layers,
3 layers of convolution neurons 250, 250, 100 for each layer, respectively, and a dense layer
of 100 neurons.
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We used leave-one-subject-out cross-validation. All CNNs were trained using ADAM [91]
for gradient descent optimization and cross-entropy as the cost function, as it is a robust
method, based on well known classical probabilistic and statistical principles, and are, there-
fore, problem-independent. It was capable of efficient solving difficult deterministic and
stochastic optimization problems [92]. Training was set to 500 epochs with an early stop
condition if no loss decrease was detected for more than 30 epochs.

To investigate which electrodes from EMOTIV EPOC Flex were redundant for such
research, we analyzed the classification performance for each electrode separately.

4. Results and Discussion

In this section, we summarized the experimental outcome of the study, followed by
their interpretation.

4.1. Data Analysis Results

The standard EEG procedure was based on the analysis of a response to specific
stimuli/events. The occurrence of such a stimulus was used to define the epoch, which
was based on the recorded signals just before the stimulus and after the stimulus for a
specified period of time. Signal values could be stored in the form of all channel values (in
MNE software, the epoch class is responsible for this) or in average form (evoked class).

By analyzing successive epochs related to events in the obtained data, only in a
few participants was it possible to find a clear change in the amplitude of signals at the
beginning of a given event. There were two samples showing exemplary signals and
topographic maps at specific time points for stress-related epochs, and they are illustrated
in Figure 11. This figure also presents the delay in the reaction to the test initiation,
characteristic for the remaining cases. The lack of a clear response to the start of the event
in most samples might have been due to the absence of a distinct stimulus at the start of
the event.

Figure 11. Butterfly plots based on EEG signals (32 channels) with scalp topographies for two
participants; at time 0, the event with the label Stroop2 started.

Specific events were spread in time (2–4 min) and, in most samples, when analyzing
the entire course of the recorded EEG waveform, it was possible to observe a clear difference
in the frequency of individual signals for a given event (Figure 7). Observing the signals



Electronics 2021, 10, 2840 15 of 26

from individual electrodes for three stressful situations, we noticed three changes in the
signals in 11 participants, two changes in 10 participants, and one change in 4 participants.
In three cases, the change was negligible.

It should be noted that, particularly, the initiation of the first of the three stress-related
events was often poorly distinguishable from the signals recorded before the event (see
the start of Stroop1 in Figure 7). This may have been due to the fact that the event occurred
within 2–3 min of the session, so the participant may have still been uncomfortable in the
clinical situation and, potentially, a little bit stressed by the new experience. Only the first
cycle of relaxation made it possible to record a stressful situation more clearly.

The other circumstance relevant to the recorded signals was that the stress phases did
not end abruptly with the start of the relaxation phase. It was rather a smooth transition, so
that there was no clear line separating the events. Therefore, the next step was a thorough
analysis of the frequency spectrum in individual events.

Based on the published literature, epoching was performed for each trial over a time
window of 3 s, and the resulting files were high-pass filtered at 0.1 Hz. The analyzed
frequency band range was 0–60 Hz, with band splitting Alpha, Beta, etc.

The next step was to analyze specific frequency bands during the occurrence of
particular events. In EEG signals, several types of activity characteristics for certain
frequencies and amplitudes could be distinguished. There were five essential groups
based on the different frequency ranges. They were Alpha (α), Theta (θ), Beta (β), Delta (δ)
and Gamma (γ) bands. The terms and bands presented in Table 2 were used in the analysis,
and the global field power (GFP) was used for the comparison.

The idea presented in [93] included in the MNE library documentation was adopted.
The first stage was filtering the signals according to individual bands Figure 9; then, the
Hilbert transform was applied. The bands were corrected and averaged, making it easy
to compare the final GFP size across bands. A more detailed description of this method
is presented in [94]. An example of the effect of the above is presented in Figure 12.
Such calculations were performed for all participants for all stress-related and relaxation-
related events.

Figure 12. Global Field Power for individual brain waves for participant 1, averaged values for a
stressful situation.

Regarding stress, when analyzing the averaged GFP values from three stressful situa-
tions, greater values were observed for Theta, Alpha, Beta and Gamma waves at the start of
the events. Then, after about 1.5–2.5 min, their suppression could be noticed. In three cases,
there was no increase in intensity before the event started, although the above suppression
was still reported. The remaining 10 cases were inconclusive or not consistent. After the
start of the event, changes in the Alpha and Beta waves in seven cases caused a decrease of
about 1.5–2 min in the Beta/Alpha ratio.
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The most characteristic feature of the relaxation-related brain wave charts in the
studied cases was the presence of Theta and Alpha waves before the start of the event
and their gradual suppression within 1–2 min. This occurred in 14 cases and a potential
explanation of this phenomenon was that the onset of the relaxation event occurred just after
the stress and relaxation was not instantaneous but gradual. Only in four cases one could
notice changes in brain waves at the start of the event. In nine cases, the gradual suppression
of Beta 0 waves was also clearly visible, and in 10 cases, the gradual suppression of Beta
1 waves.

It should be added that this analysis was based on reviewing six waveforms for
28 participants and for two different events, which amounted to 336 waveforms. In the
next step, we determined the mean values in the next four minutes for each wave and
event. The results are collected in Figure A3 (stress) and Figure A4 (relaxation). The means
were calculated for one minute before a given event (marked as 0 (min)) and for three
consecutive minutes after the event (marked as 1, 2, 3 (min)). The values for individual
participants differed; therefore, in the next step, the number of minimums and maximums
for a particular participant in a given time range was calculated. The designated minimums
and maximums were the basis for further analyses. For relaxation (Figure A4), it can be
seen that the maximum values occurred primarily for all waves just before the event (e.g., 21
of 28 maximums at time 0 (min) for the Theta wave). This was because relaxation occurred
immediately after the stress event. The second and third minutes were characterized by a
reduction in the calculated minimum values for a given participant. For stress, the results
were more variable (Figure A3). The greatest number of changes in the first minute from
the start of the event could be seen for the alpha wave. For 18 participants, in the first
minute, there was a maximum for the alpha wave. The acquired mean values were used to
classify the state of stress and relaxation.

Overall, in more than half of the cases, traits characteristic of stress-related and
relaxation-related events were observed in the recorded brain waves. Sedation usually
appeared with a delay of one or two minutes. Additionally, according to the interview
with the participants and the previous research of the authors of this work [95], the EMDR
method using VR had a calming effect. Traits related to stress or nervousness could be seen
much better when analyzing the non-averaged values of individual events. The intensity of
making the participants nervous was increased, and this was also seen in the increasing lev-
els of individual brain waves. It should be noted that some of the participants claimed after
the session that the stressful situation, due to the fact that it was related to the performance
of a specific task, led to increased attention and concentration, and not to nervousness. This
could be seen from the increased level in Beta 1 waves and the simultaneous disappearance
of Alpha waves. Due to the stress-inducing purposefully incorrect feedback introduced
while solving tasks, nervousness appeared in some participants only after the stressful
situation was over. Its appearance at the end of the task (Beta waves) and its gradual
damping during the EMDR method was seen in about 1/3 of the cases.

4.2. Classification—Machine Learning

Classification performances (in %) of different feature representations for the set of
two classes—stress and relaxation—are presented in Table 3.

It is clearly visible that the best results were achieved for the subsets containing
Theta-related features (94.64% using SVM and MLP). The lowest results were collected in
Beta-related features (Beta—76.85%; Beta 1—66.07%; Beta 2—75%), which was noticeable
for all types of classifiers. Analyzing results retrieved from different patterns, a significant
recognition rate improvement when using the MLP classifier could be observed in most
cases. Only in the case of Alpha-related features SVM gave better results than MLF.

The overall accuracy using all features as an input vector (COMBO) could be observed
compared to one source-feature set. Furthermore, in this case, the best results were achieved
with MLP (96.42%). On the other hand, the lowest increase in results was observed for
the k-NN algorithm (83.93%). As expected, the effectiveness of classifiers whose testing
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and training sets comprised features gathered from different sources was much better than
those operating on one particular feature set. The number of features by combining each
source set increased the quality of the classification. However, it has to be emphasized that
we obtained results barely 2% lower using only Theta-related features.

Table 3. Classification performances (in %) of different feature representations for the set of two
classes: stress and relaxation. Numbers in bold and red highlight the maximum classification rates
achieved in each column. COMBO refers to all extracted parameters in one feature-vector.

k-NN RF SVM MLP

Theta 91.07 92.86 94.64 94.64

Alpha 62.50 60.71 76.78 73.21

Betha 0 57.14 50.00 64.28 66.07

Betha 1 51.78 55.35 62.50 66.07

Betha 2 53.57 53.57 71.43 75.00

Gamma 57.14 57.14 71.42 80.36

Combo 83.93 94.64 96.42 96.42

4.3. Classification—CNN Model

Figure 13 shows the results obtained in the classification. The results were valid for the
analysis based on the averaged values for all electrodes (the set of used images is shown in
Appendix A: Figures A1 and A2), as well as for each electrode separately. Due to the fact
that there were 28 participants, 56 images were generated for each electrode in two classes
(stress and relaxation).

Figure 13. Classification results, mean value based on analysis of all electrodes, and values based on
analysis of individual electrodes. Legend: CA—accuracy classification score; F1—f-score; AUC—area
under the ROC curve.

The first columns present the quantities of correctly classified images. On this basis,
coefficients describing the quality of the classification, i.e., F1-score, precision and recall,
were determined separately for each class. The last columns show the class-averaged results.
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Additional factors that were determined were: CA—accuracy classification score; AUC—
area under the ROC curve. Individual values of these two coefficients are, additionally,
presented in Figure 14. Classification quality scores were up to 90% (AUC). According
to the authors, this was a promising result, the more so as the entire frequency range
was taken into account. However, it is worth noticing that equally good results could be
obtained based on single, particular brain waves. An important element of this stage was
also to determine which of the electrodes allowed for a better classification of the analyzed
emotions. The following assessment parameters were adopted for the classification factors:

• Value below 70%—classification ineffective;
• Value in the range of 70–80%—classification not assigned to any of the groups;
• Value above 80%—classification sufficient.

Figure 14. Classification results, mean value based on analysis of all electrodes—CA.

The indicated criteria were marked on the diagram in Figure 14. Additionally,
Figure 15a (CA coefficient) and Figure 15b (AUC coefficient) show the electrode arrange-
ment with electrodes marked, which allowed for a sufficient or ineffective classification. CA
and AUC values were related, although due to slightly higher AUC values, the obtained
images were slightly different for the same criteria. What drew attention was the high
symmetry in the obtained results. Mid-area electrodes along the entire head (Fz, Cz, Pz,
Cp1, Cp2 and Oz) gave unsatisfactory results (blue color of the electrodes). The outer
electrodes (FT9, FT10, TP9 and TP10) were characterized by high-classification efficiency
(red color of the electrodes) for both CA and AUC. For the AUC ratio, electrodes F3, F4,
FC5, FC6, CP5, CP6, P7 and P8 also met the assumed criterion. Only the high AUC values
obtained with the FP2 electrode disturbed the full symmetry.

(a) (b)

Figure 15. Electrodes with minimum (blue) and maximum (red) CA (a) and AUC (b) values in the
classification (average over class).
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5. Conclusions

In this paper, we investigated the use of EEG signals to classify a subject’s stress level
while using a VR environment. For this purpose, we created a VR interactive simulation
with relaxation scenes based on psychotherapy treatment utilizing bilateral stimulation,
and used the Stroop test as a stressor. The experiment was conducted on a group of
28 healthy adult volunteers whose EEG signal was continuously monitored using the
EMOTIV EPOC Flex wireless EEG head cap system. Then, we classified the stress level
using CNN and conventional machine learning algorithms. The obtained results were
promising and a further study is greatly encouraged as the popularity and widespread
use of VR solutions requires a more systematized and automated approach for usability
testing. With the current pace of technology development, it is not a theoretical need,
but an immediate necessity.

Participants in the post-interview acknowledged that the developed EMDR method
used in the virtual environment was excellent for relaxation, which was consistent with our
previous research [95]. At the same time, some participants pointed out that the prepared
‘stressful’ tasks induced a state of focus rather than a state of nervousness. This could have
directly affected the deterioration of the later stage classification results. Therefore, a more
detailed participant survey should be used in future studies. Another approach might
include repeating the session with the same participant, although the acquired experience
of the participant could have interfered with the results.

The proposed method of using mean values from Global Field Power for individual
waves divided into time units (consecutive minutes from the beginning of the event) turned
out to be easier to analyze than the detailed analysis of the full distribution for a given
wave that was performed at the beginning of the study. At the same time, the obtained
values proved to be sufficient to classify two emotions, stress and relaxation, using MLP.
The results exceeded 90% of the classification accuracy. The best results were obtained
considering all brain waves (96.42%). When discussing individual waves, the best results
were acquired from Theta (94.64%), Gamma (80.36%) and Alpha (76.78%) waves.

The proposed method of the image analysis that utilized Time-Frequency Representa-
tion (TFR) using Morlet wavelets additionally allowed an excellent classification between
stress and relaxation. However, the average results were slightly lower than in the earlier
stage of analyses. It may have been caused by the amount of data. Since the amount was
relatively small, the CNN was more difficult to train and apply. Thus, the MLP gave better
results. The method made it possible to determine which electrodes proved useful for
successful classification and which were redundant. The symmetry of useful and redun-
dant electrodes was also worth noticing. The electrodes in the middle part of the head
gave unsatisfactory results, while the lateral ones classified the analyzed emotions very
well. At the same time, the obtained results allowed us to focus in subsequent analyses on
individual electrodes that classified the considered emotions most accurately. Decreasing
the number of electrodes made it possible to analyze a much lower volume of data; thus,
reducing the computing resources necessary. Additionally, it might increase the comfort of
the study, because participants would be less encumbered by required equipment.

To summarize, we had a lot of concerns about measuring EEGs with the EMOTIV
EPOC Flex while using the Oculus Quest HMD, since it required an intricate process of
applying the gel for EEG measurements. Although the VR experience required stillness
from the user, some of the recordings were rejected for further analysis due to the low
quality (instantaneous signal quality was less than 95%). However, the overall results
were optimistic and exceeded most results obtained in similar studies related to mental
stress classification using EEG signals (for more, see the latest review on stress assessment
methods using an EEG [96]). Therefore, one can conclude that due to the separation from
the natural environment, VR causes a more substantial emotional involvement, which
leads to a better recognition rate.
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Appendix A

Figure A1. A set of pictures (TFR using Morlet wavelets) for relaxation for each participant—averaged
values from all electrodes.

Figure A2. A set of pictures (TFR using Morlet wavelets) for stress for each participant—averaged
values from all electrodes.
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Figure A3. Average GFP values for individual brain waves and for individual participants calculated for stress. The means
were counted for four minutes: 0 (min)—average for the minute before the event; 1, 2, 3 (min)—average for the consecutive
minutes of the event. The number of minimum and maximum values for individual participants was summarized under
the tables.
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Figure A4. Average GFP values for individual brain waves and for individual participants calculated for relaxation.
The means were counted for four minutes: 0 (min)—average for the minute before the event; 1, 2, 3 (min)—average for
the consecutive minutes of the event. The number of minimum and maximum values for individual participants was
summarized under the tables.
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