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Abstract: Anti-jamming games have become a popular research topic. However, there are not
many publications devoted to such games in the case of vehicular ad hoc networks (VANETs). We
considered a VANET anti-jamming game on the road using a realistic driving model. Further, we
assumed the quadratic power function in both vehicle and jammer utility functions instead of the
standard linear term. This makes the game model more realistic. Using mathematical methods, we
expressed the Nash equilibrium through the system parameters in single-channel and multi-channel
cases. Since the network parameters are usually unknown, we also compared the performance
of several reinforcement learning algorithms that iteratively converge to the Nash equilibrium
predicted analytically without having any information about the environment in the static and
dynamic scenarios.

Keywords: anti-jamming game; communication game; reinforcement learning

1. Introduction

Vehicular ad hoc networks (VANETs) are designed to provide communication between
vehicles, as well as between vehicles and infrastructure. Similar to any other networks,
they are vulnerable to jammer attacks that try to disrupt communications between vehicles.
To achieve this goal, the jammer creates a denial-of-service (DoS) attack by sending fake or
replayed signals in order to flood the network with traffic. Such attacks are an important
problem for which an effective solution must be developed. To combat jammer attacks,
the vehicles can change transmission channels, increase transmission power, or even
change their location to avoid being in close proximity to the jammer. It is convenient to
consider such a game in terms of game theory [1]. Within the framework of this theory, it
is assumed that one or more cooperating vehicles maximize their utility functions, while
each of the jammers maximizes its own. In the simplest case, the vehicle utility function
is the difference between the signal-to-interference-plus-noise ratio (SINR) and signal
transmission power with a certain coefficient. In other words, the goal of the vehicles
is to maximize SINR under the assumption of reasonable signal transmission power.
The jammer utility function is defined as the difference of the vehicle utility function taken
with the opposite sign and its signal transmission power with a different coefficient. This
means that the jammer minimizes the vehicle utility function and has limitations on its
signal transmission power. The optimal strategy of the vehicles and the jammers can be
determined as the Nash equilibrium of this game.

However, the game theory approach cannot always be used explicitly in practice,
since the network parameters are usually unknown. Because of this, over the past decade,
researchers have been finding the optimal solution implicitly using machine learning algo-
rithms [2], which has become popular in research. These algorithms, through trial and error,
constantly improve their strategies. One of the most popular algorithms is Q-learning [3]
and its modifications, due to their fast convergence and simplicity of implementation. We
discuss below several articles that use game theory and machine learning algorithms for
finding optimal strategies in the anti-jamming game in various settings.
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In [4], the authors examine a case in which the jammer attempts to disrupt the com-
munication between two consecutive vehicles in a platoon. Since data are transmitted over
one channel, both the jammer and the vehicles adapt their transmission power in order to
maximize their utility functions. The authors use a modification of Q-learning algorithm
called Dyna-Q and compare the learning outcomes with the classic Q-learning algorithm.
The results convincingly show that Dyna-Q converges to the same strategy, but has a higher
convergence rate. The articles [5,6] discuss the VANET anti-jamming game with drones.
The essence of the game is that in the case of a jammer attack, the drone replays the data
sent by VANET nodes in order to increase SINR and reduce bit error ratio (BER). Thus,
at every time moment, the drone decides whether to send data or not. The authors deduce
the Nash equilibrium [7] and compare it with results iteratively found by Q-learning and
its effective modification called policy hill climbing.

The case of a cooperative game between devices is also popular in the literature.
The difference between this case and single-agent games is that instead of having indepen-
dent utility functions, devices have a common utility function that evaluates the network
state as a whole. Such games are more difficult to consider, since in this case there is a
large number of system states that grow exponentially with the device number. In [8,9],
the authors examine an anti-jamming game with several transmitting cooperating devices.
Q-learning algorithm for finding a common optimal strategy in this formulation shows its
advantage over the non-cognitive sub-band selection policy. In [10], a game with cooper-
ating devices and one jammer is considered. The authors propose an iterative algorithm
for finding a cooperative strategy and compare the results with random anti-jamming and
selfish anti-jamming algorithms. The simulation results show that the iterative algorithm
achieves higher throughput and better performance than non-cooperative algorithms.

Recent articles consider satellite anti-jamming games. In [11], the authors discuss the
anti-jamming coalition game. The purpose of the satellites is to form subnetworks in order
to transmit information under jamming attacks with a minimum energy consumption,
while the task of the jammer is to find the optimal location. The authors successfully
use Q-learning algorithm in order to find a suboptimal satellite strategy in an unknown
jamming environment. In [12], the authors apply deep reinforcement learning to find a
satellite routing scheme and a fast response anti-jamming algorithm.

In this article, we examine a VANET anti-jamming game as in [4–6]. However, in-
stead of the static model considered in [4], we use the intelligent driver model [13] to
describe the evolution of the network in the case in which the vehicles are organized into a
platoon. All simulations were carried out in the case of a straight road. We assume that
the two communicating vehicles are pursued by the jammer interrupting their ongoing
communication. We considered two cases: a single-channel and multi-channel game.
In the multi-channel case, it is assumed that the vehicles change channels according to a
predetermined pseudo-random sequence. In this situation, we presume that the jammer
shares its power between channels because it cannot predict the next state of the network in
advance. To confirm the simulation results, we formulate and prove theorems that describe
the Nash equilibrium of the game, which can be interpreted as the optimal strategy for
the vehicle and the jammer. At first, we suggest that power included in the vehicle and
jammer utility functions is linear, but from the Theorem 1 presented in this paper it follows
that the optimal vehicle strategy is to transmit at maximum power; therefore, we change
the classic formula of the utility function in order to find a non-trivial vehicle strategy.
To do this, we consider the quadratic power function in both vehicle and jammer utility
functions. Such a power function is closer to practical implementation, since transmitting
on higher power levels requires a greater expenditure of system resources than at low
levels. Under this assumption, we formulate and prove the Nash equilibrium theorems in
both single-channel and multi-channel cases. Next, we examined several machine learning
algorithms such as policy hill climbing, deep Q-learning, dueling Q-learning, and dueling
deep Q-learning. All the algorithms successfully converge to the theoretically derived Nash
equilibrium. To the best of our knowledge, this is the first article to discuss an anti-jamming
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game with a quadratic power function and analytical derivation of the Nash equilibrium
in the multi-channel case. We also want to note that this article makes a comprehensive
comparison of modern Q-learning algorithms.

The article is organized as follows. In Section 2, the anti-jamming game is described
in terms of game theory. In Sections 3 and 4, the necessary and sufficient conditions of the
Nash equilibrium are established in the single-channel and multi-channel cases. Section 5
describes machine learning algorithms that are used in Section 6 in order to find the optimal
vehicle and jammer strategies. We provide a diagram explaining the structure of the article
in Figure 1.

Figure 1. Content and structure of the article.

2. Game Description

In this section we consider the anti-jamming game on a single road. We assume that
two communicating cars are chased by the jammer. Signal-to-interference-plus-noise ratio
(SINR) of the vehicle is given by the formula

SINR =
h2

carx
σ2 + h2

J y
,

where σ2 is a noise power, h2
car and h2

J are vehicle and jammer channel power gains, x and
y are signal transmission powers of the car and the jammer, respectively (see Figure 2).
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Figure 2. Illustration of anti-jamming game.

We assume that the utility functions of the vehicle ucar and the jammer uJ are calculated
by the formulas taken from [14]

ucar =
h2

carx
σ2 + h2

J y
− Ccarx, (1)

uJ = −
h2

carx
σ2 + h2

J y
+ Ccarx− CJy, (2)

where Ccar and CJ are positive transmission costs of the vehicle and the jammer. The goal
of each player is to maximize their utility functions. In the next section, we consider
utility functions with quadratic power function, but in this section we focus on this stan-
dard model.

We assume that after the signal is transmitted, the vehicle receives back the signal-to-
interference-plus-noise ratio (SINR) value and, based on this information, makes a decision
on increasing/decreasing the transmission power. By PC and PJ we denote maximum
vehicle and jammer transmission power, respectively.

3. Nash Equilibrium in the Case of the Linear Cost Function

By definition, the Nash equilibrium is a strategy (x∗, y∗), which satisfies the following
two inequalities:

ucar(x∗, y∗) ≥ ucar(x, y∗), (3)

uJ(x∗, y∗) ≥ uJ(x∗, y). (4)

Theorem 1. 1. If the inequality

Ccar ≥
h2

car
σ2

holds then the point (0, 0) is a Nash equilibrium.
2. If the opposite inequality

Ccar <
h2

car
σ2

is satisfied then the Nash equilibrium is reached at the point (x∗, y∗) that can be expressed in terms
of the parameter

ŷ =
−σ2

h2
J

+
hcar

hJ

√
PJ

CJ

as follows:
x∗ = PC,
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y∗ =


ŷ, if 0 ≤ ŷ ≤ PJ ,
0, if ŷ < 0,
PJ , if ŷ > PJ .

(5)

Remark 1. As can be seen from Theorem 1, the optimal vehicle strategy is trivial. The vehicle must
transmit at maximum power or zero power, depending on the parameter values. Theorem 1 is proved
in Appendix A.

4. Nash Equilibrium in the Case of the Quadratic Cost Function

In the previous section, we examine the case in which the power increases linearly
in the car and jammer utility functions. Since the linear power term leads to a trivial
car strategy (see Theorem 1 and the remark), we decide to consider the quadratic power
term in the vehicle and jammer utility functions. In addition, it better reflects the real
game scenario, because the transmission cost grows faster than linearly with transmission
power increase.

In the case of a multi-channel game with m channels, we assume that the vehicle
selects the next channel according to a predetermined pseudorandom sequence, and all
channels are chosen equally probable. We assume that the jammer divides its power
between m channels. Thus, the jammer state is the vector (y1, y2, . . . , ym), where yi is the
power transmitted through the channel i. Since the vehicle chooses a certain channel with
probability 1/m and the vehicle utility function on this channel is given by Formula (1), we
conclude that the average value of the received reward is calculated by the formula

ucar =
m

∑
k=1

1
m

( h2
carx

σ2 + h2
J yk
− Ccarx2

)
. (6)

We assume that the jammer utility function is given by the following formula:

uJ = −ucar − CJ

m

∑
k=1

y2
k =

m

∑
k=1

1
m

(
− h2

carx
σ2 + h2

J yk
+ Ccarx2

)
− CJ

m

∑
k=1

y2
k . (7)

The sum of the transmitted jammer powers yk over all k channels must not exceed the
maximum jammer transmission power PJ and should be positive

∑
k

yk ≤ PJ , (8)

yk > 0. (9)

In addition, we assume that the car power x lies in the following range:

0 < x ≤ PC. (10)

The point (x∗, y∗1 , y∗2 , . . . , y∗m) is called a Nash equilibrium if the following inequalities:

ucar(x∗, y∗1 , y∗2 , . . . , y∗m) ≥ ucar(x, y∗1 , y∗2 , . . . , y∗m), (11)

uJ(x∗, y∗1 , y∗2 , . . . , y∗m) ≥ uJ(x∗, y1, y2, . . . , ym) (12)

are satisfied.

Theorem 2. Nash equilibrium (x∗, y∗1 , y∗2 , . . . , y∗m) exists in the game with cost functions (6), (7)
in the region given by inequalities (8)–(10) if and only if

y∗1 = y∗2 = . . . = y∗m = y∗ (13)

and one of the following conditions is satisfied.
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1. 0 < x∗ < PC, 0 < y∗ < PJ
m . In this case, y∗ can be found from the equation

y∗(σ2 + h2
J y∗)3 =

h4
carh2

J

4mCcarCJ
. (14)

The value of x∗ is expressed in terms of y∗ according to the formula

x∗ =
h2

car

2Ccar(σ2 + h2
J y∗)

. (15)

2. x∗ = PC, 0 < y∗ < PJ
m . In this case y∗ is a solution to the equation

y∗(σ2 + h2
J y∗)2 =

h2
carh2

J PC

2mCJ
(16)

and the inequality
h2

car

σ2 + h2
J y∗
− 2CcarPC ≥ 0 (17)

holds.
3. 0 < x∗ < PC, y∗ = PJ

m . The value x∗ is given by the formula

x∗ =
h2

car

2Ccar(σ2 + h2
J

PJ
m )

, (18)

and the following inequality:
h2

carh2
J x∗

(σ2 + h2
J

PJ
m )2
− 2CJ PJ ≥ 0 (19)

is satisfied.
4. x∗ = PC, y∗ = PJ

m . In this case, the following conditions must be satisfied:

h2
car

σ2 + h2
J

PJ
m

− 2CcarPC ≥ 0, (20)

h2
carh2

J PC

(σ2 + h2
J

PJ
m )2
− 2CJ PJ ≥ 0. (21)

The proof of Theorem 2 is given in Appendix B.

Remark 2. The case of one channel is a special case of the case of several channels. To consider this
case, it is enough to substitute m = 1 into Formulas (6)–(12) and Theorem 2.

Remark 3. Equalities (14) and (16) are equations for the variable y∗, which can be solved nu-
merically using binary search, since their left side is an increasing function, and the right side is
a constant.

5. Machine Learning Solution

In the previous section we derive an analytical expression for the Nash equilibrium in
the case of multi-channel and single-channel games. However, communication parameters
such as channel gains are generally unknown, which limits practical applications of these
results. Therefore, in practice, it is of interest to use machine learning algorithms, which by
trial and error find the optimal strategy. In this section, we compare the performance of
policy hill climbing [15] and several state-of-the-art modifications of the classic Q-learning
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algorithm [3]. All these algorithms are general and can be applied to turn-based games.
The essence of the game is that at each step of k each agent is in some state sk and at each
turn performs the action ak for which the agent receives a reward rk. The goal of the agent
is to maximize cumulative reward

E
{

∑
k

γkrk

}
, (22)

where E is a mathematical expectation and γ is called a discount-rate. Maximizing value (22)
could be interpreted as maximizing the average cumulative reward obtained by following
a certain probabilistic policy. The discount rate γ, (0 < γ < 1) determines how important
the future rewards are to the agent. If γ is close to 1, this means the high importance of the
rewards, otherwise they are less important and the agent focuses more on the current state.

The essence of classic Q-learning algorithm is in recalculating the Q-matrix. The value
Q[s, a] measures the quality of being in the state s and performing the action a. With a
probability ε, the agent selects an action randomly; in other cases it acts greedily and
selects an action with a maximum Q-value. Often the parameter ε decreases to zero with
an increasing number of iterations, since it is believed that the environment becomes
explored quite well over time and does not require future exploration. In the article, we
use exponential ε decay with a starting value of ε0, a limiting value of ε∞, and decay_rate
given by the formula

ε = ε∞ + (ε0 − ε∞)e−iteration_number/decay_rate, (23)

where iteration_number is the number of the game iterations until the current moment. At
each step, the recalculation of Q-matrix is performed according to the formula

Q[sk, ak] = Q[sk, ak] + α(rk + γ max
a

(Q[sk+1, a]−Q[sk, ak]). (24)

One of the main parameters of this algorithm is learning rate α which determines how
significant the impact of new experience on Q-values would be.

Policy hill climbing (PHC) is a modification of Q-learning. Its main difference from
Q-learning is the choice of action. Q-learning is based on the greedy choice of the action a
from the state s with the highest value Q[s, a] and exploration of the environment with the
probability ε. PHC selects each action with a certain probability, which is updated each
time taking into account the received rewards.

Modifications of the classical Q-learning algorithm [3] discussed below are based on
neural networks. A feature of deep Q-learning [16] is that instead of memorizing values in
Q-matrix (the size of which could be very large), the algorithm trains the neural network to
store Q-values. To do this, it uses a special method of training, called experience replay.
The essence of this method is that previous experiences are stored in a buffer of constant
length replay_mem_size and are repeatedly used to train a neural network. After each
iteration of the algorithm, batch_size of the previous experiences are randomly extracted
from the buffer and used to retrain the network.

Another modification of Q-learning is called double Q-learning [17]. Its creation is
caused by the fact that values of Q-matrix can be locally overestimated in comparison with
the real values. The essence of this modification is that instead of using one network, two
are used. One is the current version of the network, and the other is an old copy saved
a few steps back. An old copy of the network is updated every update_target_ f requency
iterations. One network version is used for value evaluation and another for the next
action selection.

A modification called dueling Q-learning [18] improves convergence and stabilizes
the training process by introducing a new element called advantage. The essence of
advantage is that it is used to compare the Q-value of the current action and the average
Q-value, so the algorithm tries to encourage more promising actions. We also implement
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double dueling Q-learning, which is a combination of the ideas of double Q-learning and
dueling Q-learning.

The anti-jamming game algorithm is described in pseudo-code (Algorithm 1). We
first consider the case of Q-learning modifications based on neural networks such as deep
Q-learning, dueling Q-learning, and dueling double Q-learning, and then describe what
should be changed in this pseudo-code if PHC is used. We discretize the range [0, PJ ]
into power_level_num levels. In line 2, by exhaustive search over all power distributions
the jammer finds an optimal distribution of power between m channels. Taking into
account the previous vehicle state in line 3 the vehicle locations are updated using the
intelligent driver model from [13]. In line 4, the transmitting vehicle changes the channel
according to the pseudo-random sequence, which is assumed to be unknown to the jammer.
To discretize the SINR in lines 5 and 8, the disc_step step size is used. Line 6 evaluates the
value of ε which is responsible for the amount of exploration in Q-learning algorithms.
Regardless of which modification of the Q-learning algorithm we use lines 7–10, which
look the same. In line 7, the algorithm predicts the next action. To do this, it returns a
value of 2, 1, or 0, meaning that the vehicle must transmit signal on a higher power level,
stay at the current level, or go to a level lower, respectively. It must be ensured that the
level does not go beyond the permissible power limits. In line 9, the new system state is
added to memory as an array of four values (SINR_old, new_action, SINR_new, reward).
Line 10 calls a function that retrieves the batch_size of previous experiences, updates the
state estimate using Formula (24), and trains the neural network to remember the updated
values. In the case of PHC, line 6 is not needed, since this algorithm does not have the
parameter ε, in line 10, the called algorithm additionally recalculates the probabilities with
which actions would be selected in the future.

Algorithm 1 Anti-jamming game algorithm

1: while (Game is not terminated) do
2: Recalculate jammer power distribution
3: Recalculate state of the system using intelligent Driver model
4: Choose new vehicle transmission channel according to pseudo-random sequence
5: Retrieve and discretize SINR_old from memory obtained from the previous itera-

tion
6: Calculate ε using exponential decay rule (23)
7: new_action = Learning_Algorithm(SINR_old, ε)
8: Calculate and discretize SINR_new after action new_action
9: Add to memory (SINR_old, new_action, SINR_new, reward)

10: Retrain algorithm
11: Save current state of the system
12: end while

6. Simulations

We consider the case of adaptive jammer, which is the most dangerous for the network.
Based on the state of communication at the previous moment, the jammer finds the optimal
transmit power by considering all the possible options. We performed simulations in
the single-channel and multi-channel cases and compared the performance of PHC, deep
Q-learning, and its recent modifications dueling Q-learning and dueling double Q-learning.
We assume the following parameter values (see their description in the previous section):

γ = 0.7, replay_mem_size = 50, batch_size = 32,

update_target_ f requency = 20, ε0 = 1,

ε∞ = 0.01, decay_rate = 100, disc_step = 0.05.
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We use the intelligent driver model [13] to generate car motion. According to it,
the movement of vehicle i on a single road is described by the following differential equations:

ẋi = vi, (25)

v̇i = a

(
1−

(
vi
v0

)δ

−
(

s∗(vi, ∆vi)

si

)2
)

, (26)

s∗(vi, ∆vi) = s0 + viT +
vi∆vi

2
√

ab
, (27)

where xi and vi and are coordinate and velocity of i-th car, a is a maximum acceleration, δ
is acceleration exponent, b is a vehicle deceleration, s0 is a minimum gap between vehicles,
v0 is a desired speed, T is a time gap between consecutive vehicles, si is bumper-to-bumper
distance between car i, and next riding car i− 1 expressed through the length li−1 of the
car i− 1 as follows:

si = xi−1 − xi − li−1,

and ∆vi is speed difference between speed of car i and speed of car i− 1

∆vi = vi − vi−1.

Typical values of the parameters v0, T, s0, δ, a, b are summarized in Table 1 taken
from [19].

Table 1. Parameter values of intelligent driver model

Desired speed v0 54 km/h

Time gap T 1.0 s

Minimum gap s0 2 m

Acceleration exponent δ 4

Acceleration a 1.0 m/s2

Comfortable deceleration b 1.5 m/s2

In all algorithms based on deep Q-learning, we use the following neural network
architecture. Since we want to speed up the learning process, it has only one hidden layer of
size 64; the number of inputs equals 1, the number of outputs equals 3. We assume that the
output size equals 3, since the network returns three values corresponding to the values of
transmission at the next power level (which is one higher), the transmission at the current
level, and transmission at the previous power level (which is one lower), respectively.
In the case of dueling Q-learning, advantage and value layers are added to this architecture.
We use a fairly low value of γ = 0.7, because the system is constantly changing and we
want the network to concentrate more on current rewards than on the future rewards. Since
the system is changing rapidly, we assume a low value for the update_target_ f requency in
dueling double Q-learning, so that the system can quickly adapt to new experiences. For the
same reason, we assume a low value of replay_mem_size in all versions of deep Q-learning.

6.1. Single-Channel Game with Quadratic Power Function

In this section, we discuss simulations of a single-channel anti-jamming game. We
assume that the vehicles are located on the same road, with the jammer chasing two
communicating cars. Figures 3a and 4b show graphs of vehicle rewards and SINR in the
case in which the distance between all consecutive network vehicles remains constant and
equals 6.4 m. Figure 3a,b show graphs in the case when the initial vehicle coordinates equal
9.6 and 16 m, and the jammer initial coordinate is 0.8 m. In simulations corresponding to
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Figure 4a,b, it is assumed that the vehicles are moving according to the intelligent driver
model with the parameter values described in the previous section. Due to the fact that the
car in front is moving according to the free road model (since there are no other vehicles
in front of it), the distance between it and the transmitting vehicle increases over time,
resulting in worse communication quality. This explains the decreasing of the graphs in
Figure 4a,b.

The red color in all figures indicates the Nash equilibrium rewards and SINR calcu-
lated according to the formulas from the theorems proven in this article. As can be seen
from Figures 3a and 4b, the graphs converge to theoretical predictions, confirming their
correctness. We assume that the learning rate α is 0.05 in the case of PHC and 0.01 for the
rest of the algorithms. We increase the learning rate, because otherwise the PHC would
converge to the Nash equilibrium too slowly.

(a) (b)

Figure 3. Single-channel game with quadratic power function and constant intervehicle distance: (a) vehicle rewards;
(b) SINR.

Figure 3a,b show that dueling Q-learning and dueling double Q-learning are the most
stable among all considered algorithms, while deep Q-learning and PHC have significant
deviations from the Nash equilibrium. Figure 4a,b show that all the algorithms adapt quite
well to changes in the network state; however, PHC is the closest to the Nash equilibrium
throughout all iterations, while the rest of the algorithms deviates significantly from the
optimal curve. This is due to the fact that Q-learning algorithms use experience replay,
which allows for retraining using past experience. Even taking into account the fact that
we chose the small buffer size replay_mem_size = 50 (usually such a buffer has a size of
the order of 10,000), it can be seen from the simulations that such algorithms adapt to a
change in environment with a noticeable delay; thus, if the state of the network changes
rapidly, PHC is the best among considered algorithms.

It is worth noting that if we significantly increase the learning rate, this may result
in the network being unable to converge to the optimal strategy due to the large amount
of noise associated with the current state of the system. On the other hand, if the value
of the learning rate is too low, then the learning will be too slow, which is especially bad
in the case of a rapidly changing environment. Similar reasoning is valid for the size of
the network. A significant increase in the size of the network will lead to a longer training
process, which may be unacceptable in the case of online training. A smaller network may
not be sophisticated enough to find the optimal strategy. The parameters that we use for
modeling are obtained as a trade-off that is close to optimal.

6.2. Multi-Channel Game with Quadratic Power Function

Figures 5a and 6b show graphs in the case of a multi-channel game with m = 3
channels. We assume that in this case the vehicle changes the transmission channels
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according to a predetermined pseudo-random sequence and each of the m = 3 channels in
it is chosen with the same probability. Since the jammer must divide its power between
channels in a multi-channel case, the rewards of the vehicle in this case are higher than
in a single-channel case. To speed up the convergence rate, we increase the learning
rate to 0.3 in the case of PHC and to 0.05 for other algorithms. Figure 5a,b show that
all algorithms perform quite well in the case in which the distances between cars are
constant, especially PHC and double dueling Q-learning; however, dueling Q-learning has
a significant deviation from the Nash equilibrium at iterations 900–1000. In the dynamic
case (intelligent driver model) presented in Figure 6a,b it can be seen that PHC adapts to a
change in environment faster and deviates less from the instantaneous Nash equilibrium.

(a) (b)
Figure 4. Single-channel game with quadratic power function and variable intervehicle distance: (a) vehicle rewards;
(b) SINR.

(a) (b) SINR

Figure 5. Multi-channel game with quadratic power function and constant intervehicle distance: (a) vehicle rewards;
(b) SINR.
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(a) (b)
Figure 6. Multi-channel game with quadratic power function and variable intervehicle distance: (a) vehicle rewards;
(b) SINR.

7. Summary

We considered a multi-channel VANET anti-jamming game with linear and quadratic
power functions. This game is an antagonistic game between the jammer and a pair of
communicating vehicles. At the beginning of the article, we assumed that the power
term of the vehicle and the jammer utility functions is linear. In this case, we proved
that the optimal strategy of the vehicle is signal transmission at the maximum power (see
Theorem 1). We changed the utility functions by replacing the term linearly dependent on
power with a quadratic one. We examined a single-channel and multi-channel game under
this condition. In this case, the vehicle and the jammer strategies are not trivial and are
better suited for practical implementation since the quadratic power term limits the growth
of signal transmission power, and it remains at a more reasonable level. We expressed
the Nash equilibrium of the system through communication parameters (Theorem 2).
However, in practice, finding the Nash equilibrium can be problematic since communi-
cation parameters such as channel gains may not be known. Therefore, we considered
modern machine learning algorithms such as deep Q-learning, dueling Q-learning, double
dueling Q-learning, and policy hill climbing, and compared their performance. These
algorithms, without having any information regarding the communication parameters,
by trial and error, converge to the theoretically deduced Nash equilibrium; however, policy
hill climbing shows better adaptability in the case of a rapidly changing system state.

The proposed model makes it possible to effectively combat jamming attacks under
the condition that the vehicles are organized into a platoon. An interesting line of fur-
ther research is the study of the case in which the signal transmission power term is a
non-quadratic power function. It is also important to consider the model with unequal
probabilities of channel jamming.

Author Contributions: Conceptualization, S.P. and G.D.; methodology, S.P. and G.D.; software, G.D.;
validation, S.P. and G.D.; formal analysis, G.D.; investigation, G.D.; resources, G.D.; data curation,
G.D.; writing—original draft preparation, S.P. and G.D.; writing—review and editing, S.P. and G.D.;
visualization, G.D.; supervision, S.P.; project administration, S.P. and G.D.; funding acquisition, N/A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 2772 13 of 17

Appendix A. Proof of Theorem 1

We first consider the case in which the system parameters satisfy the inequality

Ccar ≥
h2

car
σ2

In this case, the point (0, 0) is a Nash equilibrium, because

ucar(x, 0) = x
(h2

car
σ2 − Ccar

)
≤ 0 = ucar(0, 0),

uJ(0, y) = −CJy ≤ 0 = ucar(0, 0).

Thus, in this case, the optimal behavior of the vehicle and the jammer is to transmit
zero power due to the high transmission cost Ccar.

Let us consider the case

Ccar <
h2

car
σ2 . (A1)

The function ucar is linear with respect to x, therefore, if we fix the value of y, it reaches
a maximum at the ends of the segment [0, PC]. Let us assume that the maximum is reached
at the point x∗ = 0. Since the function uJ(x∗, y) = uJ(0, y) = −CJy reaches its maximum at
the point y = 0 we conclude that y∗ = 0. However, it is impossible for the point (0, 0) to be
a Nash equilibrium, since if y∗ = 0 and inequality (A1) holds, then the function ucar(x, 0)
reaches its maximum at x∗ = PC, and not at x∗ = 0. Thus, x∗ = PC.

Let us derive value of y∗. The derivative of utility function ucar is given as follows:

d
dy

uJ =
d

dy

(
− h2

carx
σ2 + h2

J y
+ Ccarx− CJy

)
=

h2
carh2

J x

(σ2 + h2
J y)2

− CJ . (A2)

Solving the equation d
dy uJ = 0, we find its root ŷ

ŷ =
−σ2

h2
J

+
hcar

hJ

√
x

CJ
. (A3)

Since d2

dy2 uJ < 0, the function uJ is convex downward and its maximum value can be
reached at the point ŷ or at the ends of the segment 0 and PJ . Taking into account that the
function uJ increases with y < ŷ and decreases with y > ŷ, we conclude that the maximum
point y∗ can be calculated by Formula (5).

Appendix B. Proof of Theorem 2

The proof consists of two parts. We first establish the equality y∗1 = y∗2 = . . . = y∗m.
Denoting these variables by y∗, we reduce the problem to finding a Nash equilibrium in
the two-dimensional case.

First, we obtain the derivatives d
dx ucar and d2

dx2 ucar

d
dx

ucar =
m

∑
k=1

d
dx

1
m

( h2
carx

σ2 + h2
J yk
− Ccarx2

)
=

m

∑
k=1

1
m

( h2
car

σ2 + h2
J yk
− 2Ccarx

)
, (A4)

d2

dx2 ucar = −2Ccar < 0. (A5)

Let us consider the case 0 < x∗ < PC first. From (A5) we derive that the function
ucar(x, y∗1 , y∗2 , . . . , y∗m) is convex upward with respect to the variable x. Inequality (11)
means that the point x∗ is a maximum of the function ucar(x, y∗1 , y∗2 , . . . , y∗m). Therefore,
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to fulfill inequality (11) it is necessary and sufficient that d
dx ucar(x∗, y∗1 , y∗2 , . . . , y∗m) = 0.

Solving this equation, we find that

x∗ =
1

2mCcar

m

∑
k=1

h2
car

σ2 + h2
J y∗k

(A6)

Let us note that (12) is equivalent to the point (y∗1 , y∗2 , . . . , y∗m) being the maximum of
the function uJ(x∗, y1, y2, . . . , ym). To find this maximum with restrictions (8), (9), and (A6)
we consider the Lagrangian

L(x, y) = uJ − λ
(

∑
k

yk − PJ

)
− µ

( m

∑
k=1

h2
car

σ2 + h2
J yk
− 2mCcarx

)
,

where λ ≥ 0. The derivative d
dyl

L is calculated by the formula

d
dyl

L =
d

dyl
uJ − λ + µ

h2
carh2

J(
σ2 + h2

J yl

)2 =

m

∑
k=1

1
m

d
dyl

(
− h2

carx
σ2 + h2

J yk
+ Ccarx2

)
− 2CJyl − λ + µ

h2
carh2

J(
σ2 + h2

J yl

)2 =

h2
carh2

J x

m(σ2 + h2
J yl)2

− 2CJyl − λ + µ
h2

carh2
J(

σ2 + h2
J yl

)2 . (A7)

Solving the equation d
dyl

L(x∗, y∗1 , y∗2 , . . . , y∗m) = 0, we obtain

h2
carh2

J x∗ + µmh2
carh2

J = m(2CJy∗l + λ)(σ2 + h2
J y∗l )

2. (A8)

Let us note that Equation (A8) with respect to yl has no more than one root, since the
left side is a constant, and the right side is a monotonically increasing function (because
λ ≥ 0). Let us denote this root by y∗. Since Equation (A8) is satisfied for every l, we
conclude that

y∗1 = y∗2 = . . . = y∗m = y∗. (A9)

The case x∗ = PC can be analyzed in a similar way and also leads to Formula (A9).
Thus, regardless of where x∗ is located on the interval (0, PC], equalities (A9) are satisfied.

Since (A9) holds, it is convenient for us to consider the functions ũcar(x, y) and ũJ(x, y)
given as follows:

ũcar(x, y) = ucar(x, y, y, . . . , y) =
h2

carx
σ2 + h2

J y
− Ccarx2, (A10)

ũJ(x, y) = uJ(x, y, y, . . . , y) = − h2
carx

σ2 + h2
J y

+ Ccarx2 −mCJy2. (A11)

Let us establish that the function uJ(x∗, y1, y2, . . . , ym) is a convex upwards function
with regards to the variables y1, y2, . . . , ym. We rewrite the function uJ(x∗, y1, y2, . . . , ym) in
the following form:

uJ =
m

∑
k=1

1
m

(
− h2

carx
σ2 + h2

J yk
+ Ccarx2 −mCJy2

k

)
.
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By proving that the second derivative is negative, it can be established that each term

− h2
car x

σ2+h2
J yk

+ Ccarx2 − mCJy2
k is a convex upward function of the argument yk. Therefore,

each term is a convex upward function of the arguments y1, y2, . . . , ym. Thus, the function
uJ(x∗, y1, y2, . . . , ym) is a convex upward function of the arguments y1, y2, . . . , ym, since it
equals to the sum of convex upward functions. Similarly, we can establish that the function
uJ(x, y∗1 , y∗2 , . . . , y∗m) is a convex upward function of the argument x.

From the convexity of the functions discussed in the previous paragraph we can
conclude that the fulfillment of inequalities (11), (12) is equivalent to the fulfillment of the
following inequalities:

ũcar(x∗, y∗) ≥ ũcar(x, y∗), (A12)

ũJ(x∗, y∗) ≥ ũJ(x∗, y). (A13)

Thus, we can reduce the multidimensional problem of finding a Nash equilibrium to
the two-dimensional case. From (8) and (A9) we derive

0 < y∗ ≤
PJ

m
.

Therefore, there are four different cases we need to consider: (0 < x∗ < PC,
0 < y∗ < PJ

m ), (x∗ = PC, 0 < y∗ < PJ
m ), (0 < x∗ < PC, y∗ = PJ

m ), and (x∗ = PC, y∗ = PJ
m ).

Case 1. 0 < x∗ < PC, 0 < y∗ <
PJ
m . The derivatives d

dy ũJ(x, y) and d2

dy2 ũJ(x, y) are
given by the following formulas:

d
dy

ũJ(x, y) =
h2

carh2
J x

(σ2 + h2
J y)2

− 2mCJy, (A14)

d2

dy2 ũJ(x, y) = −
2h2

carh4
J x

(σ2 + h2
J y)3

− 2mCJ . (A15)

From (A15) we conclude that

d2

dy2 ũJ(x, y) < 0. (A16)

Therefore, the function ũJ of the argument y is convex upward. Let us notice that (A13)
is equivalent to the point y∗ being the maximum of the function ũJ(x∗, y). Therefore,
the equality d

dy ũJ(x∗, y∗) = 0 must be satisfied. By analogy, one can derive that

d2

dx2 ũcar(x, y) < 0 (A17)

and conclude that the equality
d

dx
ũJ(x∗, y∗) = 0 (A18)

must also hold.
From (A18) we obtain the following value of x∗:

x∗ =
h2

car

2Ccar(σ2 + h2
J y∗)

. (A19)

Substituting (A19) into (A14) and equating d
dy ũJ(x∗, y∗) to zero we obtain

d
dy

ũJ(x∗, y∗) =
h4

carh2
J

2Ccar(σ2 + h2
J y∗)3

− 2mCJy∗ = 0,
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y∗(σ2 + h2
J y∗)3 =

h4
carh2

J

4mCcarCJ
.

Case 2. In the case x∗ = PC, 0 < y∗ <
PJ
m let us establish that the conditions

d
dy ũJ(PC, y∗) = 0 and d

dx ũcar(PC, y∗) ≥ 0 are necessary and sufficient for the point (x∗, y∗)
to be a Nash equilibrium.

We prove that fulfillment of the condition d
dx ũcar(PC, y∗) ≥ 0 ensures that condi-

tion (A12) is satisfied. From (A17) we conclude that the derivative d
dx ũcar(x, y∗) decreases.

If d
dx ũcar(x, y∗) is non-negative at the point x = PC, then it is non-negative over the entire

interval 0 < x ≤ PC. Thus, in this interval, the function ũcar(x, y∗) is non-decreasing and
condition (A12) is satisfied.

Let us establish that d
dy ũJ(PC, y∗) = 0 guarantees that (A13) holds. Since conditions

d2

dy2 ũJ(x, y) < 0 and d
dy ũJ(PC, y∗) = 0 hold, we derive that y∗ is a maximum of the function

uJ(PC, y). Therefore, (A13) is satisfied.
Carrying out the reverse reasoning, we can verify that the conditions

d
dy

uJ(PC, y∗) = 0 (A20)

d
dx

ucar(PC, y∗) ≥ 0 (A21)

are also sufficient to satisfy (A12) and (A13).
From (A20) we obtain the following equality:

0 =
d

dy
ũJ(PC, y∗) =

h2
carh2

J PC

(σ2 + h2
J y∗)2

− 2CJmy∗,

which we can rewrite as

y∗(σ2 + h2
J y∗)2 =

h2
carh2

J PC

2mCJ
. (A22)

From (A21) we derive

d
dx

ũcar(PC, y∗) =
h2

car

σ2 + h2
J y∗
− 2CcarPC ≥ 0.

Case 3. 0 < x∗ < PC, y∗ = PJ
m . By analogy with Case 2, we conclude that conditions

d
dx ũcar(x∗, PJ

m ) = 0 and d
dy ũJ

(
x∗, PJ

m

)
≥ 0 are necessary and sufficient for the point (x∗, PJ

m )

to be a Nash equilibrium.
Therefore, we obtain the following equation:

0 =
d

dx
ũcar

(
x∗,

PJ

m

)
=

h2
car

σ2 + h2
J

PJ
m

− 2Ccarx∗.

From the last equation we conclude that

x∗ =
h2

car

2Ccar(σ2 + h2
J

PJ
m )

.

The inequality d
dy ũJ

(
x∗, PJ

m

)
≥ 0 gives us

d
dy

ũJ

(
x∗,

PJ

m

)
=

h2
carh2

J x∗

(σ2 + h2
J

PJ
m )2
− 2CJ PJ ≥ 0.
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Case 4. x∗ = PC, y∗ = PJ
m . By analogy with Case 2, we conclude that the conditions

d
dx ũcar

(
PC, PJ

m

)
≥ 0 and d

dy ũJ

(
PC, PJ

m

)
≥ 0 are necessary and sufficient for the point (PC, PJ

m )

to be a Nash equilibrium. From the last two inequalities we deduce

d
dx

ũcar

(
PC,

PJ

m

)
=

h2
car

σ2 + h2
J

PJ
m

− 2CcarPC ≥ 0,

d
dy

ũJ

(
PC,

PJ

m

)
=

h2
carh2

J PC

(σ2 + h2
J

PJ
m )2
− 2CJ PJ ≥ 0.
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