
electronics

Article

Multi-Task Learning with Task-Specific Feature Filtering in
Low-Data Condition

Sang-woo Lee 1,† , Ryong Lee 2,† , Min-seok Seo 1 , Jong-chan Park 3 , Hyeon-cheol Noh 1 , Jin-gi Ju 1 ,
Rae-young Jang 2, Gun-woo Lee 2, Myung-seok Choi 2 and Dong-geol Choi 1,*

����������
�������

Citation: Lee, S.-w.; Lee, R.; Seo,

M.-s.; Park, J.-c.; Noh, H.-c.; Ju, J.-g.;

Jang, R.-y.; Lee, G.-w.; Choi, M.-s.;

Choi, D.-g. Multi-Task Learning with

Task-Specific Feature Filtering in

Low-Data Condition. Electronics 2021,

10, 2691. https://doi.org/10.3390/

electronics10212691

Academic Editor: Abdeldjalil

Ouahabi

Received: 13 October 2021

Accepted: 2 November 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication Engineering, Hanbat National University,
Daejeon 34014, Korea; sangwoo.lee@edu.hanbat.ac.kr (S.-w.L.); minseok.seo@edu.hanbat.ac.kr (M.-s.S.);
hyeoncheol.noh@edu.hanbat.ac.kr (H.-c.N.); jingi.ju@edu.hanbat.ac.kr (J.-g.J.)

2 Department of Machine Learning Data Research, Korea Institute of Science and Technology Information
(KISTI), Daejeon 34141, Korea; ryonglee@kisti.re.kr (R.L.); raezero@kisti.re.kr (R.-y.J.);
gwlee@kisti.re.kr (G.-w.L.); mschoi@kisti.re.kr (M.-s.C.)

3 Lunit Inc., Seoul 06241, Korea; jcpark@lunit.io
* Correspondence: dgchoi@hanbat.ac.kr
† These authors contributed equally to this work.

Abstract: Multi-task learning is a computationally efficient method to solve multiple tasks in one
multi-task model, instead of multiple single-task models. MTL is expected to learn both diverse
and shareable visual features from multiple datasets. However, MTL performances usually do
not outperform single-task learning. Recent MTL methods tend to use heavy task-specific heads
with large overheads to generate task-specific features. In this work, we (1) validate the efficacy of
MTL in low-data conditions with early-exit architectures, and (2) propose a simple feature filtering
module with minimal overheads to generate task-specific features. We assume that, in low-data
conditions, the model cannot learn useful low-level features due to the limited amount of data. We
empirically show that MTL can significantly improve performances in all tasks under low-data
conditions. We further optimize the early-exit architecture by a sweep search on the optimal feature
for each task. Furthermore, we propose a feature filtering module that selects features for each
task. Using the optimized early-exit architecture with the feature filtering module, we improve the
15.937% in ImageNet and 4.847% in Places365 under the low-data condition where only 5% of the
original datasets are available. Our method is empirically validated in various backbones and various
MTL settings.

Keywords: deep learning; multi-task learning; convolutional neural network

1. Introduction

Convolutional neural networks (CNNs) are nowadays the state-of-the-art methods
for a wide range of computer vision tasks, thanks to the large-scale public datasets [1–3]
and high performance accelerators like graphical processing units (GPUs). For example,
CNNs rank the highest in benchmarks in image classification [4–6], object detection [7–10],
semantic segmentation [11], and action recognitions [12–14]. The general recipe for a
successful CNN model includes training a large-sized model with a large-scale dataset.
However, the size of a model is usually constrained by the accelerator’s memory, or the
training (or inference) speed. Collecting a large-scale dataset is also very expensive. To
solve these issues, previous works have proposed multi-task learning (MTL) [12,15–17].
By definition, multi-task learning trains a model with multiple functionalities. In the case
of a CNN, the backbone feature extractor is shared among multiple tasks, and each task
has a task-specific head assigned. Given a single input, the shared backbone extracts a
feature map, each task-specific head processes the feature map, and finally multiple outputs
are computed for multiple tasks. By sharing the computationally expensive backbone,
multi-task learning can be quite effective in saving the computational and parametric

Electronics 2021, 10, 2691. https://doi.org/10.3390/electronics10212691 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5432-4770
https://orcid.org/0000-0001-5142-6106
https://orcid.org/0000-0002-5940-120X
https://orcid.org/0000-0001-9808-6823
https://orcid.org/0000-0002-4325-8226
https://orcid.org/0000-0003-0587-1617
https://orcid.org/0000-0002-3345-5306
https://doi.org/10.3390/electronics10212691
https://doi.org/10.3390/electronics10212691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212691
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212691?type=check_update&version=1

Electronics 2021, 10, 2691 2 of 14

costs, in contrast to training multiple models for multiple tasks. One of the early works in
multi-task learning, UberNet [18], utilizes task-specific skip connections, combines features
across different layers, and computes the task-specific outputs. The network is trained
with task-specific losses simultaneously. Another work on multi-task learning, One Model
to Learn Them All, has shown that multi-task learning works with heterogeneous tasks
such as image classification, machine translation, image captioning and speech recognition.
Multi-task learning is also used to improve the target task’s performance by training with
auxiliary tasks [19].

Most of the CNNs are trained in a data-driven manner, and that indicates a prerequisite
for large-scale datasets. Dataset collection and annotation require a lot of time and financial
cost, and a benchmark performance on ImageNet [20] shows that it takes a billion-scale
dataset to achieve the state-of-the-art performance. There have been many efforts to make
dataset collection more efficient with active learning [21], yet the methods are usually
applicable to certain types of tasks such as classification only. At the end of the day, we
need to manually collect the dataset, and we have to consider many factors, including
the size of the dataset, the privacy issues, the copyrights issues and diversity issues. To
annotate a large-scale dataset, some crowd-sourced platforms are used, such as Amazon
Mechanical Turk, but it is hard to ensure the quality of the annotations. The quality of
the annotations must be checked or refined iteratively. Due to the difficulty in the data
collection and annotation, CNN models are usually trained with limited data. In this work,
we proposed to utilize a set of such limited data with multi-task learning. The low-data
condition is common in real-world scenarios, and let us assume that there are multiple
datasets for different tasks. Even though the datasets are collected for different purposes,
they share common knowledge, such as low-level image features. Throughout a multi-
task learning, the CNN model can better learn such common knowledge with a larger,
combined dataset. Thus, multi-task learning can be an effective solution to utilize multiple
small-scale datasets, and improve each task’s performance. The efficacy of multi-task
learning is empirically validated with multiple sets of small-scale benchmarks.

In this work, we propose a task-specific feature filtering module that does not require
heavy task-specific heads to generate task-specific features. Specifically, the feature filtering
module learns to select feature channels for each task head in a data-driven manner. Instead
of passing the full feature to the task-specific heads, we use a 1-d channel-wise scaling
filter to be multiplied to each feature map. The filter is assigned for each task, and the
feature filtering is performed right before the task-specific heads. The computational or
parametric overhead of this feature filtering module is minimal. Moreover, we are using
small task-specific heads, so the overhead over the single-task network is also minimal.
Throughout extensive experiments, we validate that the proposed task-specific feature
filtering module improves the performance of various multi-task models.

Our main contribution is 2-fold:

1. We empirically validate the efficacy of multi-task learning in low-data conditions.
The model learns the shared knowledge through multi-task learning from multiple
datasets, and eventually improves all task performances over single-task models;

2. We propose a simple yet effective way to generate task-specific features, with a
task-specific feature filtering module. We consistently yet significantly improved
the performances of multi-task models with minimal overhead. With the proposed
module, small task-specific heads can exploit the task-specific features with minimal
computational costs and high performances.

The remainder of this paper is organized as follows: Section 2 introduces related
works. Section 3 includes the descriptions for learning methods, model configurations, and
filter configurations. Section 4 introduces the experiment’s results of the proposed method.
Section 5 includes the analysis for the experiment’s results. Finally, Section 6 summarizes
our methods and results, and Section 7 proposes their limitations and the future directions
of our work.

Electronics 2021, 10, 2691 3 of 14

2. Related Works

In this section, we investigate previous works related to early-exit architecture, the
network architecture we used, and the multi-task learning method we used to merge and
train datasets.

2.1. Early-Exit Architecture

Szegedy et al. [22] proposed a network called Inception, creating an exit that outputs
directly from a branch in the middle of the network, and proposed a training method in
the form of helping back-propagation. In addition, Cai et al. [23] improved the accuracy in
object detection by proposing a cascade structure using easy-exit.

However, these methods are not preferred in a situation where the amount of compu-
tation and memory are limited because the parameters and computation of the network
are improved. Unlike previous studies, Phuong et al. [24] noted that the performance
in the early-exit was not significantly different from the performance in the final exit.
Therefore, Phuong et al. used the early exit architecture for training in order to prune the
model without degrading the accuracy of the network in a situation where the amounts of
computation and memory are limited.

Inspired by these studies, we used an early exit architecture to effectively utilize
multiple datasets in situations where the size of the dataset is small or the size of the
memory is limited. Our early exit architecture infers the results of a different dataset for
each exit, and the backbone networks share it.

2.2. Multi-Task Learning

Multi-task learning is a method used in various recognition fields using deep learning
such as object detection and instance segmentation. The most well-known application is in
object detection, where object localization and object classification are performed simultane-
ously. Recently, Kim et al. [25] revealed that the performance of object localization is greatly
improved if only object localization is performed except for the object classification part in
object detection. Kokkinos [18] also found that multi-task learning generally degrades the
performance of each task.

On the other hand, Deng et al. [26] improved the performance of face detection by
multi-task learning of the task of matching the landmark position of the face and the task
of aligning the position of the face bounding box.

As such, multi-task learning is an efficient method to reduce the amount of parameters
and computations by sharing backbone networks, but it is a method that may decrease
or increase performance depending on the relationship between each task. In order to
solve the problem that the performance of each task cannot be preserved in multi-task
learning, we propose a method to improve the performance of all tasks by using an early
exit architecture.

3. Method

In this section, we introduce the mathematical notation and the necessary background
for the discussion of the proposed multi-task training of multi-exit architectures. Then, we
discuss the features extracted by training different datasets at the same time, and introduce
task-specific feature filtering, a method to efficiently use features in multi-task training
with multi-exit architectures.

3.1. Dataset Integration

For multi-task training with multi-exit architectures, we first need to integrate the
datasets. For example, to integrate ImageNet and Places365 datasets and merge them
into the same mini-batch, the total quantity of these datasets, the size of images, and
the number of channels must be considered. In order to match the image size and the
number of channels, we fit the smaller image to the larger image size and the number of
channels. One-channel images (i.e., grayscale images) are expanded to three channels and

Electronics 2021, 10, 2691 4 of 14

are integrated with a dataset consisting of only three RGB channels, and the smaller image
size is upsampled through bilinear interpolation to fit the larger size image. In addition,
small datasets were oversampled to have the same size as the largest dataset.

3.2. Multi-Exit Architectures

Our key assumption is that, even in different datasets, the low-level features extracted
from the model’s feature extractor can be shared because models for different tasks exhibit
similar characteristics [27]. Therefore, if we train with the integrated dataset, the model
learns better low-level features due to the increased diversity in the training samples. To
further maximize the efficacy of sharing low-level features, we choose early-exit archi-
tectures. In early-exit architectures, low-level features are shared among all tasks, and
high-level features are not shared.

Early-exit architectures are layered classification architectures with exits at different
depths. Figure 1 illustrates a general form of an early-exit architecture. The early-exit
architecture has multiple exits, and each exit corresponds to one task. For example, if
we merge multiple classification tasks, each exit is a classification network (i.e., multi-
layer perceptron) for each task. In order to designate a specific exit for each dataset in
the integrated dataset, we sorted the number of classes K in each dataset in ascending
order and determined the exit depth according to that order. So, the number of integrated
datasets {1, 2, . . . , m} ∈ M and there is an image and label pair (x, y) for each dataset Dm,
x = {x1, x2, . . . , xN}, y ∈ {1, . . . , k}. N is the number of images, and the objective function
of multi-exit architectures fθ can be expressed as follows :

min
1
M

1
N ∑

m∈M
∑

x,y∈Dm

[LCE(fθ(x), y)]. (1)

The final training objective is the sum of all task specific losses. However, please note that
labels are only partially available for each training sample. For example, if the training
sample is from ImageNet, then only the ImageNet label is available, so we only have
the ImageNet cross entropy loss for that sample. The integrated dataset is a balanced
combination of multiple datasets, so the minibatch is expected to be sampled from all
datasets in a balanced way.

Conv block. . .

Target Label

ImageNet-1K
Places365

.

.

.
M

Early exit

Output

Cross Entropy
(1000 class distribution,

ImageNet-1K label)

Cross Entropy
(365 class distribution,

Places365 label)

Cross Entropy
(M class distribution,

M Dataset Label)

Conv block

Early exit

Output

Conv block

Early exit

Output

Integrated dataset

ImageNet-1K
Places365

.

.

.
M Redundant

feature filtering
Redundant

feature filtering
Redundant

feature filtering

Figure 1. Multi-exit architectures for multi-task learning. There are as many exits as M, which is the number of integrated
datasets, and the order is determined according to the number of classes in each dataset.

Electronics 2021, 10, 2691 5 of 14

3.3. Task-Specific Feature Filtering

The learned features in MTL are shared and optimized with respect to multiple tasks.
The advantage would be learning diverse and sharable features, and the disadvantage
would be a lack of task-specific features. Therefore, our assumption is that performance
can be improved by generating task-specific features through removing redundant features
and inputting them into the classifier rather than naively using the shared features As
found in [28], feature filtering can significantly improve the model performances. As
revealed in studies [5,28–30], features with relatively low activation values are unnecessary
or redundant features. Attention mechanisms have been proposed to use this efficiently, but
it is difficult to use to remove unnecessary features because it is not performance effective
in multi-exit architectures and weights according to attention values without removing
features. Therefore, we propose a task-specific feature filtering method that effectively
removes unnecessary features for each task-specific exit. The task-specific feature filter
module shown in Figure 2 is located before the exit so as not to affect other exits, and
is not located in the shared feature extractor. The redundant feature filter has trainable
parameters α and β that have scalar values as many as the number of input channels when
feature F input to each exit is input to the redundant feature filter. α and β sequentially
perform multiplication and addition operations on the channel. The filter value obtained
through this process is adjusted between 0 and 1 through the sigmoid S, and redundant
features are removed by multiplying the input features.

This process can be simply expressed in notation as follows:

F̂ = F× S(F× α + β). (2)

< 𝑉𝑒𝑐𝑡𝑜𝑟 𝒂!"#$ >

𝐶 × 1 × 1

!𝐹 = 𝐹!"#$%× 𝒂&"'(

!𝑭

C
W

H

Ealy exit

O
utput

C
ross Entropy
(M

 class
distribution,

M
 D

ataset Label)

𝑭𝒍𝒂𝒚𝒆𝒓

C
W

H

< 𝑉𝑒𝑐𝑡𝑜𝑟 𝜷!"#$ >

𝐶 × 1 × 1

!𝐹 = 𝑆((𝐹)

!𝐹 = (𝐹 ×𝐹!"#$%

!𝐹 = !𝐹 × 𝜷)"'(

Figure 2. It is a schematic figure of the changes that occur when the input feature passes through our
module. The input feature is used as an input of the exit by making the values of channels that are
not helpful for the task into small values.

4. Experiments

This section includes the details of the ablation study for searching the optimal multi-
exit architecture, and the details of different sets of multiple tasks. The datasets we used
for all experiments are in low-data condition, where we uniformly sample the training
data. During the uniform sampling, the class distribution is kept the same as the original
full dataset. The validation or test datasets remain unchanged. Our experiments are
implemented in PyTorch 1.9.0 with NVIDIA RTX3090 (24 G) × 4.

4.1. Multi Task Learning Details

This subsection explains the details of the baseline training settings. VGG [6] and
ResNet-50 [31] are chosen as the main backbone architectures throughout this paper.
They are the most widely used backbone architectures in the computer vision research

Electronics 2021, 10, 2691 6 of 14

community. ResNet is composed of four Layers, and the Layers are composed of multiple
convolutional blocks with convolutional layers, batch norm layers, ReLUs, and residual
connections. ResNet-50 Layers will have 256, 512, 1024, 2048 channel outputs, respectively.
When ResNet-50 is used in a single-task learning (in case of a classification task), the
final 2048-channel feature map will be average pooled and classified with the final fully
connected layer. Conventional approaches in multi-task learning add heavy task-specific
heads in the baseline backbone model with computational and parametric overheads. To
reduce the computational overheads, we also search the minimal task-specific heads, where
we only use a single fully-connected layer as the task-specific heads. Another design choice
for a multi-task model is the exit location.

As discussed in Section 3 Method, different tasks require different levels of semantics.
For any task that requires fewer semantics, it will have an earlier exit location, then the
other tasks can fully exploit the rest of the computation. As a comprehensive evaluation of
multi-task learning in low-data conditions, we compare the effect of heavy task-specific
heads and the optimal exit location in a multi-task model. The experiment’s results are
included in the Ablation Study section. The final baseline for each experiment’s setting
will be chosen after the architecture search with the above factors. The model with the
best performance across all tasks will be chosen. For example, in the ImageNet-Places365
experiment, the best setting uses the Layer 4 features for ImageNet classification, and the
Layer 3 features for the Places365 classification with the minimal task-specific head of one
fully-connected layer.

The hyper-parameters used are as follows. The total number of epochs is 90, the batch
size is 256, the base learning rate is 0.1, the learning rate is decayed by 0.1 at epoch 30 and
60 epoch. The validation is done in a single-crop manner in the validation set. We use the
overall classification accuracy as the single metric to use. During training, we jointly use
all images and labels from the combined dataset with the available label for each image.
That is, the images and labels from the ImageNet dataset will be used to compute the cross-
entropy loss for the ImageNet task-specific head, and no loss is computed for the Places365
task-specific head, and vice versa. As a result, the multi-task learning baselines improves
over the single-task models in all multi-task learning settings by a margin, in all 5%, 10%,
20% low-data settings, with minimal computational overheads over the single-task models.

However, the minimal task-specific heads may not be enough to generate task-specific
features as the task-specific heads are very small, and the performance improvements are
mostly due to the learned common features with the combined dataset. To further utilize
the task-specific features with minimal heads, we propose a task-specific feature filtering
module. Details will be explained in the next section.

4.2. Task-Specific Feature Filtering Module Details

In the previous section, we have explained how to compose a strong multi-task model
with minimal overheads over the single-task models. However, as the task-specific heads
are as minimal as one fully-connected layer, the features used for each task may not be
specialized for each task. Therefore, we propose a task-specific feature filtering module
that generates task-specific features with minimal overheads yet which are effective in
performance improvement. In this section, we explain the proposed task-specific feature
filtering module in detail.

The proposed task-specific feature filtering module learns to select useful features for
each task in the channel-wise manner. In the module, there are two trainable parameters: a
scaling vector and an offset vector. Both vectors are 1D vectors that have the same number
of elements with the number of input feature channels. As indicated in the name, the
scaling vector will be multiplied to the input features, and the offset vector will be added
to the input features, sequentially. The filtered values will be normalized by a Sigmoid
layer. The computed values will be normalized within 0 1, and will be used as the final
filtering weight to be multiplied to the original input feature map. The computations are
all element-wise multiplications, addition, or Sigmoid, so the final overhead is as small

Electronics 2021, 10, 2691 7 of 14

as 0.0005G MACs per module. This module is shown to be very effective in multi-task
learning; for example, it improves the ImageNet performance by 3.5% and the Places365
performance by 2% in the 5% low-data setting. All the hyper-parameters and the training
schemes remain unchanged as the baseline settings found in the previous section.

4.3. Experiment Result

To validate the efficacy of the proposed module, we train models in low-data condi-
tions for ImageNet and Places365 datasets by using 5%, 10% and 20% of the full training
set. The methods to be compared are the single-task learning model (STL), the multi-task
learning model (MTL), and the multi-task model with our proposed module. In the case
of our multi-task learning model, it consists of multiple outlets as shown in Figure 1 In
this experiment, our model was constructed by creating exits in Layer 3 and Layer 4. To
experiment with our proposed module, our module as shown in Figure 2 was added to
each exit of the model as described above. The module we attached has alpha and beta
values, respectively, and serves to lower the value of the redundant feature.

As shown in Table 1, it is shown that the multi-task models have a significantly higher
performance than the single-task baseline, and our module further improves significantly
over the multi-task models. It is worth noting that the improvement in ImageNet is very
significant: the multi-task model improves in ImageNet by 12.891% and the proposed
module further improves by 3.046%. The performance improvements are consistently
shown across different data conditions.

Table 1. This table is the result of performance comparison experiments for ResNet-50 learned
with single task learning (STL) and ResNet-50 learned with multi task learning by our proposed
method (Ours MTL). Integration Dataset is a dataset that combines data extracted from ImageNet
and Places365 (e.g., 5% Intergration = 5% ImageNet + 5% Places365). The results of each experiment
are the inferred results and the accuracy (ACC) between targets.

Training Data Method ImageNet ACC (%) Places365 ACC (%)

5% ImageNet STL 24.173 ± 1.162 ·
5% Places365 STL · 38.063 ± 1.050

5% Integration Ours MTL (w/o filtering) 37.064 (+12.891) 40.910 (+2.847)
5% Integration Ours MTL (w filtering) 40.110 (+15.937) 42.910 (+4.847)

10% ImageNet STL 48.242 ± 0.585 ·
10% Places365 STL · 43.336 ± 1.211

10% Integration Ours MTL (w/o filtering) 51.046 (+2.804) 47.095 (+3.430)
10% Integration Ours MTL (w filtering) 52.656 (+4.414) 47.29 (+3.625)

20% ImageNet STL 59.765 ± 0.391 ·
20% Places365 STL · 48.007 ± 0.375

20% Integration Ours MTL (w/o filtering) 61.890 (+2.125) 50.300 (+2.293)
20% Integration Ours MTL (w filtering) 62.450 (+2.685) 50.843 (+2.836)

As shown in Table 2, we also conducted experiments for ImageNet-Oxford Pets [32],
ImageNet-Caltech-101 [33] multi-task settings. The efficacy of the multi-task learning and
the proposed module is consistent across different multi-task settings.

Based on the significant improvements over the single-task baselines, we empirically
validated the efficacy of multi-task learning in low-data conditions and the efficacy of the
proposed task-specific feature filtering module with minimal overheads. Therefore, in
low-data conditions, multi-task learning is a very effective method to try with datasets
in similar domains but different tasks, and the proposed module is a very cost-effective
method to be added.

Electronics 2021, 10, 2691 8 of 14

Table 2. The results listed in the table are the results of experimenting with whether our method
is useful in combination with ImageNet (IN) and other datasets. It was further learned and tested
from the dataset of Oxford Pets (OP) and Caltech-101 (CA). Among the datasets used, the dataset of
Caltech-101 was upsampled and tested at a resolution of 224 to match the resolution of ImageNet.
All experimental results show that our method could induce performance improvement regardless
of the dataset, and that ImageNet’s performance varies slightly depending on the size and task of the
dataset.

Training Data Method ImageNet Integration Dataset
ACC (%) ACC (%)

5% IN ResNet50 (STL) 24.173 ± 1.162 ·

OP ResNet50 (STL) · 70.460
5% IN+OP Ours MTL (w/o filtering) 32.618 (+8.445) 76.829 (+6.369)
5% IN+OP Ours MTL (w filtering) 37.396 (+13.223) 85.593 (+15.113)

CA ResNet50 (STL) · 74.018
5% IN+CA Ours MTL (w/o filtering) 26.878 (+2.705) 77.049 (+3.031)
5% IN+CA Ours MTL (w filtering) 28.192 (+4.019) 85.815 (+11.797)

We verified our method in an additional network. The networks used are SE-ResNet
and the VGG 16 Network. In the case of SE-ResNet, we performed Places365 tasks through
the feature map output from Layer3, and ImageNet tasks through the feature map output
from Layer4 in the same way as ResNet. In the case of the VGG 16 Network, Place365 tasks
were performed through the feature map output from the 10th layer, and ImageNet tasks
were learned using the feature map output from the 13th layer. Additionally, we used a
fully connected layer that extends to 4096 channels before performing the classifier to take
advantage of the characteristics of VGG network.

As shown in Table 3, the result shows that our method is an efficient method in
other networks, and that the proposed filtering also further improves performance in
our method.

Table 3. This table is the result of experimenting with whether it is a method that can be used for
other additional architecture. The model we experimented with had a structure of SE-ResNet50 (SE)
and VGG-16 (VGG) and conducted a single task learning (STL) experiment, our multi-task learning
(MTL) experiment, and an experiment to see if the module had a positive effect on other structures.

Training Data Method ImageNet ACC (%) Places365 ACC (%)

5% ImageNet SE (STL) 26.188 ± 0.867 ·
5% Places365 SE (STL) · 40.545 ± 0.23

5% Integration SE (MTL) w/o filtering 38.810 (+12.622) 41.632 (+1.092)
5% Integration SE (MTL) w filtering 40.201 (+14.013) 42.117 (+1.572)

5% ImageNet VGG (STL) 27.99 ± 1.095 ·
5% Places365 VGG (STL) · 36.84 ± 0.266

5% Integration VGG (MTL) w/o filtering 34.406 (+6.416) 40.21 (+3.37)
5% Integration VGG (MTL) w filtering 35.103 (+7.113) 41.61 (+4.77)

4.4. Multi-Exit Architecture Search

It was necessary to compare the performance of each model to find a combination
of features suitable for performing multi-task learning in our structure. Therefore, we
performed the task of 10% ImageNet in Layer4 and measured how the inference perfor-
mance changed according to the combination of Layer1 to Layer4. The model with the
exit attached to Layer1 improved the performance of ImageNet compared to the model
learned with single task learning, but the performance of Places365 was lower than that
learned with single task learning. The model with the exit attached to Layer 2 had the
best performance of ImageNet. However, the performance of Places365 was still lower
than that of the model learned with single task learning. As shown in Table 4, we can

Electronics 2021, 10, 2691 9 of 14

empirically confirm that the exit model placed in Layer2 produces sacrificial results for
the task performed in Layer4. That is, a model in which an exit is attached to Layer2 may
enrich the presentation of Layer4. However, multi-task learning does not aim to use the
other task sacrificially for one task. Therefore, we did not use the model in which the
exit was placed in Layer2. The model in which the exit was placed in Layer3 had lower
ImageNet performance than the model in which the exit was placed in Layer2, but the
performance in Places365 was the best at 47.095%.

It is important to maximize both tasks’ performances with MTL. Therefore, as a result,
we have chosen to use Layer3 features and Layer4 features for the two tasks respectively.
The model in which the exit was placed in Layer4 with an exit at Layer4 had lower
performances in all tasks than the model with an exit at Layer3. In addition, it was not
selected as our architecture because it accounts for the highest percentage of memory and
computing sources among the models experimented so far. We additionally conducted the
experiment by adding one more Layer4 to the existing ResNet, inspired by the fact that
existing multi-task learning creates task specific features. As a result, although MACs and
parameters were the highest among the models we tested, ImageNet performance was
the second worst among the models we tested, and Places365 performance did not exceed
that of the model placed on Layer3. Therefore, it was confirmed that it was not helpful to
unconditionally add a large amount of computation to generate task specific features. As
the last experiment, we experimented with the filtering we suggested. We confirmed that
our filtering adds fewer MACs and parameters and can show a better performance than
baseline models.

Table 4. This table is the result of the experiment to find the most efficient exit of our method. We
created an additional exit on the existing baseline and conducted an experiment using 10% ImageNet
and 10% Places365. Additionally, we experimented by creating 4 Layers for ImageNet(STL-ImageNet)
and 4 layer for Places365(STL-Places365) in ResNet to proceed with performance comparison with
our method(MTL-Layer) and how to do a lot of task specific operations(MTL-Big head).

Method ImageNet ACC (%) Places365 ACC (%) MACs Parameters

STL-ImageNet 48.242 ± 0.585 · 4.1114G 25.557M
STL-Places365 · 43.336 ± 1.050 4.1114G 25.557M
MTL-Layer4 50.918 (+2.676) 45.820 (+2.484) 4.1123G 26.305M
MTL-Layer3 51.046 (+2.804) 47.095 (+3.759) 4.1119G 25.931M
MTL-Layer2 51.974 (+3.732) 42.670 (−0.666) 4.1120G 25.744M
MTL-Layer1 49.822 (+1.58) 34.361 (−8.975) 4.1123G 25.651M

MTL-Big head 50.090 (+1.848) 46.400 (+3.064) 4.9226G 41.269M
MTL-Layer3 (w filtering) 52.656 (+4.414) 47.290 (+3.954) 4.1120G 25.931M

5. Analysis
5.1. Multi-Exit Architectures with Filter Visualization

The weight value of the first convolution filter of ResNet-50 is visualized as shown
in Figure 3 to see if our proposed multi-task learning method can generate more diverse
convolution filters. We compared all ImageNet images based on the weight of the filter
of the model in which we have learned for a more accurate visual comparison of our
multitasking learning architecture and single task learning architecture. The filter value
of the model in which only 5% of the ImageNet was learned showed the worst results
when compared with the filter value of the model in which all of ImageNet was learned. In
5% Places365 with more data than 5% ImageNet, it was confirmed that the 5% ImageNet
model had more diverse filters. Finally, in the case of our multi-task architecture, when
we learned that, by fusing a dataset of 5%, it can be seen that the values of the filters have
become more diverse and complex. Thus, the model learned by our method may have
more diverse and complex filters than the method of the single task method.

Electronics 2021, 10, 2691 10 of 14

(a) 5% ImageNet (b) 5% Places365 (c) 5% ImageNet,5% Places365 (d) 20% ImageNet, 20% Places365

Figure 3. This figure illustrates how various low level features can be created by the model learned by the method we
proposed. Each figure is the weight of the convolutional filter that first exists in ResNet-50. (a) is the filter of the model with
5% ImageNet and single task learning. (b) is the filter of the model with 5% Places365 and single task learning. (c) is the
filter of the model that fused 5% ImageNet and 5% Places365 to perform multi-task learning in our way. (d) is the filter of
the model that fused 20% ImageNet and 20% Places365 to perform multi-task learning in our way.

5.2. Visualization of the Distribution of Feature Filtering Values

Our proposed module is trained to reduce the value of unnecessary features in task-
specific features. We calculated and visualized the fixed α value and β value after learning
exists in the module to see if the module is performing filtering of redundant features as
learning progresses. The values consisting of red dots in Figure 4 come from our module
when α and β values pass through sigmoid, and many values are distributed in 0.5 and
0.65. In other words, it can be seen that the location of an insignificant channel and the
location of an important channel are classified. We visualized the features entered and the
output features to see how these values change when the features generated in our model
are received as inputs. It was confirmed how the 777th input channel with the highest a
value and 685th input channel with the lowest value of the learned module changed when
they passed through the module, respectively.

Input features :𝐹′!~ 𝐹′!"#$

…Redundant Feature Filtering…
Input features :𝐹!~ 𝐹!"#$

𝐹$$$ →

𝐹%&' →

𝐹′$$$ →

𝐹′%&' →

Figure 4. It is a picture depicting actual features changing with modules learned on 5% ImageNet and 5% Places365. In
the table drawn with red dots, the horizontal axis represents the index of each channel, and the values of the vertical axis
represent how much each channel will use the value of the input channel. The visualized feature present in the figure is the
input feature and the feature generated after passing through our module.

Electronics 2021, 10, 2691 11 of 14

As a result, the values of the 777th channel were generated very similarly to the values
of the input feature, and the values of the 685th channel were output with the values
of the channel decreasing. With these experiments, we identifyied channels where the
modules we proposed were not important, and we were able to help improve performance
as previously tested.

5.3. Redundant Feature Filtering Visualization with Grad-CAM

Our proposed filtering is shown to be efficient in our proposed multi-task learning
method. In order to check how our filtering affects the model, Grad-CAM [34] was used
to check which part of the input image the model with and without filtering observed
and predicted. The image used in the result is a validation image of ImageNet and an
unlearned sample.

In the case of predicting through a model without filtering in the ImageNet task, the
location of the object was not accurately identified as shown in Figure 5a, or even if it
was identified, the prediction was attempted only through some areas in the object. For
example, when it was necessary to predict ’Pier’, the entire information of the pier was not
identified, and only the area where the pier and the river meet was judged, resulting in
a wrong result of ’bathhouse’. However, for models learned by adding our modules, we
were able to make more improved predictions by using the area information of the object
present in the image more widely.

In the Place365 task, models without filtering were predicted using fewer areas. In
other words, as shown in Figure 5c, the information on the background, which generally
exists in the area of the image, was not fully utilized. However, in the case of our model, we
were able to make more improved predictions using a wider area of the image compared
to a model without filtering.

Baboon

Water buffalo

Baboon

Great grey owl

Window screen

Great grey owl

Banana

Banana

Wool

Pier

Pier

Boathouse

Starfish

Starfish

Artichoke

Input Image

(a) w/o filter

(b) w filter

Dam

Escalator indoor

Dam

Desert load

Desert load

Desert sand

Volcano

Volcano

Snow filed

Starfish

Starfish

Artichoke

Input Image

(c) w/o filter

(d) w filter

Staircase

Staircase

Church indoor

Figure 5. Cont.

Electronics 2021, 10, 2691 12 of 14

Baboon

Water buffalo

Baboon

Great grey owl

Window screen

Great grey owl

Banana

Banana

Wool

Pier

Pier

Boathouse

Starfish

Starfish

Artichoke

Input Image

(a) w/o filter

(b) w filter

Dam

Escalator indoor

Dam

Desert load

Desert load

Desert sand

Volcano

Volcano

Snow filed

Starfish

Starfish

Artichoke

Input Image

(c) w/o filter

(d) w filter

Staircase

Staircase

Church indoor

Figure 5. When our proposed module received the sample image as an input, Grad-CAM was used to find out which part
of the actual image to predict. We visualized the part activated in the input image using Grad-CAM to compare a model
without filtering with a model with filtering. (a,b) are the results of performing the ImageNet task. (c,d) are the results of
performing Place365 tasks. The model presented as the result of (a,c) is a model without filtering. The model that results in
(b,d) is a model with filtering.

6. Conclusions

In this work, we have validated the efficacy of multi-task learning in low-data con-
ditions, and proposed a cost-effective feature filtering module to generate task-specific
features with minimal overheads. Our main target is the low-data conditions, so we used
5%, 10%, and 20% of public benchmark training datasets as the training datasets. Among
various design options for multi-task models, we focus on the early-exit options and the
size of the task-specific heads. Apart from the conventional methods, we discovered that
minimal task-specific heads can be more effective than heavy task-specific heads with
proper choices of early-exit in the backbone feature extractor. Furthermore, we propose
a task-specific feature filtering module to exploit task-specific features for the minimal
task-specific heads. As a result, we have shown a structured approach to designing models
for multi-task learning, and have shown that the proposed module is effective in all tasks in
all low-data conditions. The future direction of this research would be an extension to more
various tasks, such as segmentation and detection. The multi-task learning among multiple
segmentation tasks, or among segmentation and classification tasks is to be discovered.

7. Future Work

In our work, multi-dataset integration, MTL and redundant feature filtering methods
were validated and demonstrated in the image classification task. However, the extremely
small data scenario can occur in various tasks such as semantic segmentation [35–37]
and object detection as well as image classification problems. Since our method is not an
architecture limited to image classification tasks, it can be easily extended by selecting a
multi-exit architecture suitable for each task, such as [38] in semantic segmentation and [23]

Electronics 2021, 10, 2691 13 of 14

in object detection. Redundant feature filtering also has room for improvement by applying
an attention method such as that in [4,9]. Therefore, in our future work, we plan to apply
and verify our method in various computer vision problems.

Author Contributions: Conceptualization, S.-w.L., M.-s.S. and J.-c.P.; methodology, S.-w.L., J.-c.P. and
R.L.; software, R.L and H.-c.N.; validation, J.-g.J.; formal analysis, S.-w.L. and M.-s.S.; investigation,
M.-s.S., G.-w.L. and J.-c.P.; resources, M.-s.C., D.-g.C. and R.L.; writing—original draft preparation,
S.-w.L., M.-s.S.; writing—review and editing, J.-c.P., D.-g.C. and R.L.; visualization, H.-c.N., R.-y.J.
and J.-g.J.; supervision, J.-c.P. and D.-g.C.; project administration, D.-g.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Korea Institute of Science and Technology (KISTI),South
Korea, under Grant K-21-L01-C03.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found in this links: https://www.image-net.org/, http://places2.csail.mit.edu/ (accessed on 2
November 2021).

Acknowledgments: This work was supported by a Research and Development project, Building a
Data/AI-based Problem-solving System of Korea Institute of Science and Technology (KISTI),South
Korea,under Grant K-21-L01-C03.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shao, S.; Li, Z.; Zhang, T.; Peng, C.; Yu, G.; Zhang, X.; Li, J.; Sun, J. Objects365: A Large-Scale, High-Quality Dataset for Object

Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2
November 2019; pp. 8429–8438.

2. Zhou, B.; Khosla, A.; Lapedriza, A.; Torralba, A.; Oliva, A. Places: An image database for deep scene understanding. arXiv 2016,
arXiv:1610.02055.

3. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 26–30 June 2016.

4. Wu, Y.; Mu, G.; Qin, C.; Miao, Q.; Ma, W.; Zhang, X. Semi-supervised hyperspectral image classification via spatial-regulated
self-training. Remote Sens. 2020, 12, 159. [CrossRef]

5. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

6. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
8. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
9. Wu, Y.; Bai, Z.; Miao, Q.; Ma, W.; Yang, Y.; Gong, M. A classified adversarial network for multi-spectral remote sensing image

change detection. Remote Sens. 2020, 12, 2098. [CrossRef]
10. Hasan, M.K.; Ahsan, M.; Newaz, S.; Lee, G.M.; Abdullah-Al-Mamun. Human face detection techniques: A comprehensive review

and future research directions. Electronics 2021, 10, 2354. [CrossRef]
11. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
12. Xu, Y.; Zhou, F.; Wang, L.; Peng, W.; Zhang, K. Optimization of Action Recognition Model Based on Multi-Task Learning and

Boundary Gradient. Electronics 2021, 10, 2380. [CrossRef]
13. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 6299–6308.
14. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv 2014, arXiv:1406.2199.
15. Caruana, R. Multitask learning. Machine learning 1997, 28, 41–75. [CrossRef]
16. Kaiser, L.; Gomez, A.N.; Shazeer, N.M.; Vaswani, A.; Parmar, N.; Jones, L.; Uszkoreit, J. One Model To Learn Them All. arXiv

2017, arXiv:abs/1706.05137.
17. Li, J.; Zhang, D.; Ma, Y.; Liu, Q. Lane Image Detection Based on Convolution Neural Network Multi-Task Learning. Electronics

2021, 10, 2356. [CrossRef]
18. Kokkinos, I. UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse

Datasets and Limited Memory. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 June 2017; pp. 5454–5463.

https://www.image-net.org/
http://places2.csail.mit.edu/
http://doi.org/10.3390/rs12010159
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.3390/rs12132098
http://dx.doi.org/10.3390/electronics10192354
http://dx.doi.org/10.3390/electronics10192380
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.3390/electronics10192356

Electronics 2021, 10, 2691 14 of 14

19. Mirowski, P.W.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.; Kavukcuoglu, K.; et al..
Learning to Navigate in Complex Environments. ArXiv 2017, abs/1611.03673.

20. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

21. Cohn, D.A.; Ghahramani, Z.; Jordan, M.I. Active learning with statistical models. J. Artif. Intell. Res. 1996, 4, 129–145. [CrossRef]
22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

23. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

24. Phuong, M.; Lampert, C.H. Distillation-based training for multi-exit architectures. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1355–1364.

25. Kim, D.; Lin, T.Y.; Angelova, A.; Kweon, I.S.; Kuo, W. Learning Open-World Object Proposals without Learning to Classify. arXiv
2021, arXiv:2108.06753.

26. Deng, J.; Guo, J.; Zhou, Y.; Yu, J.; Kotsia, I.; Zafeiriou, S. Retinaface: Single-stage dense face localisation in the wild. arXiv 2019,
arXiv:1905.00641.

27. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 818–833.

28. Seo, M.; Lee, J.; Park, J.; Kim, D.; Choi, D.G. Sequential Feature Filtering Classifier. IEEE Access 2021, 9, 97068–97078. [CrossRef]
29. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
30. Ma, W.; Zhao, J.; Zhu, H.; Shen, J.; Jiao, L.; Wu, Y.; Hou, B. A Spatial-Channel Collaborative Attention Network for Enhancement

of Multiresolution Classification. Remote Sens. 2021, 13, 106. [CrossRef]
31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778.
32. Parkhi, O.M.; Vedaldi, A.; Zisserman, A.; Jawahar, C. Cats and dogs. In Proceedings of the 2012 IEEE Conference on Computer

Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 3498–3505.
33. Fei-Fei, L.; Fergus, R.; Perona, P. Learning generative visual models from few training examples: An incremental bayesian

approach tested on 101 object categories. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition
Workshop, Washington, DC, USA, 27 June–2 July 2004; p. 178.

34. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

35. Kang, D.; Wong, A.; Lee, B.; Kim, J. Real-Time Semantic Segmentation of 3D Point Cloud for Autonomous Driving. Electronics
2021, 10, 1960. [CrossRef]

36. Garcia-Ortiz, L.B.; Portillo-Portillo, J.; Hernandez-Suarez, A.; Olivares-Mercado, J.; Sanchez-Perez, G.; Toscano-Medina, K.;
Perez-Meana, H.; Benitez-Garcia, G. FASSD-Net Model for Person Semantic Segmentation. Electronics 2021, 10, 1393. [CrossRef]

37. Ouahabi, A.; Taleb-Ahmed, A. Deep learning for real-time semantic segmentation: Application in ultrasound imaging. Pattern
Recognit. Lett. 2021, 144, 27–34. [CrossRef]

38. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1613/jair.295
http://dx.doi.org/10.1109/ACCESS.2021.3090439
http://dx.doi.org/10.3390/rs13010106
http://dx.doi.org/10.3390/electronics10161960
http://dx.doi.org/10.3390/electronics10121393
http://dx.doi.org/10.1016/j.patrec.2021.01.010
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

	Introduction
	Related Works
	Early-Exit Architecture
	Multi-Task Learning

	Method
	Dataset Integration
	Multi-Exit Architectures
	Task-Specific Feature Filtering

	Experiments
	Multi Task Learning Details
	Task-Specific Feature Filtering Module Details
	Experiment Result
	Multi-Exit Architecture Search

	Analysis
	Multi-Exit Architectures with Filter Visualization
	Visualization of the Distribution of Feature Filtering Values
	Redundant Feature Filtering Visualization with Grad-CAM

	Conclusions
	Future Work
	References

