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Abstract: The optimum utilization of infrastructural resources is a highly desired yet cumbersome
task for service providers to achieve. This is because the optimal amount of such resources is a
function of various parameters, such as the desired/agreed quality of service (QoS), the service
characteristics/profile, workload and service life-cycle. The advent of frameworks that foresee the
dynamic establishment and placement of service and network functions further contributes to a
decrease in the effectiveness of traditional resource allocation methods. In this work, we address this
problem by developing a mechanism which first performs service profiling and then a prediction
of the resources that would lead to the desired QoS for each newly deployed service. The main
elements of our approach are as follows: (a) the collection of data from all three layers of the deployed
infrastructure (hardware, virtual and service), instead of a single layer of the deployed infrastructure,
to provide a clearer picture on the potential system break points, (b) the study of well-known
container based implementations following that microservice paradigm and (c) the use of a data
analysis routine that employs a set of machine learning algorithms and performs accurate predictions
of the required resources for any future service requests. We investigate the performance of the
proposed framework using our open-source implementation to examine the case of a Hadoop cluster.
The results show that running a small number of tests is adequate to assess the main system break
points and at the same time to attain accurate resource predictions for any future request.

Keywords: heterogeneous monitoring; machine learning; next generation networking; software
defined networking; hadoop

1. Introduction

In the context of Network Function Virtualization (NFV), a Network Service (NS),
(e.g., router, firewall, cache server etc.), consists of a chain of interconnected Virtual Net-
work Functions (VNF). These virtual functions can physically reside on either single or
multiple VNF Infrastructures (NFVI), providing the network operators with significant
configuration flexibility. Considering the dynamic nature of the NSs, their life cycle man-
agement is not a straightforward procedure. Either because it runs for a short period
of time just to provide a specific service, or as the user’s demands may change, the NS
needs to be adapted to the new requirements by performing dynamic scale up/down
actions. To address the challenges that occur in this highly dynamic environment, ETSI
has already defined automated mechanisms for rule-based automatic scaling and healing
mechanisms in the NFV-Management and Orchestrator (MANO) reference architecture [1].
However, dynamic and optimal resource allocation remains a very interesting research
area as its dynamic management cannot rely solely on simplistic rule-based approaches,
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making it is necessary to adopt more sophisticated schemes including Artificial Intelligence
(AI)/Machine Learning (ML) algorithms. One of the main challenges for a network opera-
tor is to maximize the number of supported user services while ensuring the pre-defined
QoS for the duration of the whole NS lifecycle. Another key parameter that is of great
interest for the providers is the Quality of Experience (QoE) which constitutes, in essence,
the quality that the user experiences and is primarily affected by the perceived latency
measured by the user to the cloud [2]. In fact, optimal resource allocation is an issue
that concerns the Service Providers (SP) at the beginning of the cloud infrastructures, and
as the visualization technologies expand from Virtual Machines (VM) to containers and
microservices, the optimization problem has become even more complex.

Traditionally, to address this challenge, the network engineers allocate a significantly
higher number of resources than required, which directly leads to a waste of resources,
as the resources are underutilized. In order to avoid this waste, it is desirable for the
network engineer to allocate the exact number of required resources, leading to, ideally,
zero underutilization. To achieve this aim, an accurate prediction of the resources required
across the whole NS lifecycle is necessary. In particular, this prediction will define the
precise point at which the number of resources allocated ensures both a compliance with
the agreed Service Level Agreement (SLA) and zero underutilization, which, on one hand,
will avoid resource over-allocation and on the other hand will avoid the under-allocation
of resources which may lead to a violation of the SLA.

The definition of this “critical point” is a complex problem as it requires (a) an extensive
NS profiling for a large number of configurations, (b) the monitoring of a vast amount of
system metrics from different sources, such as bare metal, virtual machines, containers,
services, networking, etc., and (c) an integrated platform which can perform data analysis
for all the monitored metrics and can extract the most significant metrics that can potentially
lead to a QoS degradation. The issue of “critical point” determination is becoming more
challenging as new types of services emerge every day and the decisions for their resource
profile and assignment have to be performed faster and at a more precise level. Moreover,
another significant challenge is the heterogeneity of the infrastructure used in modern
datacenters. For example, hardware equipment (i.e., physical servers, switches, routers,
etc.) and virtualization technologies based on VMs and containers, (i.e., VMware ESXi,
Openstack, AWS, linux containers, docker swarm, Kubernetes etc.) are combined to
provide an infrastructure of computational and networking resources. As a consequence,
SPs require a generalized solution which can monitor, analyze and manage the allocated
resources at various levels of the adopted method of implementation.

In this complex environment, ML can effectively aid network engineers to minimize
the distance from the critical point of operation. Furthermore, it can automatically extract
the profiles for new services as they emerge, exploiting only a small number of deployed
configurations thereby minimizing the overall profiling time. These profiles are then used
to predict the exact amount of resources required to ensure the QoS for the duration of the
whole service life-cycle. As a consequence, an automated process of service profiling and
resource performance prediction can provide an improved utilization of the infrastructural
resources without the need to sacrifice QoS and/or service availability. The service profil-
ing and accurate performance prediction is a problem which extends to various service
categories, such as networking, security, big data, storage, emulation, etc., and the solution
we propose here can be easily adapted to any service category as it is based on open-source
technology and it is modular, while it shows a great deployment flexibility.

In particular, in this work, we design and deploy a novel framework to address the
problem of service profiling and to predict the system “critical points”, focusing on complex
services running over containers. The proposed solution is a multi-layer approach, as it
monitors and analyses data from all three layers of implementation, namely the physical,
virtual and service layers. Moreover, it employs open-source technology, while it supports
several types of virtualization technologies, providing a high level of flexibility. In addition,
it is able to profile various different types of services by performing “white box” testing by
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gathering performance metrics directly from the under-test services, or “black box” testing
using well-known benchmarking tools (i.e., jMeter, Apache benchmark, etc.). During the
data analysis, the proposed implementation exploits the broad gamut of ML algorithms,
spanning from polynomial regression to deep neural networks, tailoring the most accurate
algorithm for the service under examination. Finally, the candidate architecture is able to
designate the most obvious critical points during the service profiling phase, while during
the data analysis phase it can extract the hidden critical points. This is possible as it can
perform predictions for configurations which were not possible to examine during the
profiling phase.

To examine the feasibility of the proposed approach, we created a sand box environ-
ment in which we deployed a Hadoop cluster in order to perform service profiling and
performance predictions by monitoring an extensive number of critical system metrics
(e.g., CPU usage, memory usage, service throughput etc.) from three layers, namely the
physical, virtual and service layers. In this work, the specified layers are not related to the
OSI-compliant layers. The Hadoop was selected as the tested service since it combines
some very desirable features, such as (a) being a widely adopted solution for big data
problems, (b) it is open-source, (c) its easy integration with existing infrastructures, and
(d) it provides a significant number of test benchmarks which can be exploited to calculate
the performance of the deployed infrastructure.

The rest of the paper is organized as follows: in Section 2 we analyze the relevant
research in this field in order to provide a holistic view of the problem we address. In
Section 3 we introduce the three-layer architecture and in Section 4 we first analyze the
proposed test-bed which is deployed to test the feasibility of our solution, and we also
discuss the research findings from the conducted tests. Finally, Section 5 concludes the
paper and proposes potential future directions.

2. Related Work

In prior studies, several different implementations have been introduced to profile
and perform predictions on critical system metrics. In [3–6], the profile was performed in
test environments which are deployed on the cloud, while in [7–18] implementations in
the context of NFV are examined, because they focus on the deployment and validation
of VNFs. Most notably, [4] exploits various ML methods to perform predictions using
only a subset of the possible configurations, testing TeraSort, PageRank and Single Source
Shortest Path (SSSP), attaining a high level of accuracy despite using only a limited number
of configurations. Next, [5] uses various algorithms, such as active learning to analyze the
performance of the employed framework while [6] exploits a decision tree to sample the
deployment space and improve the overall prediction accuracy. In particular, in [6] each
deployment configuration represents a set of parameters which directly impact the overall
application performance. For example, in the Hadoop Wordcount, the target metric is the
execution time while the deployment space comprises the YARN nodes, the number of
cores per node, the memory per node and the dataset size. An important limitation of the
implementations in [3–5] is that they exploit data solely from the application layer while the
performance metrics of the hardware and the virtualization layer remain unexplored. It is
worth mentioning that the mechanism presented in [6] can monitor data from physical and
application layers, albeit the virtualization layer remains unutilized. This is a significant
drawback, because an approach which bypasses the impact of the different application
parameters on a specific layer, e.g., the virtualization or physical layers, (a) does not provide
knowledge on the relationship between these parameters and the performance metrics
and (b) may neglect additional system limiting points which can be attributed to the
configurations of the virtualization or physical layers.

Next, the authors in [7] designed a framework to characterize VNFs and highlight
their potential bottlenecks under different operational conditions while in [8,11] an entire
service chain, which comprises a number of VNFs, has been analyzed, rather than isolated
VNFs. The performance profiling from a service chain perspective is highly advantageous
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compared with the case of profiling each VNF separately, as it can significantly improve the
overall modeling accuracy. Further, [9] proposes a method with monitoring and debugging
functionalities which can obtain results in a very short time frame, e.g., seconds to minutes,
allowing for rapid reboots and reconfigurations of the examined VNFs or the emulator
network. Moreover, [10] introduces a framework which can perform benchmarking on the
NVF environment in an automated way and for a different number of operating conditions.
The works [7–11] are accurate and efficient methods for service monitoring and profiling,
but they do not perform predictions of QoS for different deployment options. This can
make the resource allocation mechanism cumbersome, since an accurate and efficient
method which can estimate the resources that need to be assigned for a specific NS does not
exist, even for configurations which have not been examined during the profiling phase.

To resolve this problem, ML has been exploited in the works of [12–18] for analysis and
performance predictions as it can relate the workload parameters with the performance
metrics. These proposed ML methods are tailored to the investigated service or VNF
and span from linear regression to artificial neural networks. From the aforementioned
solutions, only [14] collects and analyzes data from all three layers, however, with the sole
purpose to provide a comprehensive view behind the reasons of a performance abnor-
mality. Further, the works of [19,20] address the importance of a unified representation
infrastructure; however, a comprehensive analysis of the performance features and metrics
from multiple layers, their relationship with the service workload parameters and the
identification of the potential breaking points in all three layers, remains unexplored.

In the current work, we introduce a three-layer implementation which monitors and
analyzes data from all three layers in order to perform service profiling and performance
predictions using a number of different ML algorithms, spanning from linear regression to
neural networks. The proposed architecture is able to define the obvious system breaking
points for all three layers during the profiling phase and the hidden layers during the
analysis phase. This is important from an SP perspective, as it can help to avoid the waste
of resources through resource utilization and can avoid an SLA violation through resource
overutilization. Moreover, our approach can collect and analyze metrics from not only
the hypervisor but also from containers (Kubernetes). It can also be integrated easily with
existing MANO frameworks while it uses open-source tools to minimize the overall CapEx
costs. To further situate our work, we summarize the most important details of the related
literature in the context of NFV in Table 1.

Table 1. Related work in the context of NFV.

Ref. Testing
Service/App

Examined
Metrics

Examined
Layers ML Algorithms

[6]

Spark k-means,
Spark Bayes,

Hadoop Wordcount,
MongoDB

Execution time,
throughput service mainly Regression Trees

[7] Clearwater, Snort,
Suricata

Successful call
rate,

CPU, memory
and network

usage,
Packet

processing speed
vs. traffic

virtual -

[8]

single Video
Encoder (VE),

blackbox profiling
scenario, entire
service chain

Number of CPU
cores, CPU time virtual -
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Table 1. Cont.

Ref. Testing
Service/App

Examined
Metrics

Examined
Layers ML Algorithms

[9] Intrusion Detection
System (IDS)

CPU, memory,
traffic rate,
packet loss

virtual Rule based

[10] SIPp prober Avg. transaction
rate, CPU usage virtual -

[11] A chain of three
VNFs

Throughput vs.
CPU time virtual Plug-in arbitrary

analysis scripts

[12]

The service Media
Gateway (MG)
composed of
various VNFs

CPU load,
network drops,
rejected calls,

latency

virtual

Stochastic
Gradient
Descent

regressor
(SGDR)

[13] MME, S-GW, HSS,
PCRF, PDN-GW

Quality of
Decisions (QoD) virtual Q-Learning

approach

[14]

7 (such as
Suricata-IPS, NAT,
Tcpdump, Firewall,

Netsniffer-ng)

Many from each
layer, such as
CPU, memory

usage, Disk
read/write I/O

requests and
bytes etc.

service
virtual

physical

Various criteria
for behavior
classification

[15]

HSS, MME,
PGW-U-SGWU,
SGW-C-PGW-C,

INET-GW and eNB

CPU, CPU cache,
memory,

bandwidth, Disk
virtual

Decision
tree-based
multilabel

classification
technique

[16]
virtual router,

switch, firewall and
cache server

CPU usage,
packet loss,

cache response
time

virtual

Linear
Regression,

k-NN,
Interpolation,
ANN, Curve

Fitting

[17]

virtual firewall,
(pfSense), virtual
streaming server

(Nginx)

CPU usage,
packet loss, lag

ratio
virtual

Support Vector
Regression,

Random Forest,
Gaussian

Process, k-NN,
Interpolation

Method, Curve
fitting

[18] Squid cache, Nginx
proxy

CPU, total delay,
# of VNF
instances

virtual

Linear
regression,

support vector
regression,

decision trees,
ensemble

learning, neural
networks

[19] Scalable monitoring
framework

NS, VNFs, NFVI,
SDN controllers virtual Rule based
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Table 1. Cont.

Ref. Testing
Service/App

Examined
Metrics

Examined
Layers ML Algorithms

This
work Hadoop

CPU usage, disk
usage, memory

usage,
throughput,

average I/O rate

service
virtual

physical

Linear
Regression,
Polynomial
Regression,

Decision Tree,
Random Forest,
Support Vector

Regression,
k-NN, and Rule

based

3. Proposed Architecture

Despite the fact that optimal resource allocation has already been explored in the
literature, a complete, low cost, solution for collecting and analyzing information from all
types of monitoring targets, suitable for integration with existing frameworks, is missing.
The proposed framework (Figure 1) combines state-of-the-art monitoring and analysis tools
in order to provide a reliable and cost-effective resource allocation framework consisting
of the following two main components: (a) monitoring framework and (b) an analysis
server. This framework can be used as part of an NFV MANO, acting as an enhanced
Policy Manager or it can be used as an external component that analyzes the performance
of the running NS and provides recommendations to the MANOs using their APIs. This
aspect was important to consider in the design and the selection of the tools, although the
actual integration with a specific MANO implementation is not within the scope of this
work. The key requirements of the proposed system are as follows:

- An automated collection of monitoring data from as many heterogeneous types of
sources as possible.

- A sophisticated analysis mechanism based on many AI/ML algorithms for dynamic
resource allocation.

- Its easy integration with existing orchestrator frameworks.
- A scalable and resilient architecture ready to transfer a high number of monitoring

entities that supports hierarchical deployments.
- Support of near real-time responsiveness.

Figure 1. Monitoring and analysis architecture.
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3.1. Monitoring Framework

The proposed monitoring solution complies with the above requirements by adopting
Cloud Native (CN) tools, which can easily integrate new types of monitoring targets
without difficult configurations or extensive down-time. Also, all the employed tools
are opensource implementations and they are supported by big communities as they are
widely used in the industry. These features are crucial because they ensure the reliability of
the system and at the same time, they make the integration process with many external
systems that use the same tools easier. So, the choice of open-source implementation, which
is supported by a large and active community such as the Linux Foundation, Apache,
etc., ensures the involvement of many developers for support, bug fixing, and upgrades.
Furthermore, as a tool becomes more popular, it is adopted by new systems, which makes
integration between systems easier. The monitoring framework consists of monitoring
tools for data collection and storage from agents, collecting metrics across different time
periods for the targets:

The proposed implementation includes the following monitoring tools:

- The Prometheus server [21] is the central point of event monitoring, storage and
alerting. All performance metrics are collected using an HTTP pull model and stored
in a timeseries database. Some of the key features that make this server suitable for the
proposed architecture are: (a) the use/support of a flexible query language (PromQL),
which makes the interconnection with external systems easier (b) the existence of
many opensource implementations (exporters) for exposing the monitoring metrics
of various applications, and the ease of creating new ones, (c) the autonomy that is
provided as it does not rely on any complex distributed storage mechanisms and
(d) the fact that new monitoring targets can be easily added via reconfiguration or
using the file-based service discovery mechanisms.

- The Prometheus Pushgateway [22] allows batch jobs and short lived microservices to
expose their metrics to Prometheus. Since this function may not exist long enough to
be scraped, the metrics can instead be moved to a Pushgateway. The Pushgateway
then exposes these metrics to the Prometheus server.

- The Alertmanager [23] handles alerts sent by client applications such as the Prometheus
server. It is responsible for deduplicating, grouping, and routing the alerts to the
correct receiver integrations such as email, PagerDuty, or OpsGenie. It also attends
to the silencing and inhibition of alerts, which is useful for the management of the
number of generated notifications.

- Grafana [24] is an open-source solution that obtains those metrics and alerts that are
understandable from the Prometheus server, and it provides interactive visualization
web dashboards. These dashboards simplify the virtualization of the collected per-
formance metrics so that following each notification the user can refer to a specific
dashboard and identify the problem by observing charts.

The proposed implementation includes the following monitoring Agents:

- Netdata.io [25] is a powerful real-time monitoring agent which collects thousands
of metrics from systems, hardware, virtual machines, and applications with zero
configuration. It runs permanently on the physical/virtual servers, containers, cloud
deployments, and edge/IoT devices, and is perfectly safe for installation on a system
mid-incident without any preparation.

- cAdvisor [26] provides metrics of the resource usage and performance characteristics
of the running containers. It is a running daemon that collects, aggregates, processes,
and exports information about running containers. It maintains specific resource
isolation parameters for each container, historical resource usage, histograms of
complete historical resource usage and network statistics.

It is worth mentioning that some of the most known open-source MANO frameworks
in the context of the NFV, such as Service Programming and Orchestration for Virtualized
Software Networks (SONATA) [27] and Open Source MANO (OSM) [28] have already
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adopted Prometheus as their monitoring server. This makes integration with them straight-
forward, and only requires updating the configuration file of the Prometheus monitoring
server. Moreover, for large scale deployments, Prometheus Monitoring servers support a
distributed (cascaded) architecture: the local Prometheus servers collect and store metric
data from the different targets, while only the alerts are sent to the federated Prometheus
server for further processing and alerts. Another scalability requirement concerns the
large flow of data from the monitoring agents to the monitoring server and its respective
database, which might affect the service performance in extreme cases. To overcome these
potential problems, the monitoring system (a) is configured to store monitoring data of a
specific period and, (b) in cases of large deployment, the adoption of the described cascaded
architecture provides an appropriate solution.

3.2. Analysis Server

The analysis server is provided with data which were collected during the service
profiling phase and comprises a broad gamut of ML algorithms, spanning from linear
regression to deep neural networks. Depending on the characteristics of the examined
service, e.g., (a) the complexity between the workload parameters, such as the file size, the
number of files, and the performance metrics, such as the CPU and memory usage, and
(b) the number of examined features, as the activated ML algorithms are tailored to the
specific service. Their overall modeling accuracy depends both on the dataset (quantity
and quality of the measured data) and on the selected ML algorithms. For example, a more
complex mathematical relationship between the workload parameters and the performance
metrics may require more complex ML structures, e.g., a deep neural network with a larger
number of hidden layers. Furthermore, the proposed implementation allows for algorithm
re-training with additional data, as the service continues profiling for a longer time period,
potentially leading to a higher modelling accuracy. Overall, the methodology for the
selection of the ML algorithms is as follows. The predicted values for each ML algorithm
are compared against the actual values for each monitored metric, and once the modelling
accuracy verifies a pre-defined threshold, the most accurate algorithm is employed from
this point onwards.

4. Implementation Test Bed—Evaluating a Real-Life Service
4.1. The Deployed Sandbox Test-Bed

In the presented work, specific attention is paid to the evaluation of a complex service
consisting of several containers using microservices. One such service is the Apache
Hadoop, which is an open-source software framework that offers big data and analytics
services with almost unlimited scalability. It is used to store and process large datasets
with great efficiency and can be deployed conveniently on commodity hardware. Since
its release in 2011, it has been widely used in the industry as either an on-premise or
cloud-based solution. Many web service providers offer Hadoop as a service, based
on their own deployments or using platform-focused vendors such as Hortonworks or
MapR. Nowadays, Hadoop is available through many service providers, namely Cloudera,
Hortonworks, MapR, Amazon Elastic Map Reduce, Altiscale, etc. For our experiments,
an Apache Hadoop cluster was deployed (Figure 2) consisting of several microservices,
namely, historyserver, a namenode, a nodemanager, a resource manager, and three data
node servers.

Figure 2. Under test Hadoop cluster.
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In order to validate the proposed architecture, we used a sandbox environment
consisting of two different physical servers connected through a local ethernet network.
The technical specification for the physical servers is summarized in Table 2, as is the
networking device that was used is the Cisco SG250 18 port Gigabit switch.

Table 2. Physical Servers technical specifications.

PowerEdge R230

CPU 4 CPUs × Intel(R) Xeon(R)
(CPU E3-1220 v6 @ 3.00 GHz)

RAM 16 GB DDR4

HDD 8 TB

NETWORK 2 × 1GbE LOM

In the first server, we deployed all the components of the proposed architecture using
docker-compose scripts, and on the second, following the same approach, we deployed
the Hadoop cluster and the monitoring agents (cAdvisor and Netdata.io). All of the
software tools (Table 3) were based on the latest versions of container images from their
open-source projects (i.e., Prometheus.io, Netdata.io, cAdvisor, Apache Spark, etc.) that
make the proposed architecture reliable and redeployable. Furthermore, the adoption of
the Prometheus monitoring server prepares the proposed solution to integrate and collect
monitoring data from Kubernetes clusters.

Table 3. Open-source monitoring and analysis tools.

Software Tools Versions

Prometheus Server v 2.19.3
Prometheus Pushgateway v 1.2.0
Prometheus Alertmanager

cAdvisor
v 0.23.0
v 0.32.0

Netdata.io
Apache Spark

v 1.23.2
v 3.2.1

4.2. The Evaluation Procedure

The “testDFSIO” is a well-known read and write test for the Hadoop Distributed
File System (HDFS). In particular, it is used to test the performance of NameNode and
network components in HDFS. This test was executed using a MapReduce job, which
first splits the input datasets into independent sets of data to be processed in parallel
(map part), after which the outputs of the map are combined into a smaller set of values
(reduce part). We selected MapReduce as it is a widely adopted programming model
that provides significant advantages when there is a large amount of data needed to be
processed. In particular, it is simple and scalable as it can process large amounts of data in
a reasonable timeframe, and it can handle multiple sources of data and multiple types of
data. Furthermore, the user is able to select both the number of files and the file size for
each test. In addition, the user can set the type of test (read or write) and when the test is
completed, specific service layer metrics can be visualized, such as the throughput, the
average input-output (IO) rate, the standard deviation of the IO rate and the execution
time of the test. Overall, the “testDFSIO” is an important test for the Hadoop cluster as it
provides an overall performance evaluation of the provided service and a fast impression
of how efficient the cluster is in terms of IO.

In this work, we exploit this test in order to emphasize the deployed implementation
while monitoring data from all three layers, particularly from the “testDFSIO” (service
layer), hardware and virtual layers. Next, the collected data were exploited to perform ML
predictions. For modelling purposes, we selected six ML algorithms to mathematically
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relate the input parameters, namely the number of files and file size, to the monitored
metrics, e.g., CPU and disk usage. The employed ML algorithms are: Multiple Linear
Regression, Multivariate Polynomial Regression, Decision Tree, Random Forest, Support
Vector Regression and k-Nearest Neighbors. The list of ML algorithms available in the
analysis server of the proposed implementation is significantly larger, containing even
more complex algorithms, e.g., deep neural networks (DNN). However, in the current
analysis, we excluded DNN as it requires a large amount of training data in order to
provide accurate results. As this evaluation procedure has a small number of training
data (55 cases are considered), the DNN will definitely provide erroneous estimations. In
other service deployments, where the amount of training dataset is significantly higher, the
exploitation of deep learning algorithms must be considered. The six algorithms previously
mentioned were selected as they provide high modeling accuracy within a relatively
low computational timeframe and are also the most suitable algorithms for problems
containing a small number of features (in our case, two). In our implementation, we utilize
Python3 as the programming language, and the Numpy library for matrix multiplications,
data preprocessing and segmentation; the scikit-learn library for implementing the ML
algorithms, and the Keras high-level neural networks library, using Tensorflow library
(version 2.0.0)as the backend.

4.3. Results

In this section, we first examine the data collected from all three layers during the
service profiling phase (Section 4.3.1) and we then import these data into the six ML
algorithms in order to perform predictions about the selected metrics (Section 4.3.2).

4.3.1. Profiling of Critical System Metrics from Three Layers

The configured service is stressed using the “testDFSIO” test in order to examine the
breaking points of our implementation, or in other words, the parameters within which
the proposed service can operate seamlessly. A thorough understanding of these limits is
very important from an SP perspective, as it can ensure the QoS during the overall service
lifecycle. In our tests, we created a write test for two of the “testDFSIO” features, namely
the number of files and the size of each file, in order to stress the implemented HDFS.
Further, to obtain meaningful results, we ensured the same initial conditions for each test,
by deleting all the files which were written during the previous test from the disk.

We profiled the metrics for the three layers, and we illustrate the six most representa-
tive metrics in Figure 3 (two from each layer). As shown in Figure 3, both the CPU usage
(Figure 3a) and disk usage (Figure 3b) metrics increase as the number of files scale, since a
larger number of system resources need to be allocated to complete the test. Next, to select
the metrics that we will take into consideration from the virtual layer, we chose to focus
on the performance metrics that refer to the node manager container (among the different
nodes of the Hadoop implementation), because the node manager is the most resource
consuming node and thus plays a critical role in this test. As is evident, the memory usage
of the node manager (Figure 3d) increases when the number of files scales and when the
file size increases. Furthermore, the impact of the CPU usage (Figure 3c) strongly depends
on the file size, for example, in cases of a 100 MB file size and 25 files and above, the impact
of the CPU usage is expected to reach 200%. The value of the CPU usage exceeds 100%,
which is attributed to the fact that we use a multi-core physical machine, and also to the
fact that the test is implemented as a multi-thread procedure. Next, from the service layer we
selected the throughput (Figure 3e) and the average I/O rate (Figure 3f), both of which are
provided from the write “testDFSIO” test. The results reveal that (a) when the number of
files is smaller than five, both the throughput and the average I/O rate decrease as the file
size increases; (b) when the number of files is five and above, both metrics reach a plateau;
more specifically, when the file size is 500 MB and above, their values are minimized,
constituting an additional system limiting point.
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Figure 3. Critical system metrics monitored from three layers. (a,b) physical layer metrics, (c,d) vir-
tual layer metrics, (e,f) service layer metrics.

The aforementioned results confirm the need to monitor and analyze data from
multiple system layers, namely the physical, virtual and service layers in order to identify
all the potential system limiting points and to identify the exact conditions that are of
detriment to the overall performance of the implementation.

Next, we measure the overall execution time of each test for a different number of
files and file sizes (Figure 4). This metric is provided by the write “testDFSIO” test after
the completion of each test. We can observe that the execution time of each test increases
almost linearly with an increase in the number of files. This is expected, as the overall
implementation requires a greater amount of time to complete the write test due to the
larger size, which is required to be written in the disk. The execution time may exceed
10 min in some tests, showing that the deployed sandbox system has reached its limits,
as after this value, e.g., after 30 files, the allocated disk space is fully populated with
written data.

Figure 4. Execution time of testDFSIO for the different examined cases.
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4.3.2. Predictions Using Machine Learning

In this section, we present the results of the ML analysis on the six metrics presented
in Figure 3 using six well-known ML algorithms, namely the Multiple Linear Regression
(LR), Multivariate Polynomial Regression (PR), Decision Tree (DT), Random Forest (RF),
Support Vector Regression (SVR) and the k-Nearest Neighbors (k-NN) algorithm. The
data analysis is highly advantageous for an SP as it can (a) predict the behavior of the
examined system for any combination of critical system features, such as the number
of files and file size, not just those that have been previously tested, and (b) designate
additional system breaking points to those identified during the profiling phase, e.g., the
CPU usage on the node manager. There were 55 data points which were measured using
the write test “testDFSIO” for each metric and they were used to feed the ML algorithms.
A representation of the relationship between the input parameters (number of files and
file size) and the output parameters (performance metrics, e.g., CPU usage) for indicative
cases is illustrated in Figure 3. The number of data points is relatively small as there are a
small number of features in this specific problem (two), which are the number of files and
the file size. We decided to consider a limited amount of data points (55), to identify the
ML algorithms that would lead to very high modeling accuracy with a limited amount of
data so that we achieve fast service profiling. The data points were attained by iterating
over the following parameters:

Number of files: [1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25]
File size (MB): [100, 250, 500, 750, 1000]
The ML task was performed via the following steps. In the first step, the 55 collected

pairs of input (number of files and file size) and output values for each target metric
(e.g., CPU usage) were first shuffled and then divided into three sub-sets, one for training
which included 60% of the available points, one for validation which incorporated 20%
of the available points/values and one for testing which constituted of the final 20% of
the collected points/values. Next, a circular rotation between the three sub-sets was
performed in order to ensure that all the collected values for each metric were tested. In
the second step, the training sub-set was used to train the ML algorithm while the optimal
hyperparameters were derived from the validation sub-set. In the final step, the test sub-set
was used to perform the ML predictions and then the predicted values were compared
against the actual values for each metric. The prediction error was calculated using the
average absolute relative percentage error in order to attain comparable results across all
the metrics and ML methods, as follows:

1
n

n

∑
i=1

|yi − ŷi|
yi

· 100% (1)

where yi is the value of the ith point which was measured using our three-layer architecture,
ŷi is the predicted value of the ML method and n is the total number of points.

Table 4 provides the optimal hyperparameter values for the six examined metrics,
which were obtained using a grid search for the six ML algorithms. As is evident from
Table 4, the linear regression exploits a first order polynomial. For a higher order polyno-
mial, we select a second order, because a higher order polynomial, e.g., of a third order,
would lead to overfitting in the training data. Furthermore, when the DT is employed, a
tree with a depth equal to five is adequate. Next, the number of estimators of RF spans
between four and five and in the case of SVR, the parameter γ ranges from 5 × 10−5 and
0.01. Finally, when the k-NN is employed, it is adequate to calculate the distance from
only one or two of the closest neighbors. In general, the value of each hyperparameter can
impact the algorithmic architecture and its elaborateness, e.g., a greater polynomial order
leads to a more complex structure. In summary, our analysis reveals that our problem does
not require ML structures that are overly complex.
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Table 4. Optimal hyperparameters for each ML algorithm and metric.

Method Hyperparameter Optimal Hyperparameter Value/Metric

- - CPU
Usage PM

Disk
Usage PM

CPU
Usage NM

Memory
Usage NM Throughput Average I/O

rate

Multiple Linear
Regression (LR) order of polynomial 1st 1st 1st 1st 1st 1st

Multivariate
Polynomial

Regression (PR)
order of polynomial 2nd 2nd 2nd 2nd 2nd 2nd

Decision Tree (DT) depth 5 5 5 5 5 5

Random Forest (RF) depth, number of
estimators 5, 4 5, 4 5, 4 5, 5 5, 5 5, 5

Support Vector
Regression (SVR) C, γ 50, 0.01 50, 0.0075 50, 0.01 50, 5 × 10−5 50, 5 × 10−3 50, 5 × 10−3

k-Nearest
Neighbors (k-NN) k 2 2 2 2 1 1

The results of the applied ML algorithms on the six metrics are illustrated in Figure 5.
The LR shows the highest error in five out of six metrics, which is expected, as in Figure 3
it is shown that the relationship between the two features and the analyzed metrics is not,
in most cases, linear. Remarkably, the approximation error exceeds 100% in the service
layer metrics, as the predicted value can be greater than two times the actual value and as
consequence the fraction |yi−ŷi |

yi
in Equation (1) can be greater than “one” for a significant

number of the predicted cases. Next, PR is an adequate method for four out of six metrics,
providing an error of less than 16% in the physical and virtual layer metrics. On the other
hand, the service layer metrics are the most difficult to predict. This can be attributed to the
fact that the relationship between the two features and these metrics is more complex, and,
in order to improve the estimation accuracy, a greater number of tests must conducted, or a
data augmentation method has to be considered. The RF slightly outperforms DT by 0.3%
to 4.5%, which is expected, since it incorporates multiple trees. Furthermore, the accuracy
of the SVR depends considerably on the studied metric and, in most cases, it manages to
attain an error of less than 30%. Finally, k-NN attains the highest accuracy in the service
layer metrics, which are the throughput and average I/O rate while PR, RF and k-NN are
the most accurate metrics for both physical and virtual layer metrics, which are the CPU
and memory usage.

Figure 5. Comparison of six well-known ML algorithms applied to six system metrics.

This study confirms that ML algorithms can accurately predict the performance of
critical system metrics, using only a minimal fraction of different system conditions. These
are promising results, which can be further improved upon with data augmentation
techniques and/or a dataset enrichment with a greater number of tested cases, especially
for the service layer metrics.
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5. Conclusions and Future Work

We proposed a three-layer implementation which can perform service profiling and
predict the most important system metrics of the examined implementation for any possible
operational scenario. We demonstrated that by using only a small number of data points
we can attain a sufficient accuracy even when the employed ML algorithms are loaded with
a very limited dataset. These results can be used to minimize the distance of a system’s
operation from its “critical point” leading to significant resource savings while ensuring
the QoS. The proposed solution is based on open-source tools, and it is also scalable as it
allows for the collection of metrics for various components. Finally, it is flexible as it can
easily host different services as it employs a different type of benchmarking tools, such as
testDFSIO, jMeter, and Apache benchmark.

In future, we plan to perform data augmentation which can directly lead to a higher
modelling accuracy while reducing the need for additional and time-consuming tests on
the deployed infrastructure. Moreover, we plan to test our implementation with services
in other representative domains such as in media applications, security etc. Furthermore,
we intend to perform online machine learning training for each new NS, as well as to
integrate the proposed architecture with some of the open-source MANO frameworks in
order to provide a completely autonomous management system ready to be used in the
NFV context. Another research avenue to pursue is whether this architecture could be
deployed at the network edge, which would allow for a better utilization of resources and
thus permit Artificial intelligence applications to be executed closer to the devices (things)
where the data are generated. This would significantly bolster the implementation of the
edge, fox and cloud continuum that is currently being widely researched.
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Abbreviations
The following abbreviations are used in this manuscript
AWS Amazon Web services
AI Artificial Intelligence
CN Cloud Native
DT Decision Tree
DNN Deep Neural Network
HDFS Hadoop Distributed File System
IO Input-Output
IDS Intrusion Detection System
k-NN k-Nearest Neighbors
ML Machine Learning
MANO Management and Orchestrator
MG Media Gateway
LR Multiple Linear Regression
PR Multivariate Polynomial Regression
NFV Network Function Virtualization
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NS Network Service
OSM Open Source MANO
QoD Quality of Decisions
QoE Quality of Experience
QoS Quality of Service
RF Random Forest
SLA Service Level Agreement
SP Service Providers
SSSP Single Source Shortest Path
SVR Support Vector Regression
VE Video Encoder
VM Virtual Machines
VNF Virtual Network Functions
NFVI VNF Infrastructures
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