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Abstract: In the last few years, intensive research has been done to enhance artificial intelligence
(AI) using optimization techniques. In this paper, we present an extensive review of artificial neural
networks (ANNs) based optimization algorithm techniques with some of the famous optimization
techniques, e.g., genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony
(ABC), and backtracking search algorithm (BSA) and some modern developed techniques, e.g., the
lightning search algorithm (LSA) and whale optimization algorithm (WOA), and many more. The
entire set of such techniques is classified as algorithms based on a population where the initial
population is randomly created. Input parameters are initialized within the specified range, and they
can provide optimal solutions. This paper emphasizes enhancing the neural network via optimization
algorithms by manipulating its tuned parameters or training parameters to obtain the best structure
network pattern to dissolve the problems in the best way. This paper includes some results for
improving the ANN performance by PSO, GA, ABC, and BSA optimization techniques, respectively,
to search for optimal parameters, e.g., the number of neurons in the hidden layers and learning
rate. The obtained neural net is used for solving energy management problems in the virtual power
plant system.

Keywords: artificial neural networks; optimization algorithms; machine learning; ANN enhancement;
PSO; BSA; ABC; GA

1. Introduction

Artificial intelligence (AI) helps computers or inanimate objects based on computers
to think or act as humans do. AI research focuses on how the human brain thinks, learns,
decides, and works to solve problems. AI is a vast field that aims to create intelligent
machines [1]. Machine learning (ML) is a branch of AI that recognizes and learns different
data set patterns [2]. As a definition, ML is an AI application that allows systems to
learn automatically and improve by the experience and is devoid of being programmed
implicitly [3,4]. The common algorithms used in the ML are neural networks, support
vector machines, decision trees, random forest, logistic regression, and many more. Also,
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some others are subsections of the neural network, such as generative adversarial network
(GAN) by Goodfellow in [5,6]. The deep learning (DL) approach utilizes a hierarchy of
concepts in a field that assists a computer in building knowledge from experience [7]. This
approach has found its use especially in visual object or speech recognition as well as
genomics and medicines [8,9]. The neural networks are a family of deep learning (DL) and
ML methods based on artificial neural networks (ANNs) with multi-hiding layers [10–14].
Neural networks are applied in many different implementations with slight variations in
their structures, such as recurrent neural networks (RNN), Artificial neural network (ANN),
and convolutional neural networks (CNN) [15,16]. Due to their feature engineering and
decision boundaries, the novel neural network approaches are preferred over machined
learning in some fields like self-driving vehicles, unmanned drones, and complex deep
learning problems [17]. The decision boundary is used to classify any data point as one of
the two classes, positive or negative. For this reason, if the data is not separable for any
reason, the neural networks in deep learning will not be a good choice [18,19].

Artificial neural networks are computational algorithms that are utilized to model
data. Their design is based on the biological nervous system, hence the name [20,21]. An
ANNs contain a set of processing elements called neurons that are interrelated components.
These neuron structures act as a harmonious rhythm to solve certain complex problems.
ANN can be used in scenarios when it is difficult to extract trends or detect patterns.
ANNs have recently gained popularity after almost 50 years of existence. Through their
rapid increases and importance, the underlying logic behind ANNs has existed; however,
due to the pervasive and ubiquitous adoption of powerful computational tools in our
contemporary society, ANNs have had a sort of renaissance, much to the benefit of experts,
engineers, and consumers.

The current cutting-edge in deep-learning and ANNs focuses highly on their ability to
model and interpret complex data and their ability to scale due through optimization and
parallelization [22]. The current framework for designing ANNs is widely available, with a
myriad of tools facilitating their development. Python, C++, Google’s Tensorflow, Theano,
Matlab, and Spark contain a robust set of mathematical operations that necessitate ANNs.
Due to the algorithm behind ANNs, the models are inherently liable for extracting meaning
from imprecise or intricate problems. Speaking reductively, ANNs are data modeling tools
that are trained on a given dataset.

Optimization problems often require good optimization methods to minimize or
maximize objective functions. These functions can often not solve problems accurately, for
example, when they are not linear or polynomial and must be approximated. Full or partial
derivatives are used in some algorithms to linearize these functions at specific points [23],
whereas evolutionary algorithms (EA) may be employed for approximation. The objective
function approximation in optimization problems makes it possible to apply other artificial
intelligent techniques through a non-linear regression to resolve an optimization problem.
The objective function’s derivate should be polynomial to calculate the optimization prob-
lem’s solution. Algorithms are normally used to optimize, e.g., weights, optimize network
architecture, optimize learning rules, neurons, activation function, and bias. Another way
to optimize and enhance the ANN is by using an optimizer to replace the neural network’s
original algorithms with optimization algorithms, replacing the backpropagation with
any optimization techniques to solve certain associated issues. However, using an opti-
mization algorithm in place of back-propagation, like using the Liebenberg Marquardt
neural network with any optimization techniques for fast or accurate achievement in the
neural network training. This research review highlights improving the neural network
by optimizing algorithms by handling neural network parameters or training parameters
to find the finest structure network pattern to solve the problems with high accuracy and
faster. This review included testing results for improving the ANN performance using four
optimization algorithms to search for ANN’s optimal parameters, such as the number of
neurons in the hidden layers and learning rate. The obtained neural net is used for solving
energy management problems in the virtual power plant system.
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Supporting AI, ML, DL with optimization techniques has gained importance in the
last few years. There is a lot of ongoing research using optimization to enhance or boost
performance by finding the optimal parameters values to help architecture design. In [24],
a fuzzy logic controller design improvement for PV Inverters utilizes differential search
optimization to find the optimal membership function patterns, which improve the fuzzy
controller to a higher level of accuracy. In [25] the ML, this approach optimizes the Support
Vector Machine model parameters and simultaneously locates the best features subset.
Allowing the optimization technique to do the job is the smartest way to improve almost
any AI or ML performance [26]. It is essential to process pre-setting to guarantee optimal
results for almost any application. In the DL and particularly deep neural networks (DNNs)
and ANN, the more hidden layers, number of neurons, and complex activation functions,
the better the outcomes but will cost more time and more complexity of the network [27,28].
So, to use the optimum numbers of parameters by trial and error is a time-consuming and
impossible way to follow. From another point of view, the ANN with human estimation
parameters setup could bring outcomes, but how to confirm this is the best outcome
of the ANN? For these reasons, the optimization algorithm can solve these issues, and
this review delivers a detailed analysis of various examples of ANN-based optimization
techniques. For instance, In [29–31], optimization techniques optimize ANN parameters to
solve different electricity and communications fields by finding optimal parameters for the
optimum ANN structure.

The rest of this paper is organized as follows: Section 2 presents the materials and
methods used. Section 3 addresses the challenges and motivations for ANN-based op-
timization, while Section 4 presents a review of optimization algorithms, Section 5 ad-
dresses neural network structure types. Section 6 is the complete overview of neural
networks enhanced by optimization algorithms, Section 7 is an application on artificial
neural network-based optimization algorithms, Section 8 covers artificial neural network
training-based optimized parameters and finally, Section 9 presents the conclusions and
future work.

2. Materials and Methods

A literature survey for material contents was done to present, identify, analysis,
classify and review the distinguished ANN-based optimization techniques for various
applications and controller enhancement. In this comprehensive review, the survey has
gone through voluminous publisher databases. For example, IEEE Xplore library, Web of
Science, Elsevier Scopus, and MDPI open access for putting into practice the search queries
to ensure all selected articles meet the essential quality measures, novelty, originality, high
impact, and high h-index. Following the guidelines [32–34], to present an in-depth review
and understanding of utilized various keywords to find significant journals within the
scope of the research, including multiple types of neural networks, such as ANN, RNN,
CNN, GNN, and many more and different kinds of optimization techniques such as PSO,
EA, CSA, and many more. In this section, the enhancement of the architecture of the
neural network is further evaluated. Different neural network structures are presented,
selecting and validating the superiority of using various optimization techniques to search
for optimal ANN parameters and comparing the performance [35] to designate the best
parameters results in the comparative performance output of the ANN controllers.

Most of the included articles were about the focus of this research review, that is how
to boost the performance of neural networks using optimization algorithms by modifying
the neural network structure. The screening stage comprises three stages. Firstly, matching
articles were excluded, bringing in about 433 best articles which were examined in the
next step, where the significant papers were reviewed by looking at their title, keywords
and abstract. This step resulted in 306 documents for additional investigation. The third
stage is the eligibility step, in which the full texts of papers were studied, in which 219
were counted as eligible for review of references. In this review, only the meaningful and
suitable literature has been considered by evaluating the article’s relevant content and the
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critical topic of attention of the review. Accordingly, the related papers were designated
based on the number of citations and research interest. This review methodology process
comprises several stages, and the Prisma guidelines according to [36,37] were followed.
Figure 1 shows how the methodology for utilizing optimization to find optimal parameters
of neural networks. A schematic diagram of the review section process, evaluation, and
quality control of the database using the Prisma guidelines is shown in Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 43 
 

 

were counted as eligible for review of references. In this review, only the meaningful and 
suitable literature has been considered by evaluating the article’s relevant content and the 
critical topic of attention of the review. Accordingly, the related papers were designated 
based on the number of citations and research interest. This review methodology process 
comprises several stages, and the Prisma guidelines according to [36,37] were followed. 
Figure 1 shows how the methodology for utilizing optimization to find optimal parame-
ters of neural networks. A schematic diagram of the review section process, evaluation, 
and quality control of the database using the Prisma guidelines is shown in Figure 2. 

Optim
al 

objec
tiv

e f
uncti

on

 
Figure 1. Methodology of utilizing optimization to find optimal parameters of neural networks. 

Eligibility

Identifications

Screening

Inclusion

394 Articles were 
identified

35 Articles were identified 
during  cross refereeing

306 articles accessed in full-
text 

219  Articles were  involved in
review analysis 

127  articles 
excluded after
reading title 
and abstract  

Argumentation
, screening & 
assessment of 

all articles

Initial  
Screening and 
evaluation  of 

433 articles

77 articles were excluded 

 
Figure 2. Schematic diagram of the literature selection, evaluation and quality control process of the 
database using the Prisma guidelines. 

Figure 1. Methodology of utilizing optimization to find optimal parameters of neural networks.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 43 
 

 

were counted as eligible for review of references. In this review, only the meaningful and 
suitable literature has been considered by evaluating the article’s relevant content and the 
critical topic of attention of the review. Accordingly, the related papers were designated 
based on the number of citations and research interest. This review methodology process 
comprises several stages, and the Prisma guidelines according to [36,37] were followed. 
Figure 1 shows how the methodology for utilizing optimization to find optimal parame-
ters of neural networks. A schematic diagram of the review section process, evaluation, 
and quality control of the database using the Prisma guidelines is shown in Figure 2. 

Optim
al 

objec
tiv

e f
uncti

on

 
Figure 1. Methodology of utilizing optimization to find optimal parameters of neural networks. 

Eligibility

Identifications

Screening

Inclusion

394 Articles were 
identified

35 Articles were identified 
during  cross refereeing

306 articles accessed in full-
text 

219  Articles were  involved in
review analysis 

127  articles 
excluded after
reading title 
and abstract  

Argumentation
, screening & 
assessment of 

all articles

Initial  
Screening and 
evaluation  of 

433 articles

77 articles were excluded 

 
Figure 2. Schematic diagram of the literature selection, evaluation and quality control process of the 
database using the Prisma guidelines. 

Figure 2. Schematic diagram of the literature selection, evaluation and quality control process of the
database using the Prisma guidelines.



Electronics 2021, 10, 2689 5 of 43

3. Challenges and Motivations for ANN-Based Optimization

Neural networks can study large volumes of data with complex features and extract
different patterns in a relevantly short amount of time. Therefore, they are useful for
many industrial applications, such as predicting certain behaviors, detecting anomalies or
errors in data, detecting certain images, sounds or pictures. They could use self-learning
to produce the best output, with unlimited provided inputs [36]. The neural networks
modeling approach is very flexible and quick to solve problems, and it does not rely on
physics-founded algorithms to build models. They are easy to modify and deal with based
on operator experiences and merge with the ANN structure model. Neural networks
are good for solving complex non-linear relationships as their inputs are saved in their
particular networks as an alternative to a database line. For that reason, the loss of data
will not disturb the NN operation process. The following points list the main motivations
associated with the use of ANNs:

• Ability to accept unlimited inputs and outputs; this unique advantage makes ANNs
more important and popular than other AI methods, making them suitable for small
or huge dataset analysis.

• Skills to learn and model non-linear and complex relationships, the ANNs can handle
various real-life applications in different fields that are complicated and non-linear;
this is a very significant advantage.

• Skills of training without complete information and the data may produce output,
and the performance depends on the importance of the missing data.

• Distinct from the other deep learning prediction techniques, ANNs do not need
any enforcement restrictions on the input variables, such as how the data need to
be distributed.

• Skills to create ML: ANNs can learn events and sort wise decisions via commenting to
reach similar events better.

• Multi-processing capability, the ANNs can assure numerical efficiency with their
power of performing several duties simultaneously.

• Ability to tolerate faults, whereby ANNs can produce output results even if some cells
are corrupted, and this advantage allows ANNs to tolerate faults.

• Ability to generalize; as soon as the ANNs learn from the initial input relations, they
can conjecture unknown relationships in anonymous data, thus making the model
generalized and allowing it to predict unknown data.

• In using distributed memory during the ANN learning, an essential process is ad-
justing samples and indoctrinating the network according to the desired output by
viewing these samples to the network. This process allows the network to achieve
and select the instance straight proportionally and by failing to show the event to the
network in its full features, and the network may yield false outputs.

However, artificial neural networks, although considered one of the best general
algorithms solving problems, they are very much a stochastic problem, where model
weights are used and every iteration is reorganized with the backpropagation of the error
algorithm signal. ANNs’ performance is good, yet several disadvantages and challenges
face the ANN to assure the proper network structure, duration, best tuning parameters,
trial and error, and more explanations that must rely on an expert user. The next points
express the main challenges for ANNs as follows:

• Mysterious network behavior, After the ANN produces an analytical result, it is
unexplained why or how selecting these outputs and rejecting the others may make it
untrusted in the network.

• Appropriate network architecture design. ANNs have no exact law to determine the
best structure design or a proper network structure must be achieved by experience
and trial and error.
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• Obscure duration time for the network; the optimum results may be produced during
the training phase as expected because the network minimizes to a certain level the
error on the sample to allow the training completion.

• Depending on the hardware, ANNs need powerful dual processors and ANN struc-
tures. This drawback is called the realization that the whole approach is equipment-
dependent.

• Gradual corruption slows down the process over time and it suffers relative degrada-
tion, and the network problems do not immediately degrade directly.

• Difficulty recognizing network problems if they exist since ANNs are based on nu-
merical data that explain the difficulties in numerical values before being introduced
to the ANNs. This could depend on the researcher’s ability to display the mechanism
and influence the network’s performance.

Artificial neural network applications that have increased dramatically in the world
in the middle of the last century are developing very fast. At present, besides the computer
capabilities, the advantages of ANNs have been examined, and the problems users have
encountered. However, it is very important not to neglect the ANN network’s disadvan-
tages, which are a developing science branch, and should excluded one after another, and
the advantages of the ANNs are growing progressively. That is, the avenue of using ANNs
will be an increasingly important indispensable part of our lives. The enhancement of
ANNs by using optimization methods could eliminate some of their disadvantages in
picking the best network structure using the proper optimization techniques. The chal-
lenge is finding a system coding that enables appropriate tuning of neural structures in
professional networks, including the best number of neurons, hidden layers, weights, bias,
and self-shaping architecture and multi-stage objective functions.

It is very important to select and adjust the best suitable neural network parameters for
any given application, as there are many possibilities. However, not every neural network
can could act perfectly in all applications. Some types are more practical in particular
applications; for example, CNN is good for images and videos, while RNN is good for
text and classification problems, so the networks need to be studied and adjusted, and the
problems need to be compared and contrasted. Somehow, to enhance the neural networks
with optimization it is important to select the neural network parameter optimizer to obtain
the best outputs.

Like other AI algorithms, neural networks can deal with non-linear and complicated
problems with a high volume of data. The superiority of neural networks over other
different AI algorithms lies in that they are very effective for many inputs and outputs.
While it is true that fuzzy or adaptive neuro-fuzzy inference systems (ANFIS) techniques
have drawbacks, they can accept many inputs, although they are limited in the number of
outputs they can support. Neural networks do not have this limitation which makes them
work better for classification and regression studies.

4. Review of Optimization Algorithms

An optimization algorithm is an essential tool for selecting the best solution from
a set of all possible solutions for analyzing, classifying, or improving existing systems
or data. Above all optimization problems get at least one objective function or more
objective functions. However, the target is to determine the optimal key that fulfills the
complementarity conditions. Optimization problems are found in numerous scientific
areas, such as medicine, engineering, business, and many more. Optimization algorithms
are classified into various types: deterministic optimization and global optimization [23,37],
continuous optimization [21,38], multi-objective optimization [39–41], etc. Overall, each
optimization method is designed to serve specific targets. For instance, the local algorithms
solve some optimization problems, such as discrete variables or integers, whereas it is easy
for global algorithms. The global optimization algorithms can be categorized as either
evolutionary algorithms or deterministic algorithms.
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There are hundreds of common optimization techniques for many relevant scientific
code archives. The challenge is knowing the best techniques to suit a particular optimization
problem because some techniques use derivatives while others do not. The conventional
methods normally use first order derivatives, and others use the second derivative for their
objective function. The search type is either direct or stochastic search for targeted objective
functions that result in its function’s maximum or minimum output.

Normally, the most popular kinds of optimization problem facing neural networks
involve continuous function optimization. Their input pretext for their function estimates
numeric values for either the input function or the output function. However, the more
available information for the target function, the more accurate the achieved optimization
will be. In contrast, the differentiable function can determine any sample in the input
search. Optimization algorithms are, in general, categorized into two groups: deterministic
and heuristic algorithms. Deterministic techniques exploit their analytical capabilities,
while in contrast, heuristic techniques are more flexible and efficient than deterministic
techniques through fast-to-obtained solutions, decreasing the number of global solutions.
Global optimization algorithms are used to find the global minimum or maximum in
complex problems. This is harder than local optimization with bound constraints and
does not require derivatives. Both the local and global optimizations are a matching set
in solving linear, non-linear, quadratic, and least squares constrained or unconstrained,
dense or sparse, forward or reverse communication, continuous, mixed-integer, integer
problems [42]. The optimization techniques are classified according to the underlying
principle of a biological and physical-based algorithm. The first category is a biology-based
algorithm such as genetic algorithm (GA), harmony search algorithm (HSA), particle swarm
optimization (PSO), bacteria foraging optimization (BFO), cuckoo search algorithm (CSA),
bee colony algorithm (BCA), ant colony optimization (ACO), firefly algorithm (FA) [43],
backtracking search algorithm (BSA), lightning search algorithm (LSA), etc. The second
category is physics-based algorithms such as simulated annealing (SA), gravitational search
algorithm (GSA), chaotic optimization algorithm (COA), etc. [44,45]. In this review, some
of the most popular optimization algorithms are explained.

The particle swarm optimization algorithm is one of the most popular evolutionary
optimization algorithms [46]. The PSO algorithm principle depends on the velocity and
position of particles [47]. The authors described that the PSO algorithm is utilized to
automatically design an ANN method to improve the synaptic mass, architecture, and
transfer functions for each neuron [48–52]. Nevertheless, PSO has some drawbacks: it is
vulnerable to becoming stuck in local minima and selecting control parameters incorrectly,
resulting in a bad solution. In [48], an ANN-based PSO method was used to predict the
thermal properties of molecular structure.

Another popular algorithm is the gravitational search algorithm, a physics-based opti-
mization algorithm inspired by Newton’s motion and gravity laws [49]. The GSA optimiza-
tion method has been used in some applications to find the best solution for a short-term
training feedforward approach to ANN problems and to improve the performance [53–57].
In [50], the authors addressed an ANN-based GSA optimization approach to enhance kid-
ney image quality classification for a bio-medical application. The study in [51] presented
a GSA optimization-based ANN to solve geotechnical engineering issues for improving
geogrid-reinforced soil structures.

One optimization algorithm is the neural network algorithm (NNA), which is inspired
by the functioning of biological nervous systems and artificial neural networks [52]. NNA
has recently been used in machine learning, as an intelligent controller, in biodiversity
assessment, intelligent feature recognition, and for uncertain data streams to provide
a way of learning features, predicting highly nonlinear functions, discovering useful
hidden representations of the input because it does not require mathematical models and it
achieves good prediction for ANN [58–61]. However, NNA controllers require massive
data and long-time training and learning. In [53], an artificial bee colony (ABC) and an
NNA intelligent feature recognition for STEP-NC-compliant manufacturing can adjust
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geometric and topological information. The study in [54] addressed estimating biodiversity
assessment based on AI and NNA.

Another powerful optimizer is the BSA which generates a trial population and then
takes partial advantage of its experiences from previous generations. Crossover is devel-
oped in the trial population. The initial trial populations are taken from mutations. The
described benefits of BSA are in their search exploration process, which has the advantage
of using the mutation and crossover strategies. Though it has some limitations, such as
time-consuming computation because of the dual population algorithm, one parameter is
only used to control the amplitude of the search direction matrix in the mutation phase, and
crossover is complex [55–57]. In [29,30], BSA is applied for a fuzzy logic speed controller
optimization approach for induction motor drives. The deterministic global optimization in
numerical optimization helps to search for global solutions for optimization problems [42].

The lightning search algorithm was first proposed by Shareef and his colleagues [58].
Afterwards Ali upgraded it with quantum mechanics theories to generate a quantum-
inspired LSA (QLSA) [59]. The LSA optimization approach has been utilized in numerous
applications [30,60,61]. The study in [30] described an LSA-based ANN method home
energy management scheduling controller for residential demand response strategies. The
study in [62] proposed a neural networks-based LSA to find the optimized feedforward
learning process to solve datasets. In [63], the author addressed finding the optimal Kp
and Ki value of the LSA-based PI voltage controller and implementing it into the dSPACE
controller. Table 1 lists the advantages and disadvantages of the most popular nature-
inspired optimization techniques. However, not all optimization algorithms and their
variants provide superior solutions to specific problems. Also, even though some of the
optimization techniques are efficient, they still need further improvement to enhance
their performance. Besides, how to speed up the convergence of an algorithm is still
a very challenging question, so new Nature-inspired optimization techniques must be
continuously developed to advance the field of computational intelligence or heuristic
optimization [60,61,64–73].

Table 1. Advantages and disadvantages of the most popular nature-inspired optimization techniques.

Technique Advantages Disadvantages

PSO [62]

- Fast convergence.
- The capability of solving complex problems in a

different application domain.

- Easily get trapped in local minima.
- Improper selection of control parameters leads to

a poor solution.

GA [63]
- It does not require derivative information
- Suitable for a large number of variables,

- No guarantee of finding the global minimum,
- Long time for convergence,
- Hard to fine-tune all the parameters, like

mutation rate, crossover parameters, etc., this is
often done by just trial and error.

NNA [52]

- Easy to learn and implement.
- It obtains good results when dealing with

lower-dimensional optimization problems.

- Abrupt switching to the exploitation stage by
quickly varying wavelength and pulse
emission rate.

- Difficult to solve high-dimensional
optimization problems.

ABC [64]
- Strong robustness
- Fast convergence and flexibility

- Premature convergence in the later
search period.

- Accuracy problems that in some cases cannot
meet the optimal solution.

LSA [58]

- Suitable for the search exploration process.
- Has the advantage of using the mutation and

crossover strategies.

- Time-consuming in computation because of the
use of the dual population algorithm.

- One parameter only controls the amplitude of
the search direction matrix in the
mutation phase.

- Crossover is complex.
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Table 1. Cont.

Technique Advantages Disadvantages

EA [65]
- Robust concerning noisy evaluation functions.
- Easily to adjust to the problem

- Usually provide reasonably good performance
- Premature convergence to a local

global minimum.

BSA [73]
- Suitable for the search exploration process.
- Has good mutation and crossover strategies.

- Time-consuming in computation because of the
dual population algorithm.

GSA [67] - Faster solution convergence
- Easily gest trapped in local minima, and

weakness in its strategy to diversify the
algorithm’s population

FA [68]

- Easy to implement
- Capable of automatic subdivision and dealing

with multimodality.

- Gets trapped in several local minimal.
- Performs local searches
- Does not memorize the history of the better

situation, and may end up missing situations

5. Neural Networks in Deep Learning

Deep learning (DL) is a subset of ML which is based on learning data representations,
unlike task-specific algorithms. It is inspired by the function and structure of the brain,
known as artificial neural networks. The approach utilizes a hierarchy of concepts in a field
that assists a computer in building knowledge from experience. This technique does not
require computer knowledge to be provided through human input as it is automatically
gathered. The hierarchy of concepts facilitates breaking complex concepts into simpler
ones with several layers [8]. DL techniques use several layers of abstraction to learn when
there is more than one processing layer. This approach has found its use especially in visual
object or speech recognition as well as genomics and medicines. DL implements a back-
propagation approach to detect patterns in complex datasets. It does this by considering
how the internal parameters should be altered to move from one representation layer to
the next. Deep convolutional and recurrent nets have facilitated breakthroughs in image
and audio processing as well as text and speech detection, respectively [16,69].

Neural networks have different implementations with slight variations, including
RNN, ANN, and CNN [15,16]. Due to their feature engineering and decision boundaries,
such novel NN approaches are preferred over machine learning by the people active in the
study of self-driving vehicles, unmanned drones, or complex deep learning problems [17].
The decision boundary is a technique used to classify any data point as belonging to one
of two classes, positive or negative. For this reason, if the data is not separable for any
reason, neural networks will not be a good choice in deep learning. On the other hand,
feature engineering is composed of two steps: feature selection and extraction. These two
components make up the model building. The multi-layer ANNs are also neurons placed
similarly to the human brain. Each neuron is connected to other neurons with certain
coefficients. During training, information is distributed to these connection points to learn
the network structure and functioning [18].

6. Neural Networks Structure Types

In deep learning, many neural network types use different principles to determine
rules for various applications and formulate the foundation for most pre-trained models.
The most well-known neural networks are ANN [70], CNN [71], and RNN [72]. On the
other hand, many neural networks are developed with unique structures to serve different
software. For example, radial basis function neural networks, modular neural networks,
multilayer perceptron neural networks, and sequence-to-sequence models neural networks
use their unique strengths to serve and fit some applications well compared to other net-
works. DNN [73] and another deep learning NN are so-called graph neural networks
(GNNs), designed for graphic data classification problems [74,75]. LSTM recurrent neural
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network models are excellent for text classification problems. An ANN is based on the
use of simultaneous optimization techniques was used to model theophylline tablet for-
mulations in [76]. A generative neural network has been used in adjoint electromagnetic
simulations [23].

6.1. Artificial Neural Networks

An ANN is a cluster of multiple perceptrons or neurons at each layer; when the input
data is sorted in the forward direction, this is called the feed-forward neural network [15,77].
The basic structure of an ANN consists of three layers: the input layer, hidden layers, and
output layer. The input layer receives the input data; the hidden layers compute the input
data, and the output layer provides outcomes. Each layer’s duty in the neural networks
attempts to learn specific decimal weights to be set at the end of the learning process. The
ANN approach is good for solving image data, text data, and tabular data problems. The
advantage of ANN is its skill of dealing with nonlinear functions and learning weights that
help map any input to the output for any data. The activation functions provide nonlinear
properties to their ANN, which can benefit the net to learn any complex relation associated
with input data and output data, known as a universal approximation. Many researchers
adopt ANNs to solve complex relations, for example, the coexistence of cellular and WiFi
networks in an unlicensed spectrum [78].

Another example is feed-forward neural network probabilistic neural network (PNN)
in [79] and knowledge-based neural network described in [80,81]. In [82] this approach
was used for modeling a solar field in direct steam generation parabolic trough. ANN is
used as an optimizer in many research projects to solve bundling problems; for example,
in [83] it was used to optimize a flight trajectory for rockets. An ANN optimized the
design and optimization of microwave circuits in [84]. Model-aided wireless AI embed-
ding expert knowledge in DNN to solve wireless system optimization to find the best
architecture of an ANN [22]. ANN is also used to optimize and control thin film growth
processes [85]. A sampling method for the ANN model’s optimal design [86]. A feedfor-
ward neural network optimization is applied to synthesize fault-tolerance [87]. ANNs,
together with the Xinanjiang model to employed to explore nonlinear transformations [88].
Some optimized artificial neural network models for predicting chlorophyll dynamics
were done to decrease the cost of aquatic environmental in-situ monitoring and increase
bloom forecasting accuracy [89]. A problem of crude oil distillation systems was solved
using ANN by optimizing heat-integration [90]. ANN solved the optimization problem
and extraction of anthocyanins in black rice using orthogonal arrays [91]. ANN solves the
optimization problems in traffic lights timing traffic light controller [92]. Also, ANN is used
as an optimizer and applied to waves energy converters (WEC) to predict overtopping
rates as part of a sustainable optimization of coastal or harbor defense structures and their
conversion for constructing a predictive model [1]. The architecture of the artificial neural
network is shown in Figure 3. Each neuron output includes an activation function of a sum
of all inputs weights, while the neuron input is a sum of all weights included in the bias,
as shown in Figure 4. The bias is a constant used to adjust the output and the weighted
sum of the inputs to the neuron, while the activation functions are a powerhouse for neural
networks [93–99]. The neural network weights updates in the back-propagation process
are done to get the gradients as a neural network using many hidden layers. The gradient
may vanish and explode during the backward propagation [100,101].
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6.2. Recurrent Neural Network

Recurrent neural network architecture is from a neural network family, though, is
displays differences compared to ANN, in which the looping constraint on the hidden
layer turns back to RNN [15]. The feedback constraint is back-propagated to ensure that
the subsequent data is looped into the input data from the last step in each neuron’s first
step, as shown in Figure 5.
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RNN is normally used to solve problems associated with text data, time-series data,
and audio data. Because the parameters go through different time steps, these steps are
called parameter sharing, ending with fewer parameters to be trained [102]. This action
could save computational time because the gradient computes only at the last step and
vanishes in every neuron in the RNN. The error is back-propagated from the previous time
step to the first step. The error at each time step is calculated, allowing us to update the
weights. The Elman neural network (ENN) has similar concept properties to RNNa, and
it has standard back-propagation known as the Elman backpropagation algorithm (EBP).
RNN is used in many applications for real-world problem-solving, as in [38].

6.3. Convolution Neural Network

A convolutional neural network is a neural network family compared to a multilayer
perceptron (MLP) [93]. The CNN has hidden layers called convolutional layers. Also, CNN
has other non-convolutional layers [15,103]. The basic concept of CNN structure is the
convolutional layers that pull through the input weight and transform the neurons’ input
on the activation function.

To the next convolutional layer, is the convolutional operation, as shown in Figure 6.
Each convolutional layer specifies the number of filters used to detect the patterns of shapes
in specific object shapes, for example (circle, squire, corner, eyes, feathers, etc.). These
filters help extract the right and relevant features from the input data. CNN is the most
widely used type of neural network for analyzing images. However, image analysis is but
one use of CNN and it can be used for other data analysis problems such as classification
problems. Most generally, CNN is a critical neural network specializing in picking out
patterns and making sense of them. This pattern detection is what makes CNN so useful
for image analysis. These CNN models are used across different applications and domains,
especially in image and video processing projects. CNN is related to solving images as
multiple-image-based depth estimation or estimates depths in the edges; basically, they
are used to classify the edges in backgrounds or reflections [5]. CNN was used to detect
wildfire smoke images [104] and forest fire smoke recognition [105].
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7. Overview of Neural Networks Enhanced by Optimization Algorithms

The optimization technique aims to improve the applications by finding the minimal
error, minimal cost, maximum performance and efficiency. It can be categorized into two
principal ideologies: physical and biological-based [44]. for example, chaotic optimization
algorithm (COA), simulated annealing (SA), gravitational search algorithm, etc. or a
biology-based algorithm such as genetic algorithm (GA), practical swarm optimization,
bacterial foraging optimization, harmony search algorithm, cuckoo search algorithm,
ant colony optimization, dolphin swarm algorithm (DSA) bee colony algorithm, firefly
algorithm, LSA, backtracking search algorithm, etc. [46]. In this review, some common
optimization algorithms that enhance the performance of neural networks are discussed in
detail in the following subsections.

7.1. Artificial Neural Networks Based Particle Swarm Optimization

The PSO method was first discovered by Eberhart and Kennedy inspired by the
movement of organisms such as bird flocking and fish schooling in 1995 [106]. PSO uses
a velocity vector to update each particle’s current position in the swarm [107]. The PSO-
based neural network is used extensively compared to the other algorithms and applied by
many researchers in different applications. For example, it is used to solve mathematical
problems of predicting the uniaxial compressive strength of rock samples from other states
in Malaysia [108]. Also, this combination of ANN-based PSO is used for detecting trip pur-
poses from smartphone-based travel surveys of GPS data [109]. ANN-based PSO is used
smartly to improve the prediction performance model for Wi-Fi indoor localization strate-
gies by reducing the maximum location error with astonishing results [110]. In [111], PSO
optimization swas used to design a dynamic modular neural network based on adaptive
PSO to solve the problem related to a subnetwork output. Optimization enhances many al-
gorithms and applications to solve complex linear and nonlinear problems; for example, an
efficient PSO-based ANN was utilized for the nonlinear mathematical model of Troesch’s
problem. PSO was used to obtain a unique numerical solution by weights optimization
for the final network [112]. Network weight optimization is very popular for optimizing
the initial weights or entire network weights. For example, in [72], optimization is used
to find the best weights for self-adaptive parameters and strategy-based PSO (SPS-PSO)
algorithm to optimize feedforward NN (FNN) design. Again, weights optimization using
ANN-based PSO solves a non-linear channel equalization problem as in [113], and in [49],
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PSO’s weight optimization automatically designs an ANN methodology. Using PSO for
search for hyperparameters is also widely discussed and tested in many kinds of studies
and the outcome improves many applications. For example, CNN-based PSO optimized
the hyperparameter linearly to decrease CNN weights in the final network [114]. Also,
PSO optimization boosts neural networks by searching for the optimal hyperparameters
for network architecture design in [115]. PSO-based deep NN was used to optimize the
number of hidden layer nodes for digital modulation recognition applications. Another
study [116] discusses optimizing the number of hidden layer nodes used for global so-
lar irradiance prediction in extremely short-time intervals with hybrid backpropagation
neural networks based on PSO optimization. Table 2 presents some examples of PSO
research for neural network architectures focusing on weights and neurons in hidden layer
optimization problems.

Table 2. Studies involving PSO for neural network design based on weights and neuron number optimization.

Neural Networks Optimizer Optimizer Problem Application Improved

dynamic MNN [111] Adaptive PSO To calculate the weights Design of dynamic modular
neural network

DNN [115] PSO To optimize the number of hidden
layer nodes Digital modulation recognition

ANN [117] Simulation annealled PSO initial weights and biases of the
neural network are optimized

Endpoint sulfur content in
Kambara reactor desulfurization

BiLSTM NN [118] ADPSO To optimize the hyperparameters
of BiLSTM neural network Ship motion attitude prediction

IT2FNNs [119] PSO & BBBC
For parameter optimization for

Takagi-Sugeno-Kang TSK
type IT2FNNs

Design interval type-2 fuzzy
neural networks IT2FNNs

FNN [72] SPS-PSO Weight optimization
problem parameters

For parameter and self-adaptive
mechanism strategies.

ANN [49] PSO Train a set of synaptic weights
To evaluate the fitness of each

solution and find the best
ANN design

ANN [113] PSO Find the optimal weights of
the network Non-linear channel equalization

ANN [116] PSO
For optimizing the number of

hidden layers and neurons used
and the learning rate

Global solar irradiance prediction
at extremely short-time-intervals

CNN [114] PSO For hyperparameter optimization
with linearly decreasing weights CNN architecture design

ANN [120] PSO For an optimal number of hidden
layers and learning rate

Microgrid scheduling and
management

A combination of PSO optimization and neural networks is the most common combi-
nation between optimization algorithms and AI and is used in many application software
and controllers. There is much ongoing research on this combinationa; for example, a
PSO-based ANN was used to enhance forecasting software reliability [121], while in [122],
one was used for data-based fault-tolerant control. PSO assists different types of neural
networks in different ways. For example, a PSO-based BP neural network used to solve
big-data mining approach problems associated with financial risk management with the
Internet of Things (IoT) constructs a nonlinear parallel optimization model [3]. There are
some applications done on a giant scale, for example, The Kambara reactor desulfuriza-
tion used a combining ANN-based optimization techniques and a simulated annealing
algorithm with PSO (SAPSO) for determining optimal parameter structures such as a num-
ber of hidden layers, neurons, and activation functions training to solve desulfurization
model performance problems [117]. In [118], an issue of ship motion attitude prediction
was solved by using the adaptive dynamic PSO (ADPSO) algorithm and bidirectional
long short-term memory (LSTM). That is done by searching for the hyperparameters of
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bidirectional (BiLSTM) neural networks. In [119] interval type-2 fuzzy neural networks
(IT2FNNs)-based PSO and a big bang big crunch (BBBC) functional for parameter opti-
mization were used for Takagi-Sugeno-Kang type problem. Sadik and his co-workers have
successfully used a hybrid PSO-ANN algorithm for indoor and outdoor track cycling wire-
less sensor localization. and the algorithm was used for improving the distance estimation
accuracy of mobile nodes [29].

The PSO optimization with AI saves lives in many biomedical applications that help
many smart applications in hospitals, clinics, and therapists by assisting smart diagnoses
or smart robots. Some applications in this area can be highlighted; for example, in [123], a
hybrid ANN-PSO is used for predicting airblast-overpressure by estimating quarry blasting
and influential parameters in four granite quarry sites in Malaysia. Also, in [124] ANN-
PSO is used to manage groundwater resources to solve the groundwater management
problems of groundwater in France’s Dore river basin [124], whereas in western Australia,
short-term traffic flow predictors for forecasting traffic flow conditions on a section of
freeway using Intelligent Swarm PSO-based ANNs were used [125]. In [126], a functional-
link-based neural fuzzy network (FLNFN)-based hybrid cooperative PSO and cultural
algorithm were proposed for solving problems related to orthogonal polynomials and
linearly independent functions in a functional expansion of the functional link neural
networks. in [127], PSO was enhanced with a periodic mutation strategy (PMS) and neural
networks with mutation application strategy and diversity variety for solving problems
of an airfoil in transonic flow. A photovoltaic thermal nanofluid-based collector system
used ANN and PSO to solve a complex non-linear relationship between input and output
parameters [128]. Some researchers have used a neural network to improve the PSO search
performance oppositely [129–131]. Improved PSOs revolve around feed-forward ANNs, as
in [31], to present a unique evolutionary ANN algorithm called IPSONe. In [132], a neural
network with a fuzzy algorithm and PSO is used for a brain-computer interface classifier for
wheelchair commands, whereas PSO is used to optimize with a cross-mutated-based ANN
(FPSOCM-ANN). A PSO combined with ANN for data classification with an opposition-
based PSO neural network (OPSONN) algorithm was used for the NN training to solve
data classification problems [133]. Taguchi PSO solves high-dimensional global numerical
optimization problems for ANN design concerning tensile strength for steel bars [131].
A nonlinear neural network predictive control strategy based on tent-map chaotic PSO
(TCPSO) was used for achieving a nonlinear optimization for advanced convergence and
high accuracy [129]. ANN is the most common neural network and the PSO is the most
common optimization method; for that reason, they have been used and compared in some
cases with other AI or optimization techniques. For example, training ANNs over a hybrid
PSO and cuckoo search (PSO-SC) algorithms that have been done by adopting feedforward
neural networks (FNNs) to solve algorithm performance problems [130]. Table 3 presents
studies involving PSO for neural network design and application enhancement.

Table 3. Studies involving PSO for neural networks design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [123] PSO To predict airblast-overpressure (AOp)
in quarry blasting

Airblast-overpressure induced
influential parameters in four
granite quarry sites in Malaysia

ANN [124] PSO To minimize pumping cost and solve
ground management issues

Management of groundwater of the
Dore river basin in France

ANN [125] PSO To solve traffic flow
predictors problems

Forecast traffic flow conditions on a
freeway in Australia

Neural fuzzy
Network [126] CCPSO To increase the global search capacity

using the belief space Several predictive applications

ANN [127] PSO & PMS
A periodic mutation application
strategy with diversity variety for six
benchmark test functions

Airfoil in transonic flow
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Table 3. Cont.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [128] PSO
To identify a complex non-linear
relationship between input and
output parameters

Photovoltaic thermal nanofluid

ANN [129] tent-map chaotic PSO
(TCPSO)

To perform the nonlinear optimization
to enhance the convergence
and accuracy

Numerical simulations of two
benchmark functions

ANN [130] Hybrid PSO-CS
Algorithm

To investigate the algorithm
performance with two
benchmark problems

Benchmark classification for
ANN structures.

ANN [121] neighborhood fuzzy
PSO

To enhance forecasting of
software reliability Forecasting of software reliability

Critic NN [122] PSO Solve the Hamilton-Jacobi-Bellman
equation more efficiently. Data-based fault-tolerant control

ANN [29] PSO To improve the distance estimation
accuracy of mobile nodes

Wireless sensor
localization technique

ANN [131] Taguchi PSO (TPSO) To solve high-dimensional global
numerical optimization problems.

Optimize the chemical composition
of a steel bar

ANN [112] PSO To obtain the numerical solution of
Troesch’s problem Non-linear Troesch’s problem

ANN [110] Affinity Propagation
(AP) & PSO

To reduce the maximum location error
and enhance the
prediction performance

Wi-Fi-based indoor
localization system

ANN [108] PSO To predict unconfined compressive
strength (UCS) of rocks

Predicting UCS rocks from different
states in Malaysia

ANN [31] PSO To evolve the structure and weights
of ANNs Evaluated on several benchmarks

ANN [132] Fuzzy PSO Classification of a three-class mental
task-based brain-computer interface

Brain-computer interface for
wheelchair commands

ANN [133] PSO For training on opposition based PSO
neural network (OPSONN) algorithm Data classification

7.2. Artificial Neural Networks-Based Genetic Algorithms

Holland firstly introduced the genetic algorithm concept in 1975. It is a stochas-
tic global adaptive search optimization technique based on the mechanisms of natural
selection [134]. The GA algorithm solves optimization problems by applying a series of
crossover, mutation, and fitness evaluations to multiple chromosomes. This algorithm is
initialized to a population containing several chromosomes, in which each one represents
the optimal solution of the problem that is evaluated by an objective function [87]. Many
researchers use the GA for different applications. Some such research was about renewable
energies applications, such as the maximum power point tracking for PV and wind systems,
to improve distribution systems’ reliability and power quality [135]. Ongoing studies focus
more on GA for enhancing the ANN than other neural networks in comparison. For exam-
ple, the GA is used for outline capturing using rational functions and ANN to solve energy
management applications such as scheduling and economic dispatches [136]. It is also used
for solving reliability problems of structural laminated composite materials [137]. In [138],
it solves bankruptcy prediction problems, while that combination is used to solve circular
tubes with functionally graded thickness problems with multiple objective crashworthiness
optimizations [139].

ANN-based GA is applied in many ways; some are related to optimizing the ANN
structures design. For example, in [140], an ANN used GA to optimize parameters to
determine the number of hidden neurons, bias values, and the connection weights between
nodes to solve time series forecasting problems. Also, it is used for weights optimization
of ANN on a pre-specified neural network applied on a mobile ad-hoc network [141].
GA-based ANN is used for solving many issues, such as producing spectra for prediction,
parameter fitting, inverse design, and performance to design network architectures and
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select optimal hyperparameters [142]. In the same way, it is used to compute a heat transfer
study in [143] to determine suitable parameters for maximum weight reduction. GA is also
used to select optimal network parameters for a deep-NN model architecture to model
prospective university students’ admission [144].

Many types of research use these two smart concepts by merging them for many
applications and classification problems. In [145], an ANN hybridized with GA was used
to optimize lipase production from Penicillium roqueforti ATCC 10110 in solid-state fer-
mentation in. A multi-layer ANN united with GA was employed to solve problems of
pectinase-assisted extraction of cashew apple juice [146]. Some studies discuss parametric
study problems of the transcritical power cycle and regenerator by selecting objective
functions for parametric optimization [147]. In [148], a nanofluid flow in flat tubes using
computational fluid dynamics problems was solved using multi-objective ANN optimiza-
tion and non-dominated sorting GA (NSGA). Also, decouples capacitor placement on
a power delivery network, while another example used for analog circuit design space
exploration for automated sizing of integrated circuits [149].

In some cases, the neural network works with more than one optimization for either
comparison or combination reasons. For example, the GA and PSO work together on
ANN to find the best values of the rational functions’ parameters for optimizing surface
roughness [12]. in [150,151] the GA is used with Adadelta DNN (GA-ADNN) to predict
catenary comprehensive pantograph and catenary monitor status models. Table 4 presents
different studied involving GA for neural network design and application enhancement.
In [152], a hybrid PSO with GA for ANN training for short-term load forecasting and GA
optimization was used to solve power grid investment risk problems by optimizing the
weight and threshold of the BP neural network, while in A GA was also applied on three
neural networks (MLP), radial basis functions neural network (RBFNN), and a GA-derived
generalized regression neural network (GRNN) for discovering the optimal weights to
solve the problem of predicting groundwater salinity [153]. Also,

Table 4. Studies involving GA for neural network design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [152] PSO &GA To overcome the training issue of local
minima traps Short-term load forecasting

ANN [137] GA To overcome high computational cost
by using multilayer perceptron NN

Design of anisotropic laminated
composite structures

ANN [143] GA To determine suitable parameters for
maximum weight reduction

Heat transfer analysis in perforated
plate fins

ANN [138] GA
To solve the data imbalance problem
caused by simultaneous
ANN optimization.

Corporate bankruptcy prediction

DNN [144] GA To select optimal network parameters
of the Deep-NN

Binary classification for university
student admissions

ANN [139] Crashworthiness
optimization and GA

To design parameter alternatives and
determine optimal combinations.

Circular tubes having a functionally
graded thickness

ANN [140] GA
To find the number of hidden neurons,
bias values of hidden neurons, and the
connection weights between nodes.

Time-series forecasting for real-life data

ANN [145] GA To optimize lipase production through
the ANN model

Lipase production from Penicillium
roqueforti ATCC 10110 in solid-state
fermentation

ANN [146] GA Optimum extraction parameters Low-temperature extraction of cashew
apple juice

ANN [147] GA To optimize the thermal efficiency,
exergy efficiency, and specific network.

Transcritical power cycle
with regenerator

ANN [148] Non-dominated
Sorting GA

To numerically solve problems in
various flat tubes for nanofluid flow
analysis and regime

Nanofluid flow in flat tubes
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Table 4. Cont.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [17] GA
To minimize the number of decoupling
capacitors for reducing the differences
between the input impedance

PCB decoupling

ANN [149] GA For analog circuit optimization system
automated sizing of integrated circuits Analog design space exploration

ADNN [150] GA
To prevent prediction models from
falling into local optimum and a
comprehensive catenary model

Pantograph and catenary

ANN [151] GA To optimize the weight and threshold
of a BP neural network Power grid investment risk problems

ANN [141] GA For weight optimization in a
pre-specified neural network Applied on a mobile ad-hoc network

ANN [142] GA To design the network architecture and
select the hyperparameters for ANNs Plasmonic waveguide systems

MLP, RBFNN &
GRNN [153] GA Search for optimal weights Predicting groundwater salinity

7.3. Artificial Neural Networks-Based Artificial Bee Colony

Many optimizations are used for optimizing neural networks to find the values of
linkage weights either alone or associated with biases and neurons in hidden layers. Many
researchers have considered the ABC for boosting neural network performance either by
optimizing the hyperparameters or somehow merging to enhance the neural network
or applications. An example of improving the ANN is an efficient model based on the
ABC optimization algorithm with neural networks [154]. The ABC algorithm uses an
alternative learning scheme to optimize neuron connection weights for the design of
ANN structures used for electric load forecasting to obtain an optimized set of neuron
connection weights [155]. In [156], intrusion detection for cloud computing using ANN
neural networks and an ABC and fuzzy logic for identified normal and abnormal network
traffic packets by optimizing the values of linkage weights and biases [156]. Deep neural
networks are good for classification problems, and some studies use the ABC algorithm
with DNN. For example, in the ABC algorithm search for hybridization parameters of
DNN structure, this study included autoencoder layers cascaded to a softmax classification
layer [157].

Also, a modular neural network presents a modular NN model based on the ABC
algorithm for electric load forecasting with synaptic weights optimization [158]. On the
other hand, some research is merging the neural networks with ABC to solve specific
problems. For example, a study using a swarm-inspired algorithm with ANN to protect
against dual attacks using the concept of ANN as a deep learning algorithm and the
swarm-based ABC optimization technique [8]. Table 5 lists studies involving ABC for
neural network design and application enhancement.

Table 5. Studies involving ABC for neural networks design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [155] ABC To optimized set of neuron
connection weights Electric load forecasting

Modular NN [158] ABC For synaptic weights optimization Classifier designed for NN

MLP network [156] ABC & Fuzzy
clustering algorithms

To optimize linkage weights
and biases

Intrusion detection for
cloud computing

DNN [8] swarm-based ABC To optimize DNN parameter
protection against dual attacks

Mobile ad hoc network for mitigation
of black and gray holes attacks

DNN [157] ABC & BFGS For hybridization parameters of deep
neural networks

Data classification of dimensions
and sizes
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7.4. Artificial Neural Networks Based Evolutionary Algorithm

Most of the research discussing neural networks-based evolutionary algorithms im-
proves the neural networks’ design to either reduce the training time or solve problems
encountered by ANNs [159]. This combination is used in many applications to solve
different problems, for example, an adaptive co-optimization of ANNs using EA for global
radiation forecasting using hybrid ANN models. It predicted monthly radiation by typical
weather and geographic data-adaptive the EAs utilized to improve prediction performance
was developed to train the neural networks [160]. At the same time, another study used
multiverse optimization for new natural EA together with ANN to develop advanced
detection approaches for intrusion detection systems [161]. The combined effort between
ANN and EA is reported in many research studies, yet only some significant research
has been considered in this review. For example, in a correlation analysis of the training
process, self-organizing combined with genetic EA, is applied to boost built structures of
neural network’s performance and efficiency [162], while another research study evaluated
a model-based optimization process for high voltage alternating current systems [163].
Though some studies use EA optimization for ANN weights optimization, this unique com-
bination is used in mobile communications to solve weights optimization problems in ANN
optimal modeling by applying a framework for predicting received signal strength [164].
Also, in the chemistry field, the EA introduces chemical reaction optimization (CRO), used
as a global optimization technique to replace BP in training neural networks [165], for
better performance and saving more time for the training process. An optimization tech-
nique, EA based on pieces of training, approximates the solution of fractional differential
equations [166]. Table 6 presents research involving EA for neural network structure design
and application enhancement.

Table 6. Studies involving EA for neural networks design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [160] EA To co-optimize the ANN properties Global radiation forecasting

ANN [161] Multiverse optimizer
(MVO)/EA

To allow ENN to solve problems
encountered by ANNs

Intrusion detection systems using
multiverse optimization via a
benchmark dataset

ANN [162] Self-organized
genetic EA

To improve the performance efficiency
and structural efficiency of the
built ANN

Structure of neural network and
its implementation

ANN [163] EA For optimization and ANN
for modeling High voltage AC systems

ANN [164] EAs
For self-adaptive control parameters
and dynamically adjust the population
size for ANN weight optimization

Unmanned aerial vehicle
measurements for mobile
communications

ANN [166] EA To adjust the weights to satisfy the
differential equations

Differential equations of
fractional order

ANN [165] EA/CRO To replace backpropagation in training
neural networks ANN architecture design

7.5. Artificial Neural Networks-Based Backtracking Search Algorithm

BSA optimization technique is an evolutionary computation technique for producing
a trial population that includes two new crossovers and mutation operators proposed
by [62]. BSA dominates searching for the best value of the populations and searches in
the space boundary to get the exploitation capabilities and very robust exploration [62].
BSA dominates the search’s value for the best populations and the boundary of the space
to provide very sturdy exploration and exploitation capabilities. Thus, considerable re-
search has proven it as one of the most powerful optimization techniques [62]. Numerous
researchers widely use BSA in modern applications, such as solving the state of charge of
lithium-ion batteries by improving a backpropagation neural network (BPNN) by optimiz-
ing hidden layer neurons’ optimal value learning rate [167]. The BSA improved neural
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network with random weights by combining BSA and a neural network with random
weights (NNRWs) to optimize the hidden layer parameters of the single-layer feed-forward
network (SLFN), and NNRWs is used to derive the output layer weights [168]. In [169]
a modified BSA (MBSA) has been improve by learning and niching together with ANN
training and in [170] an ANN prediction method based on adaptive BSA was used for
optimizing the connection weights matrix of the echo state network reservoir [170]. These
studies involving BSA for neural network design and applications enhancement for the
best neural network structure boost the performance level and reduce the time-consuming
network setup. Table 7 presents different research projects involving BSA for design and
application enhancement.

Table 7. Studies involving BSA for neural network design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

Back-propagation
NN [167] BSA To find the optimal values of hidden layer

neurons and learning rate
Estimating state of charge of
lithium-ion batteries

SLFN [168] BSA To optimize the neural network with random
weights, and derive the output layer weights. Improve neural network design

ANN [169] Modified BSA
For learning and niching strategies such as
learning strategy, a niching strategy, and a
mutation strategy

Chaotic time series prediction and
benchmark functions

Echo State
Network/RNN [170] Adaptive BSA To optimize the connection weights matrix of

the echo state network reservoir
Echo state network
architecture design

ANN [171] Binary BSA To optimize the number of nodes in hidden
layers and learning rate

Energy management to reduce
the cost

7.6. Artificial Neural Networks Based Other Optimization Search Algorithms

Neural network-based optimization algorithms are a hot topic in the research field.
Many algorithms have been studied in the past ten years; their combination has become
very attractive because of the incredible outcomes from that merging or enhancement. As
a result, many studies have been conducted in different applications in life; in this section,
some significant research has been investigated to highlight the importance of enhancing
neural networks with optimizations. A short wind speed forecasting-based prediction
problem has been solved by ANN hybrid with crisscross optimization in [172]. ANN also
solves the reliability-based design problem of double-loop reliability-based optimization
approaches [173]. Deterministic global optimization and ANN to solve the convex and
concave envelopes of the nonlinear activation function in [4]. A graph neural network
called RouteNet solves complex relationships between topology, routing, and input traffic
to produce accurate estimates solutions in [81].

This section focuses on mixing different types of neural networks with other optimiza-
tion algorithm techniques. For example, FNN training employs a symbiotic organisms
search (SOS) algorithm to solve the UCI machine learning repository problems [84]. An
ANN model using the teaching–learning-based optimization algorithm (TLBO) solves en-
ergy consumption estimates in Turkey [174]. Also, the ANNs with ant colony optimization
(ACO) assess residential buildings’ performance by training the NN based on ACO instead
of the BP algorithm [175]. In [176], a social spider optimization was used to improve
the training phase of ANN with multilayer perceptrons for the context of Parkinson’s
disease recognition. A dynamic optimization problem (DOPs) used with neural network
(NN)-based information transfer method (NNIT) used for solving issues associated with
environmental changes in [177]. Also, an automated optimization-oriented strategy for
designing high power amplifiers using DNNs with a deep learning regression network
and electromagnetic-based Thompson sampling efficient multi-objective optimization
(TSEMO) [178]. Another continuous optimization based on deep RNNs uses metaheuristic
algorithms to solve the difficulties of optimization problems for noise to signal ratio [40].
A neural network in numerous learning problems and backpropagation (BP) methods
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as correntropy-based conjugate gradient BP (CCG-BP) in [179]. A DNN based on a se-
cure precoding scheme is a deep AN scheme for solving artificial noise scheme problems
in multiple-input single-output (MISO) wiretap channels [180]. A deep CNN (DCNN)
structure modeling for reconstruction enhancement and decreasing online prediction in
ANN is used for anthropomorphic manipulators in [181]. In [182], three DNNs called
deep multilayer perceptron (DMLP), long-short memory (LSTM) neural network, and
CNN, were used to build prediction-based portfolio optimization models in the Chinese
stock market. This combination has come to an optimal prediction without optimization
in comparison to the other studies. A hybrid method for electricity price forecasting by
ANN and artificial cooperative search algorithm (ACS) for the combination of mutual
information and neural network (NN) in [183]. Table 8 presents research involving various
optimization techniques based on neural network design and application enhancement.

Table 8. Overview of a variety of optimization techniques based on neural network design and application enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

FNNs [84] SOS For training of FNNs UCI machine learning repository

ANN [174] TLBO To replace the BP with TLBO Estimates of energy consumption
in Turkey

ANN [176] Social-spider
Optimization

To improve the training phase of ANN
with multilayer perceptrons Parkinson’s disease identification

DMLP, LSTM,
CNN [182] DNNs

DNNs to predict each stock’s future
return also DNNs are applied to
measure the risk of each stock

Portfolio optimization models utilizing
the stocks market of China

ANN [177] NNIT & EA To solve dynamic
optimization problems Moving peaks benchmark

DNN [178] TSEMO & DNN
To get the number of passive
components in the input and output
matching networks

Designing high power amplifier
circuit topologies

RNN [40] Metaheuristic
Algorithms

For the objective analytic function of a
continuous optimization problem Estimate tree structures

ANN [179] CCG-BP Optimizing common correntropy-based
BP algorithms based on MSE

Improving training in NNs for
enhancing the signal-to-noise ratios

DNN [180] Deep AN For optimal precoding scheme Artificial noise scheme wiretap channels

ANN [181] DCNN For reconstruction enhancement and
reducing online prediction time Anthropomorphic manipulators

ANN [183] ACS To select the input variables subsets for
forecasting of electricity price

Forecasts of short-term electricity prices
in a deregulated market

The following examples enhance neural networks by optimizing their weights connec-
tions, for example, a prediction of time series to adjust the weights in the ANNs model with
parameter-free simplified swarm optimization (SSO) [184]. ANN-based biogeography-
based optimization (BBO) also solved electrical energy forecasting problems for long-term
forecasting of India’s sector-wise electrical energy demand [185]. Again, an enhanced
ANN with a shuffled complex evolutionary global optimization algorithm with principal
component analysis—University of California Irvine (SP-UCI) for the weight training
for feedforward ANN [186]. Another example of weights linkages optimization is done
in a metaheuristic, bird mating optimizer (BMO), which was used to train feedforward
ANNs in [21]. Also, a quantum-based algorithm was used to design an ANN with few
connections and high classification performance by simultaneously optimizing the network
structure and the connection weights [187]. Neural network training with a weighting
mechanism-based optimization algorithm was used to resolve some algorithms’ undesir-
able convergence behavior and improve Adam and AMSGrad [188]. A unified automated
model generation algorithm uses optimization to automatically determine the type and
topology of the mapping structure in a knowledge-based neural network model to force
some weights of the mapping neural networks to zeros while leaving other weights non-
zeros optimized in [88]. An Elman neural network was used to train the connection weights
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between the layers based on a whale optimization algorithm (WOA) to solve the problem
of falling into local best solutions [189]. Another optimization of connection weights in
neural networks using the WOA for training ANN and verified by comparisons with
BP algorithm other evolutionary techniques was described in [190]. An evolutionary
nonlinear adaptive filter approach via cat swarm functional link ANN (CS-FLANN) was
employed for solving unwanted noise problems by picking the optimum weights of NN
filters in [191]. Cat swarm optimization (CSO) was also used to train the ANN for structure
design by simultaneously optimizing the connection weights [192]. A calibration method
was done to improve the robot positional accuracy of industrial manipulators using a
teaching-learning-based optimization (TLBO) method to optimize the weights and bias
in ANN in [193]. ANNs based sparse optimization simultaneously estimates the weights
and model structure of an ANN in [194]. Table 9 lists optimization-based neural network
weights optimization enhancements.

Table 9. Overview of a variety of optimization-based neural network weights optimization enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [185] BBO To obtain the best global
weight parameters

Long-term sector-wise
power forecasting

ANN [186] (SP-UCI) To the weight-training process of a
three-layer feed-forward ANN Gradient-based optimization schemes

ANN [184] SSO To adjust the weights in ANNs For ANN modeling

ANN [21] BMO For weight training of ANNs Solving three real-world
classification problems

ANN [187] Quantum-based
algorithm

Few connections and high classification
performance using connection weights. ANN design and structure

ANN [194] sparse optimization To simultaneously estimate the weights
and model structure of an ANN Model structure of ANN

ANN [188] NWM-Adam
To resolve the undesirable convergence
behavior by weighting mechanism-based
first-order gradient descent optimization

For effective neural network training

Knowledge-based
NN [88] i1Optimizer

To force some weights of the NNs to
zeros while leaving other weights as
non-zeros.

For unified automated parametric
modeling algorithm

Elman Neural
Network [189] WOA To train the connection weights between

the layers

Network soft-sensor model of
conversion velocity in a
polymerization process

ANN [190] WOA
Optimizing connection weights of ANN
controlling parameters weights
and biases

ANN structure design

FLANN [191] CSO For the selection of an optimum weight
of the neural network filter

Gaussian noise removal from
tomography Images

ANN [192] CSO & OBD For optimization of the
connection weights ANN structure design

ANN [193] TLBO To optimize weights and bias of the NN Robot manipulator

The following studies overview some examples of optimization enhancement of vari-
ous optimization-based neural network parameters (hidden layers, learning rate, neurons,
and wights). For example, a hybrid lightning search algorithm (LSA)-based ANN can
predict the optimal ON/OFF status for home appliances for home energy management by
tuning the learning rate value and the number of nodes in the hidden layers in [30]. Also,
in [195], FNNs are based on artificial fish swarm optimization (AFSA) to replace the BP
process in ANN. A DNN based on multi-objective was used for solving the connecting
structure DNNs, particularly the layerwise structure learning method, in [80]. An optimiza-
tion method for CNNs based on the difference between the present and the immediate past
gradient diffGrad optimization technique to solve the problem with basic stochastic gradi-
ent descent (SGD) in [103]. A global optimal known as Bayesian optimization (BayesOpt)
is a machine learning-based global optimization technique to solve a simple objective
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function problem in CNN [196]. A systematic quantitative and qualitative analysis and
guidelines using CNN-based Ben’s spiker algorithm [197]. In [198], the microcanonical
optimization algorithm (MOA) is used to select the best hyperparameter architecture for
CNN for a variant of simulated annealing. DNNs with stochastic optimization accelera-
tion update the network parameters to solve PID controller problems in [199]. A hybrid
neuro-fuzzy network-based differential biogeography-based optimization (DBBO) for on-
line population classification in an earthquakes optimizer searches for the best parameter
for the main network and the subnetwork [200]. An adaptive memetic algorithm with a
rank-based mutation (AMARM) is used to design ANN architectures by a simultaneously
fine-tune number of hidden neurons as well as connection weights in [201]. ANN-based
path loss prediction for wireless communication network multilayer perceptron (MLP)
neural network generates low dimensional environmental features and eliminates redun-
dant information among similar environmental types [202]. Table 10 overviews various
optimization-based neural network parameters (hidden layers, learning rate, neurons)
optimization enhancement.

Table 10. Overview of various optimization-based neural network parameters (hidden layers, learning rate, neurons, and
weights) optimization enhancement.

Neural Networks Optimizer Optimizer Problem Application Improved

ANN [195] AFSA To obtain hidden layers trained by the
back-propagation algorithm Design of neural networks

ANN [202] PL

To eliminate redundant information by
impacts of the number of neurons in the
hidden layer, number of hidden layers,
number of training samples

Wireless communication network

DNN [80] Multi-objective
Optimization

To find the optimal structure with high
representation ability and better
generalization for each layer.

Structure of DNN model

CNN [103] diffGrad To adjust each parameter for faster
gradient changing parameters Image categorization experiments

ANN [30] LSA Using suitable learning rate value and
number of nodes in the hidden layers

Home energy
management scheduling

CNN [196] BayesOpt To utilize both a simple objective function
and a proper optimization low-rank decomposition

CNN [197] Ben’s Spiker algorithm For parameter optimization Signal-to-noise ratio

CNN [198] MOA For hyper-parameter optimization and
architecture selection for CNN

Using six widely-used image
recognition datasets

DNN [199] SGD-M Use past and present gradients for DNN
parameter updates PID Controller

Hybrid
neuro-fuzzy [200] DBBO For parameter optimization of both the

main network and the subnetwork
Online population classification
in earthquakes

ANN [201] AMARM To simultaneously fine-tune the number of
hidden neurons and connection weights Design ANN architectures.

7.7. Optimization Search Algorithm-Based Artificial Neural Networks

In this subsection, neural networks work as an optimizer for optimization techniques
to optimize algorithm parameters. For example, as in a study, the fitness function value
in a pressurized water reactor core was optimized by pattern optimization using a grey
wolf algorithm (GWO)-based ANN to solve the best configuration for fuel assemblies [203],
while in [204] parameter prediction, using an ANN as a tool in finding the parameter
optimization of resistance spot welding optimization (RSW) to solve the sensitivity of exact
measurement for aluminum alloy was decribed. A topology optimization accelerated-based
deep learning study discussed learning a cross-sectional image of an interior permanent
magnet motor represented in RGB and trained a CNN to infer the torque properties to
decrease computational cost for the optimization topology (TO) [11]. Table 11 presents
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studies involving neural networks for improving optimization techniques design and
application enhancement.

Table 11. Studies involving neural networks for improving optimization techniques design and application enhancement.

Neural Networks
Optimizer

Optimization
Algorithm Enhanced Optimizer Problem Application Improved

ANN [203] GWO ANN is applied to estimate the
fitness function value of GWO Pressurized water reactor

ANN [204] RSW ANN as a tool in finding the
parameter optimization of RSW

A sensitive to exact measurement of
aluminum alloy

CNN [11] TO The trained CNN approximately
evaluates individuals

Cross-sectional image of an interior
permanent magnet motor

8. Application on Artificial Neural Networks Based Optimization Algorithms

Previous research on optimal scheduling controllers was developed for energy man-
agement, reliable power generation, cost minimization, and carbon emission calculation [64].
A binary BSA algorithm and binary PSO are utilized to search for optimal binary
schedules [120,205]. These algorithm techniques have powerful optimization skills, search
exploration process, fast convergence for the solution, and other conventional optimization
techniques and overcome local minima traps. Besides, developing an enhanced ANN-
based BBSA and ANN-based BPSO schedule controller ensures the best performance across
different load conditions. [206,207]. An ANN is on track as a prediction technique to find
the best weight values for neural nets designed for efficient system operation. In this
paper, these nets operate in optimum ON/OFF status by training on input and output
data patterns obtained from scheduling controllers [206,208]. This section presents ANN-
based optimization algorithms implementation for ANN-PSO, ANN-GA, ANN-ABC, and
ANN-BSA, respectively, to search for the optimal values of the number of nodes in hidden
nodes layer1 and layer2 as well as the best value of the learning rate. The algorithms
apply limitations of, e.g., (max and min) number of nodes in each hidden layer and the
learning rate. The output data is relayed on a binary schedule (25x24) obtained from the
scheduling controller. The input data includes six inputs, including solar irradiances, wind
speed, energy price, battery status, gird status, and diesel fuel status refer to [206,208].
In all the ANN-based algorithms, the iteration of ANN is set to 100 iterations, and the
population size is 20 populations. Table 10 presents a brief list describing the data and
the limitations of the aforementioned algorithm techniques. The mean absolute error
(MAE) is an objective function that enhances the ANN performance by decreasing the error
function expressed in the general flow chart of optimization of ANN optimal parameters,
as shown in Figure 7. All the inputs and outputs of the ANN-based optimization algorithm
training for the virtual power plants system in [208] can be expressed by the following
Equations (1) and (2):

Input =



solar irradiances (R)
wind Speed (W)
energy price (E)
battey status (B)
grid status (G)

diesel f uel status (D)

 (1)

Output =

 DG(1,1) . . . DG(1,25)
...

. . .
...

DG(24,1) . . . DG(24,25)

 (2)

ANN deep neural networks using feed-forward structures have been adopted in this
study. The use of trainlm as a network training function that updates weight and bias
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values according to Levenberg-Marquardt optimization is considered the fastest back-
propagation algorithm in the Matlab toolbox. However, it does require more memory than
other algorithms. Hidden layers are chosen to be two layers using the sigmoid activation
function and the optimization is adapted to search for the number of the nodes in both
hidden layers; the optimization algorithms are also set to search for the optimal value
for learning rate. This optimization process is done using random trail values in ANN
training based on the aforementioned inputs and outputs data. The optimal trail is the
minimalist mean absolute error (MAE). Those trials from each optimization algorithm
have been done separately, and each optimization takes days to come up with the best
parameters. All these algorithms have addressed the limitations of the search for a set of
trails, as presented in Table 12. The algorithms use random ANN trial parameters as the
initial step pre iteration process includes ANN training for 10000 epochs to evaluate the
minimum objective function. Figure 8 shows that the numbers of inputs and outputs layers
are known based on the data [209]. The duration time of each ANN training is unexpected
could take a long or short time depending on the trial training points of the ANN training.
The training can show good or bad performance from the very early stages of the training,
but this is not sure because it sometimes behaves differently and improves or remains in
the middle or end of the training.

In this study, the BSA objective of enhancing the ANN structure toward optimal
parameters was the best among the other techniques, which minimize the MAE to reaches
a value of 0.0062 [171]. The GA objective was 0.0080, which is not very far from the BSA
objective. Simultaneously, the MAE of the PSO and the ABC was greater at 0.0144 and
0.0172, respectively, compared to the other two techniques, as shown in Figure 9. The
BSA’s main principles have been done through its crossover consists of two parts. The first
part generates the binary matrix, and the second part compares population X(i,j) and the
trial population. Crossover is used to obtain an updated map(i,j). Also, this part works on
the control mechanism of boundaries for a trial population. As presented, enhancing the
neural network could help the system enormously and the enhanced ANN is proven to be
overwhelmingly impressive, or at least competitive, by training and testing is as important
as the optimal design of the ANN structure. This study also introduces a novel way of
solving optimization tasks by the neural network.

Table 12. Optimization algorithms data and limitations.

Symbol Description

P Controller input data
t Controller output data
iterationANN = 100 Maximum iterations for ANN
Population size = 20 Size of the population
LowerLR = 0 Min value of LR
UpperLR = 1 Max value of LR
LowerN1 = 6 Min value of nodes in hidden layer1
UpperN1 = 30 Max value of nodes in hidden layer1
LowerN2 = 6 Min value of nodes in hidden layer2
UpperN2 = 30 Max value of nodes in hidden layer2
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Figure 9. Objectives of optimization algorithms for ANN-PSO, ANN-GA, ANN-ABC, and ANN-BSA for 100 iterations.

9. Artificial Neural Network Training-Based Optimized Parameters

When applying the optimized parameters in ANN training using the input and output
data for each optimization technique separately, this training process will result in a net for
each optimization algorithm. The obtained net is the masterpiece, and it is the intelligent
controller that can replace the ordinary controller to predict unexpected non-linear input to
result in a wise decision. The enhanced ANN saves training time and ANN parameters
chosen wisely by the optimization algorithms. The results are better than human decisions
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no matter what type of optimization is used [171,208,209]. The pseudocode of ANN
training based on the optimal parameters, and the outcome is a Net for ANN-PSO, ANN-
GA, ANN-ABC, and ANN-BSA [210–212]. Since the net output is 0 or 1 hourly pattern,
we can call this net an intelligent binary controller [120,171,206,208]. The following is the
Algorithm 1.

Algorithm 1. Pseudocode of ANN training based on optimized parameters obtained from
optimization algorithms.

1: Input: (solar irradiances, wind speed, energy price, battery status, gird status, and diesel fuel status)
2: Output: ANN-Net of the binary matrix of (24 × 25)
3: N1 = optimal value obtained
4: N2 = optimal value obtained we can call this net an intelligent binary controller
5: LR = optimal value obtained
6: // ANN
7: Applying Feed-Forward neural network (new f f ) and Levenberg-Marquardt (trainlm)
8: net = new f f (minmax(p), [N1, N2, 25], {′tansig′,′ tansig′,′ purelin′},′ trainlm′)
9: net·trainParam·epochs = 10, 000
10: net·trainParam·lr = LR
11: net·trainParam·goal = 0
12: net1 = train(net,p,t)
13: gen sin(Net1,−1)
14: Output is an ANN-Net with input data and 25 outputs

The optimal enhanced net of ANN-BSA in a Matlab Simulink block is shown in
Figure 10, involving six inputs and twenty-five binary outputs on an hourly basis to
manage distributed generators throughout the virtual power plant system. The net block
is generated after the training completer by using Equation (3). Table 13 presents the ANN
training-based PSO, GA, ABC, and BSA using the optimized parameters. The generated
ANN Net module is an AI controller; it is considered a masterpiece and smart controller.
This Net could be implemented in cheap microchips and used as a smart device to control
hug systems to serve in a very effective smart way cheaply.

gen sin(Net1,−1) (3)
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Table 13. Artificial neural network training-based PSO, GA, ABC, and BSA using the optimized parameters obtained.

Optimization
Algorithm

No. of Nodes in
Hidden Layer1 (N1)

No. of Nodes in
Hidden Layer2 (N2)

Learning Rate
Value (LR) Training Time Training

Performance (MSE)

PSO 18 30 0.7 20:00:48 3.99 × 10−6

GA 23 28 0.6 20:31:36 5.46 × 10−6

ABC 26 29 0.45 30:32:29 2.52 × 10−5

BSA 22 27 0.6 4:30:29 6.37 × 10−7

The following figures represent the training performance and regressions for ANN
deep neural network after using the optimization algorithms’ optimal parameters. This
study shows a fair compression based on each optimization technique to find the best
parameters to serve the system in the best way. These hybrid techniques could save
huge trial and error time during training and find the required best parameters, using
smaller nets to save valuable time during the training and testing. Any of the optimization
algorithms used could give better results than manual parameters tuning. Yet, some
techniques could find the best fitness faster and more efficiently than others, as ANN-BSA
in Figure 11, which shows the best training performance of 6.3695 × 10−7 at 2317 epochs
and regression (R) reach to best of 1 regression training which the best results it may obtain
by training.
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Figure 11. (a) Performance and (b) regression of ANN training after applying optimal parameters of ANN-BSA.

However, other optimization techniques trained for 10,000 epochs on their optimal
parameter have good results somewhat near in results. However, in Figure 12, ANN-
GA shows the best training performance of 5.4579 × 10−6, and regression (R) reach
0.99999 it is very close to unity. Figures 13 and 14 show the best training performance of
3.9938 × 10−6 and 2.5178 × 10−5 and regression of 0.99999 and 0.99995 for ANN-PSO and
ANN-ABC [171].

Fair comparison results of Bus1 of 14-bus IEEE test system for virtual power plants
utilize the optimized ANN net based on half-hour binary patterns for managing each
distributed generation (DG) unit in the system. The binary (ANN-BPSO), binary (ANN-
BABC), binary ANN-BGA, and binary (ANN-BBSA) is a controller with binary output 0
or 1 to switch each DG ON or Off based on the inputs. Figure 15 shows that the entire
algorithm saved a huge amount of power. Yet, all the saved power was considered with
sharing new distributed resources to inject power to the loads instead of supplying power
from the utility grid [210]. However, most of the optimized Nets have done an excellent
job. However, some Nets are better than the others based on their objectives as can be seen
that the total power for the 24 h of the ANN-BBSA Net was 1182.5 MW in comparison to
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other optimized Nets 1211.3 MW, 1184.3 MW, and 1252.9 MW for, ANN-BGA, ANN-BPSO,
ANN-BABC, respectively.
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Figure 12. (a) performance and (b) regression of ANN training after applying optimal parameters of ANN-GA.
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Figure 13. (a) Performance and (b) regression of ANN training after applying optimal parameters of ANN-PSO.
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Figure 14. (a) Performance and (b) regression of ANN training after applying optimal parameters of ANN-ABC.
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Figure 15. Original Bus1 of 14-bus IEEE test system compared to ANN-based binary optimization algorithms ANN-BPSO,
ANN-BABC, ANN-BGA, and ANN-BBSA.

Much research is conducted to address the ANN enhancement to present extraordinary
results compared to using the same ANN. The difference between the first and the second
results is because the involvement of optimization techniques to find the best parameters.
This method has been evaluated compared to other trends research discussing similar
issues in evaluating the applied approach compared to other methods, Table 14 presents a
comparison of the proposed technique with other enhancing neural networks by finding
the optimal parameters of no. of nodes in hidden layers and learning rate. Table 15 shows
an overview of neural networks-based optimization techniques for the optimal number of
nodes in hidden layers and learning rate. The table states that ANN-based optimization
techniques have gained a momentum trend in the last five years. This enhancement
becomes essential in most AI applications used for ANFIS and fuzzy to optimize the best
membership function shapes. Also, the optimization techniques are used to enhance the PI
controllers to select the best parameters. Also, in many ML to improve the classification or
regression are utilized.

Table 14. Comparison of the proposed technique with other techniques of enhancing neural networks by finding the optimal
parameters of No. of nodes in hidden layers and learning rate.

Optimization
Algorithm

Objective
Function
(MAE)

No. of Nodes
in Hidden

Layer 1 (N1)

No. of Nodes
in Hidden

Layer 2 (N2)
Learning Rate

Value (LR)
No. of Input
and Output

Regression
(R)

Training
Performance

(MSE)

Hybrid
LSA-ANN [30] 9.128 × 10−9 6 4 0.6175 5 and 4 1 9.128 × 10−9

PSO-DNN [115] - 20 60 0.1 12 - -
Hybrid
ANN-PSO [29] 0.1742 18 16 0.071 3 and 1 0.99991 -

BPNN-PSO [116] 0.1911 × 10−2,
0.2032 × 10−2 14 and 9 9 and 11 0.7373, 0.6481 7 and 1 0.99993,

0.99999 4.3 × 10−5

ANN-PSO tested 0.0144 18 30 0.7 6 and 25 0.99999 3.99 × 10−6

ANN-GA tested 0.0080 23 28 0.6 6 and 25 0.99999 5.46 × 10−6

ANN-ABC tested 0.0172 26 29 0.45 6 and 25 0.99995 2.52 × 10−5

ANN-BSA tested 0.0062 22 27 0.6 6 and 25 1 6.37 × 10−7
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Table 15. Overview of significant studies on NNs based optimization using node numbers in hidden layers and learning rate.

Enhancement Method Reference Year Application Enhanced

ANN-based GA [140] 2021 Time-series forecasting for real-life data
ANN-based binary BSA [171] 2021 Virtual power plant
ANN-based PSO [120] 2021 Microgrid energy management
ANN-based LSA [30] 2016 Home energy management
DNN-based PSO [115] 2019 Digital modulation recognition
ANN-based AMARM [201] 2017 Design ANN architectures.
BPNN-based PSO [116] 2021 Global solar irradiance prediction
ANN-based BSA [167] 2018 Estimating state of charge of lithium-Ion battery
ANN-based PSO [211] 2016 Wireless sensor localization for cycling tracking
ANN-based PL [202] 2020 Wireless communication network
ANN-based ABC [155] 2014 Electric load forecasting
ANN-based SAPSO [117] 2020 Kambara reactor desulfurization

10. Conclusions and Future Work

This review includes extensive research on ANNs’ importance, advantages and types
of utilization in a series of applications and also neural network enhancement based on
optimizations for network architecture design, training and testing. The literature shows
that optimization for AI generally and neural networks specifically has been a hot topic
during the past ten years and has increased year by year up to 2021. The review has
undertaken neural network enhancements by optimizing the parameters, such as weight
optimizations, initial weight optimizations, bias and learning rate optimizations, number
of hidden layers, number of nodes in hidden layers, and activation functions. On the
other hand, the enhancement could be trained by modifying the neural network’s regular
algorithms, for example, replacing the feed-forward or the back-propagation for tuning
network weights based on the error rate per epochs. This review covers a test case study
of ANN-based optimization algorithm techniques to provide a quick example of ANN
improvement. As presented, the hybrid or mix techniques of ANN-PSO, ANN-GA, ANN-
ABC, and ANN-BSA are compared in a fair comparison for their objectives, regressions,
training performance, training time, and application of microgrid energy management. The
influence of each technique can economize time for selecting parameters and for the training.
The enhanced ANN nets are tested on distributed energy resources in the form of an energy
management system. The quick results show that virtual power plants save a reasonable
amount of supplied power. From this review, the research emphasizes enhancing the
neural network by optimization algorithms used to search for ANN best parameters and
training parameters to achieve the best structure network have been satisfied based on the
comparison tables as well as the testing results for improving the ANN performance by
PSO, GA, ABC, and BSA, optimization techniques. Also, this review has proved that neural
network is a very hot topic recently and could improve both neural networks or maybe
other AI techniques or ML to search for optimal parameters to solve the problems in a short
time and efficient way. This review and the case study also include several important and
targeted recommendations for the further development of the ANN-based optimization
method, such as:

• Generally, ANN intelligent methods are associated with powerful optimization tools,
such as PSO, ABC, BSA, and GA techniques, in various engineering applications, such
as electromagnetism, signal processing, and pattern recognition and classification,
robotics. Nevertheless, they have a problem with constancy and cost. Thus, future
research should be conducted on the appropriate optimization method selection,
finding the system’s optimal value, such as cost-effect components with high accuracy.

• The conventional NN technologies create issues; for example, the human brain is
highly complex, non-linear, and sensitive [212]. Therefore, additional investigation
is needed on human brain monitoring optimization to obtain high accuracy. The
low timing loss under the high-risk, complex situation to achieve high reliability,
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modularity, efficiency, and performance; further investigation of the system’s proper
optimization selection is needed.

• Despite the benefits of optimization algorithms in reducing technical loss, low error,
and cost, their use in ANN has been very limited. Only computational intelligence
optimization algorithms have made significant progress toward optimizing the con-
troller design and the price. As a result, advanced optimization algorithms will be
better choices for ANN design.

• Enhancement of ANN parameters with optimization could result from new algorithms
that save more time adjusting the ANN toward optimal architectures by avoiding trial
and error or random selection. Like this, the optimal solution is considered as a smaller
network, a straightforward calculation method, and less time could be achieved.

The neural networks of intelligence dependence evolutionary algorithms improve
neural networks’ design by reducing training time or solving problems using the ANN
method. For quick tracking, less steady-state errors, and high performance, ANN tech-
niques can be used to monitor robotic sensing and control monitor and achieve bidirectional
power management. However, real-time data integrity, reduced operations time, expensive
processing equipment, and the need for good parameter selection and manual tuning are
all disadvantages. As a result, more research is required to select proper optimization
methods for enhancing neural network structure design is important.

DL methods are fast evolving for higher performance. There are adequate review
articles about the progressing algorithms in particular application domains. Future work
could be carried out considering other DL methods such as denoising autoencoder, deep
belief networks, and long short-term memory. Further study and review can enhance or
hybridize ML with optimization techniques, random forest, Markov chain Monte Carlo, or
support victor machines. Future work can also consider many optimizations to improve AI
and ML to boost their performance [213–215]. Future studies can consider DL from another
perspective, for example, continuous or online optimization.
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ACO Ant colony optimization
ACS Artificial cooperative search algorithm
ADNN Adadelta deep neural networks
ADPSO Adaptive dynamic particle swarm optimization
AFSA Artificial fish swarm optimization
AI Artificial intelligence
AMARM Adaptive memetic algorithm with a rank-based mutation
AMSG Adam optimization stochastic gradient descent
ANFIS Adaptive neuro-fuzzy inference systems
ANN Artificial neural networks
ANN-ABC Artificial neural networks-based artificial bee colony
ANN-BSA Artificial neural networks-based backtracking search algorithm
ANN-BABC Artificial neural networks-based bainary artificial bee colony
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ANN-BBSA Artificial neural networks-based binary backtracking search algorithm
ANN-BGA Artificial neural networks-based binary genetic algorithm
ANN-BPSO Artificial neural networks-based binary particle swarm optimization
ANN-GA Artificial neural networks-based genetic algorithm
ANN-PSO Artificial neural networks-based particle swarm optimization
Aop Airblast-overpressure
AP Affinity propagation
BABC Binary artificial bee colony
BBBC Big bang big crunch
BBO Biogeography-based optimization
BBSA Binary backtracking search algorithm
BCA Bee colony algorithm
BFGS Limited memory Broyden Fletcher Goldfarb Shannon
BFO Bacteria foraging optimization
BGA Binary genetic algorithm
BMO Bird mating optimizer
BP Backpropagation
BPNN Backpropagation neural network
BPNN-PSO Backpropagation neural network-based particle swarm optimization
BPSO Binary particle swarm optimization
BSA Backtracking search algorithm
CCG-BP Correntropy-based conjugate gradient-backpropagation
CCPSO Cultural cooperative particle swarm optimization
CNN Convolutional neural networks
COA Chaotic optimization algorithm
CRO Chemical reaction optimization
CS Cuckoo search
CSA Cuckoo search algorithm
CSO Cat swarm optimization
DBBO Differential biogeography-based optimization
DCNN Deep convolutional neural networks
DG Distributed generation
DL Deep learning
DMLP Deep multilayer perceptron
DNN Deep neural networks
DOP Dynamic optimization problem
DSA Dolphin swarm algorithm
EA Evolutionary algorithms
EBP Elman backpropagation algorithm
EFA Electromagnetism-based firefly algorithm
ENN Elman neural network
FA Firefly algorithm
FLANN Functional link artificial neural networks
FLNFN Functional-link-based neural fuzzy network
FNN Optimize feedforward NN
GA Genetic algorithm
GAN Generative adversarial network
GNN Graph Neural Networks
GRNN Generalized regression neural network
GSA Gravitational search algorithm
GWO Grey wolf algorithm
HSA Harmony search algorithm
IT2FNN Interval type-2 fuzzy neural networks
LR Learning Rate
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LSA Lightning search algorithm
LSA-ANN Lightning search algorithm-based particle swarm optimization
LSTM Long short-term memory
MAE Mean absolute error
MBSA Modified backtracking search algorithm
MISO Multiple-input single-output
ML Machine learning
MLP Multilayer perceptron
MNN Modular neural network
MOA Microcanonical optimization algorithm
MSE Mean squire error
MVO Multiverse optimizer
NN Neural networks
NNA Neural network algorithm
NNIT Neural network-based information transfer
NNRW Neural network with random weights
NSGA Non-dominated sorting GA
OBD Optimal brain damage
OPSONN Opposition-based PSO neural network
PI Proportional integral
PID Proportional integral derivative
PL Path Loss
PMS Periodic mutation strategy
PNN Probabilistic neural network
PSO Particle swarm optimization
PSO-DNN Particle swarm optimization-based deep neural network
PV Photovoltaic
QLSA Quantum-inspired lightning search algorithm
RBF Radial basis functions
RBFNN Radial basis functions neural network
RNN Recurrent neural networks
RSW Resistance spot welding optimization
SAPSO Simulation annealing algorithm with particle swarm optimization
SGD Stochastic gradient descent
SLFN Single-layer feed-forward network
SOS Symbiotic organisms search
SPS-PSO Self-adaptive parameters and strategy-based PSO
SSO Simplified swarm optimization
TCPSO Tent-map chaotic particle swarm optimization
TLBO Teaching–learning-based optimization algorithm
TO Optimization topology
TPSO Taguchi particle swarm optimization
TSEMO Thompson sampling efficient multi-objective optimization
UCI University of California Irvine
UCS Unconfined compressive strength
WEC Wave energy converters
WOA Whale optimization algorithm
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