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Abstract: In this paper, a comparative analysis of the average switch/inductor current between ideal
and non-ideal buck and synchronous buck converters is performed and verified against a standard
LTspice model. The mathematical modeling of the converters was performed using volt-sec and amp-
sec balance equations and analyzed using MATLAB/Simulink. The transients in the output voltage
and the inductor current were observed. The transfer function of the switch current to the duty
cycle (Gid) in open loop configuration for low-power converters operating in continuous conduction
mode (CCM) was modeled using thestate space averaging (SSA) technique and analyzed using
MATLAB/Simulink. Initially, using the volt-sec and amp-sec, balance equations for the converters
were modeled. The switch current to duty ratio (Gid) was derived using the SSA technique and
verified using standard average models available in LTspice software. Though the Gid was derived
using various methods in earlier works, the analyses of parameters such as low frequency gain,
stability, resonant frequency and the location of poles and zeros were not presented. It was observed
that the converters were stable, and the non-ideal converter showed smaller resonant frequency than
the ideal converter due to the equivalent series resistances (ESR) of the inductor and the capacitor.
The non-ideal converters showed higher stability than the ideal converters due to the placement of
the poles closer to the s-plane. However, the Gid of the non-ideal converters remained the same in
the open loop configuration.

Keywords: average current control; continuous conduction mode; LTspice; MATLAB/Simulink;
mathematical modeling; non-ideal buck converter; non-ideal synchronous buck converter

1. Introduction

The average current control (ACC) of DC–DC converters plays a vital role in designing
PFC (power factor correction) converters, DC–AC inverters, electric vehicle (EV) chargers,
LED lighting, etc. The most popular control methods for maintaining the unity power
factor for DC–DC converters are shown in Figure 1.
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The current control of DC–DC converters consists of two categories, namely ACC and
peak current mode (PCM) control. In ACC, variation in the perturbed inductor current
with respect to the perturbed duty ratio is considered. Though ACC cannot provide
instantaneous control, some of the advantages of ACC over PCM include (a) better noise
immunity and (b)possible control for a wide range of applications. In the past, multiple
attempts have been made in modeling the open loop transfer function of average current
for different converters operating in CCM and discontinuous conduction mode (DCM)
operations. The modeling approach for CPM (Current Programmed Mode) was clearly
shown for buck and boost regulators using the generalized small signal model. The small
signal modeling approach for the basic converters and the modeling approach of the ACC
for an ideal boost converter was presented in [1–3].

Electric vehicle (EV) charging systems, power factor correction (PFC) circuits, LED
drivers, power supplies for processors etc., are some of the applications of DC–DC convert-
ers. The various AC–DC and DC–DC converters used in EVs are shown in [4]. Zero voltage
(ZV) and zero current (ZC) switched DC–DC converters are the most popular converters
used in the EV industry. For the generation of high gain, a KY converter integrated with
the boost converter is used as it provides low current ripple and high efficiency.

In the average current control, capturing the inductor or the switch current is extremely
critical. One of the major applications of the ACC is power factor control [5]. In [6], a novel
method for measuring the inductor current is proposed for digitally controlled synchronous
buck converters based on switch node voltage. To estimate the inductor current, switch
node voltage is measured using a digital comparator. The inductor average current and
the current ripple contents are simultaneously estimated as having independent gains. The
estimation of the current ripple was validated against the hysteretic current mode control
ofthe synchronous buck converter. However, no information on the low frequency gain
during the open loop configuration was discussed.

In order to study the dynamics of the converter, modeling and simulation are extremely
important. Transient values obtained through modeling help in designing the critical
elements such as the inductor and the capacitor [7]. This type of modeling provides an
insight on steady-state and transient behaviors.

The DC–DC converters used for battery charging applications are Cuk and Single
Ended Primary Converter (SEPIC). The functioning of such switched converters under
CCM and DCM conditions was modeled using the LTspice software tool [8]. These switch
models require less computation time and memory for estimating frequency responses
such as the Gid, Gvd and Gvg. The converters showed instability during the CCM operation.
However, they showed high stability during DCM operation.

In [9], a synchronous buck converter operating in CCM was used as a battery charging
application. A PID controller was implemented instead of a maximum power point tacking
(MPPT) algorithm to observe the charging of a lead acid battery at various irradiance levels.
Though simulations show that MPPT provides better results, the PID controller has faster
charging and lower costs. In [10], the DCM analysis for the Cuk and SEPIC converter
operating in DCM was carried out. It was shown that the converter was unstable for Gvd
operations in an open loop. Hence, during the closed loop operation the controller should
(a) stabilize the system and (b) provide enough phase margin (PM) to achieve stability in
closed loop configuration.

The modeling of an ideal and non-ideal buck converter operating in CCM was per-
formed for an open loop configuration [11]. The output voltage and the inductor current
were smaller in the non-ideal buck converter. The non-ideal buck converter showed a
greater number of zeros than the ideal buck converter. However, the modeling and analysis
of the synchronous buck converter were not discussed.

The modeling of the Gid in open loop configuration for boost and synchronous boost
converters is presented in [12]. It was shown that the Gid for the non-ideal synchronous
boost converter showed higher resonance than the non-ideal boost converter.
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Frequency control techniques have been employed in DC–DC converters to keep the
switching frequency constant, instead of a phase-locked loop (PLL) [13]. The objective
of frequency response identification for DC–DC converters is to ensure high accuracy,
flexible operation in open or closed loop modes, and the optimal performance of the
converter [14]. In [15], the authors proposed a wide input voltage range DC–DC converter
for auxiliary power supplies on solar power conversion circuits or railway vehicles, making
use of the buck/boost and resonant circuits to realize this wide range. The authors in [16]
designed a four-switch buck–boost (FSBB) converter with a wide input voltage range
voltage conversion, catering to variable-speed energy storage systems with AC inputs and
DC outputs. The switching average model is used to establish the small signal model of
a non-ideal FSBB converter in all working conditions. A digital control strategy [17] is
modeled and implemented for a multi-leg interleaved DC–DC buck converter for electrical
vehicle (EV) charging based on a discrete averaged model. The control system objective is
the current flow regulation in each leg of the converter. Point-of-load applications require a
lower-level distribution voltage. However, the control is not easy, which is why there is a
need to choose the right fixed frequency for the buck regulator control [18,19]. Moreover,
the control loop compensation [20,21] cannot be overlooked, and the impact of the phase
margin is significant. The crossover frequency affects the output impedance. In some
cases [22], small signal averaging for variable switching frequency DC–DC converters is
derived by separately considering the on-time and the off-time of the switching period.
This is used to ensure very good voltage regulation and optimal dynamic performance.
The converters used in EV industry and cyber security are shown in [23–26] and closed
loop control using classical controllers is shown in [27]

• The existing works featured on steady-state and transient performance analysis of
the DC–DC ideal and non-ideal converters for low-power application based on the
specifications shown in [11].

• The Gid for a current loop is considered. However, the outer voltage loop is not taken
into account.

• The Gid of a non-ideal buck converter was compared with a non-ideal synchronous
buck converter. Sensitivity analysis of the Gid was carried out by analyzing the bode
plots for varying ESR.

• The modeling of the converters was presented considering all the non-idealities such
as the switch and diode resistances and ESRs of inductor and capacitor.

• However, very few works have focused on the mathematical modeling of the average
current control strategy for the same.

In this paper,

• The average current model for ideal and non-ideal buck and synchronous buck con-
verters is modeled using the SSA technique.

• The emphasis is on modeling the Gid and observations are made on low frequency
gain, crossover frequency, resonant frequency, location of poles and zeros, and gain
and phase margins.

• The objective of the work is to aid the understanding and significance of mathematical
modeling and the effect of the Gid on this proposed strategy and its significance in
stability and control.

The paper is organized as follows: Section 1 provides the motivation and background
of the proposed work. Sections 2 and 3 establish the mathematical foundation of the
average current control strategy for the non-ideal buck and the non-ideal synchronous
buck converter. Section 4 provides the specifications of the converter. Section 5 shows
the mathematical modeling of the converters. Section 6 shows the analyses of the results
obtained for the ACC in open-loop mode for both converters. Section 7 provides the
validation of the same in the LTspice platform followed by the conclusion and future scope.
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2. Average Current Modeling in Non-Ideal Buck Converter

Figure 2 shows the block diagram representation of the ACC in an ideal buck converter
where îL and d̂ represent perturbed indictor current and duty cycle. The gate driver supplies
the gate pulses to control the switching of MOSFET.
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Figure 3 shows a non-ideal/practical buck converter. The operation of the converter
can be defined when the switch is closed and opened. The output voltage of the converter
is V0. The working of the converter and the mathematical model of the ideal converter are
presented in [7].
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Figure 3. Schematic of the converter.

Switch closed condition,

Vg − iL(Rsw + RL)−Vc = VL (1)

iL −
V0

R
= ic (2)

V0 = Vc + icRc (3)

(2) in (3),

V0 =
VcR

R + Rc
+

iLRRc

R + Rc
(4)

(4) in (2),

ic = iL(1−
Rc

R + Rc
)−Vc(

1
R + Rc

) (5)

The state space representation is given by (6) and (7),

◦
X = AX + BU (6)

Y = CX + DU (7)
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Representing (1) and (2) in the form of (3) and (4),

[
diL/dt
dVc/dt

]
=

 −(RL+Rsw+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

[ iL
Vc

]
+

[ 1
L 0
0 0

][
Vg
Vd

]
(8)

The output considered is the inductor current iL. Hence,

[iL] = [1 0]
[

iL
Vc

]
(9)

where

A1 =

 −(RL+Rsw+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

 (10)

B1 =

[ 1
L 0
0 0

]
(11)

C1 =
[

1 0
]

(12)

U =

[
Vg
Vd

]
(13)

D1 = 0 (14)

Switch opened condition,

− iLRd −Vd −VL − iLRL −V0 = 0 (15)

ic = iL −
V0

R
(16)

V0 = icRc + Vc (17)

VL = −iL(Rd + RL +
RRc

R + Rc
)−Vd −

RVc

R + Rc
(18)

ic = iL(1−
Rc

R + Rc
)− Vc

R + Rc
(19)

Reducing it to the form shown in (6) and (7),

A2 =

 −(Rd+RL+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

 (20)

B2 =

[
0 −1

L
0 0

]
(21)

C2 =
[

1 0
]

(22)

A = A1D + A2(1− D) (23)

A=

 −(DRsw+Rd(1−D)+RL+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

 (24)

B = (A1 − A2)X + (B1 − B2)U (25)

îL

d̂
= C[sI − A]−1B (26)
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(sI − A)−1∆ =

 s + 1
C(R+Rc)

−R
L(R+Rc)

R
C(R+Rc)

s +
DRsw+Rd(1−D)+RL+

RRc
R+Rc

L

 (27)

where

∆ = s2 + s
C(R+Rc)

+
s(DRsw+Rd(1−D)+RL+

RRc
R+Rc )

L +

1
LC(R+Rc)

{
DRsw + Rd(1− D) + RL +

RRc
R+Rc

}
+ R2

LC(R+Rc)
2

(28)

îL

d̂
=

(s + 1
C(R+Rc)

)[( IL(Rd−Rsw)
L ) +

Vg+Vd
L ]

∆
(29)

where
IL = V0/R (30)

3. Average Current Modeling in Non-Ideal Synchronous Buck Converter

Figure 4 shows a non-ideal/practical synchronous buck converter. In such converters,
the conduction losses are reduced as VMOSFET < VDiode.
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Switch closed condition,

VL = Vg − iL(Rsw1 + RL +
RRc

R + Rc
)− RVc

R + Rc
(31)

ic = iL
R

R + Rc
− Vc

R + Rc
(32)

[
diL/dt
dVc/dt

]
=

 −(RL+Rswl+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

[ iL
Vc

]
+

[ 1
L 0
0 0

][
Vg
0

]
A1 B1

(33)

Switch opened condition,

VL = −iL(Rsw2 + RL +
RRc

R + Rc
)− RVc

R + Rc
(34)

ic = iL(
R

R + Rc
)− Vc

R + Rc
(35)

[
diL/dt
dVc/dt

]
=

 −(RL+Rswl+
RRc

R+Rc )
L

−R
L(R+Rc)

R
C(R+Rc)

−1
C(R+Rc)

[ iL
−Vc

]
+

[
0 0
0 0

][
Vg
0

]
A2 B2

(36)

A = A1D + A2(1− D) (37)
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A=

 −(DRswl+RL+Rsw2(1−D)+ RRc
R+Rc )

L
−R

L(R+Rc)
R

C(R+Rc)
−1

C(R+Rc)

 (38)

∆(sI − A)−1 = ∆

 s + 1
C(R+Rc)

−R
L(R+Rc)

R
C(R+Rc)

s +
DRswl+RL+Rsw2(1−D)+ RRc

R+Rc
L

 (39)

∆ = s2 + s
C(R+Rc)

+ s
L (DRsw1 + RL + Rsw2(1− D) + RRc

R+Rc
)+

1
LC(R+Rc)

(DRsw1 + RL + Rsw2(1− D) + RRc
R+Rc

) + R2

LC(R+Rc)
2

(40)

U =

[
Vg
0

]
(41)

îL

d̂
= C{sI − A}−1 ∗ ([A1 − A2]X + [B1 − B2]U) (42)

=
(s + 1

C(R+Rc)
)( V0

RL ∗ (Rsw2 − Rsw1) +
Vg
L )

∆
(43)

4. Specifications of the converter

Table 1 shows the specifications of the converters.

Table 1. Specifications of the converters.

SL.NO Specifications Value

1 Input Voltage, Vg 16 V
2 Output Voltage, V0 12 V
3 Output Resistance, R 11 Ω
4 Inductance, L 1.1 mH
5 Inductor ESR, RL 0.18 Ω
6 Capacitance, C 84 µF
7 Capacitor ESR, Rc 0.3 Ω
8 Switch Resistance, Rsw 0.044 Ω
9 Diode Resistance, Rd 0.024 Ω
10 Diode Forward Voltage, Vd 0.7 V
11 Duty Cycle, D 0.75
12 Switching Frequency, fs 25 kHz

5. Mathematical Modeling of the Converters

The mathematical model can be obtained using the volt-sec and amp-sec balance
equations, as shown in [7]. Figure 5 shows the results of mathematical modeling built and
analyzed using Simulink for a non-ideal buck converter using appropriate step size and
solver. As seen from Figure 5, the initial transient in output voltage and inductor current
are 18 V and 3.6 A. Hence, while designing the capacitor and inductor, these values play a
vital role. Equations (44) and (45) were used for modeling the converter.

L diL
dt = s(Vg − iL(Rsw + RL)−V0)

+(1− s) ∗ (−iL(Rd + RL +
RRc

R+Rc
)−Vd − RV0

R+Rc
)

(44)

C
dv0

dt
= s(iL(

R
R + Rc

)− V0

R + Rc
) + (1− s) ∗ (iL(

R
R + Rc

)− V0

R + Rc
) (45)
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The modeling of the non-ideal synchronous buck converter is performed by making
Vd = 0 and replacing Rd with Rsw2. It is observed that the duty cycle of the synchronous
converter is slightly smaller than that of the buck converter. This is mainly due to the lesser
conduction loss in the MOSFET.

6. Results of ACC in Open Loop Configuration

Figure 6 shows the bode plot of the Gid for ideal and non-ideal buck converters
operating in CCM. The plots were obtained using MATLAB software. It is observed that
the ideal and the non-ideal converters are stable with the phase margin (PM) equal to 90.2◦

and 91.9◦. It is observed that the ideal converter showed higher resonant frequency than
the non-ideal converter. This is due to the presence of the ESRs of inductor and capacitor.
Figure 7 shows the bode plot of the converters when Rc = RL = 0. It is observed that the
resonant frequency of the converters matched.

However, the non-ideal converter showed higher stability, which is due to the place-
ment of poles closer to the left-hand side (LHS) of the s-plane. This is evident from the root
locus plot shown in Figure 8. Equations (46) and (47) show the transfer functions of the Gid
for ideal and non-ideal buck converters.

Gid =
14545(s + 1082)

s2 + 1082s + 1.082 ∗ 107 (46)

Gid =
15162(s + 1054)

s2 + 1518s + 1.074 ∗ 107 (47)

Figure 9 shows the bode plot of the Gid for ideal and non-ideal synchronous buck
converters. It is observed that the ideal and the non-ideal converters are stable with the
phase margin (PM) equal to 90.2◦ and 92◦. As observed in Figure 7, the ideal converter
showed higher resonant frequency than the non-ideal converter. This is due to the presence
of ESRs in the inductor and the capacitor. Figure 10 shows the bode plot of the converters
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when Rc = RL = 0. Figure 11 shows the root locus of the converters. Equations (48) and (49)
show the Gid for ideal and non-ideal synchronous buck converters.

Gid =
14545(s + 1082)

s2 + 1082s + 1.082 ∗ 107 (48)

Gid =
14545(s + 1054)

s2 + 1523s + 1.075 ∗ 107 (49)
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The bode plot of the Gid is analyzed for non-ideal buck and synchronous buck con-
verters and is shown in Figure 12. The phase margins for the converters were 91.9◦ and
92◦, respectively. It is observed from the frequency response of the converters that there is
no change in the characteristics of the Gid. Hence, the placement of poles and zeros also
remains the same. This is evident from Figure 13.
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7. Validation Using LTspice

The Gid derived using SSA was verified using standard switch models provided in the
LTspice software tool. Figure 14 shows the average model of the non-ideal buck converter;
the CCM2 library model was used for validation [16]. Figure 15 shows the frequency
response of the Gid of the practical buck converter. It is observed that the low frequency
gain, resonant frequency, and the cut-off frequency match with Figure 6.
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Figure 16 shows the bode plot of the non-ideal synchronous buck converter obtained
using the average model. This perfectly matches with Figure 12.
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8. Conclusions

Low-power DC–DC converters are mainly used in mobile chargers and electric vehicle
applications. In such converters, the voltage and current ripples are precise. In this paper:

• ACC modeling for ideal and non-ideal buck and synchronous buck converters operat-
ing in CCM is carried out from basic equations of volt-sec and amp-second balance
equations for a single current loop.

• The converters were initially modeled using volt-sec and amp-sec balance equations.
Using MATLAB/Simulink software, the mathematical model was analyzed and the
transients in output voltage and inductor current were clearly seen.

• Later, using the state space averaging technique, the average current transfer function
Gid was derived for the ideal and non-ideal converters.
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• The ideal and non-ideal converters were highly stable. However, the ideal buck
converter showed higher resonant frequency than the non-ideal converter. This is due
to the presence of ESRs in the inductor and the capacitor. A similar phenomenon was
observed in ideal and non-synchronous converters.

• The derived transfer function was validated against standard switch models using
the LTspice software. The plots show a perfect match between the derived transfer
function and the actual switch model.

• The ACC modeling with closed loop control is to be carried out for different converter
CCM/DCM configurations with inner current and outer voltage loops, and the effect
of the capacitor ESR in the closed loop configuration is to be analyzed. The input
current and the voltage can be controlled in order to achieve a power factor close
to unity.
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