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Abstract: In this paper, we develop end-to-end autonomous driving based on a 2D LiDAR sensor and
camera sensor that predict the control value of the vehicle from the input data, instead of modeling
rule-based autonomous driving. Different from many studies utilizing simulated data, we created an
end-to-end autonomous driving algorithm with data obtained from real driving and analyzing the
performance of our proposed algorithm. Based on the data obtained from an actual urban driving
environment, end-to-end autonomous driving was possible in an informal environment such as
a traffic signal by predicting the vehicle control value based on a convolution neural network. In
addition, this paper solves the data imbalance problem by eliminating redundant data for each frame
during stopping and driving in the driving environment so we can improve the performance of self-
driving. Finally, we verified through the activation map how the network predicts the vertical and
horizontal control values by recognizing the traffic facilities in the driving environment. Experiments
and analysis will be shown to show the validity of the proposed algorithm.

Keywords: end-to-end control; convolutional neural network; self-driving; LiDAR sensor; vision sensor

1. Introduction

A self-driving car is a system that recognizes the driving environment, generates the
path, and drives the vehicle itself by utilizing environmental awareness sensors such as
camera, radar, LiDAR, and GPS. Self-driving cars generally consist of three sub-systems of
recognition, decision, and control, such as human driving, and each sub-system serves to
replace the driver [1].

Driving environment recognition serves as a driving environment dynamic, static
object detection, lane detection, and vehicle location estimation based on sensors that
can obtain information about the driving environment, and the decision to determine
the vehicle trajectory, such as the creation and avoidance of routes to the destination [2].
Longitudinal and lateral controls are performed to reliably drive the target control values of
the vehicle determined by recognition and decision [3]. The general self-driving developed
separately for each module can easily debug and troubleshoot in the event of a defect or
abnormal situation.

However, in the case of autonomous driving research, there are some development
restrictions in the actual complex driving environment [4,5]. Autonomous driving occurs
not only in the highway environment but also in complex urban areas, with various vari-
ables such as traffic lights, surrounding vehicles, motorcycles, pedestrians, road structures,
and unpredictable conditions, and recognizing various objects in these complex road envi-
ronments is still a difficult problem [6–9]. In addition, there are many areas that have not
yet been resolved to develop an optimal decision algorithm considering all these complex
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environments. In other words, the conventional planning method, a rule-based approach,
recognizes all obstacles affecting safe driving and requires accurate situational decisions
that make it difficult to consider all possible situations on the road.

Unlike previous studies, which consist of perception, decision, and control, we pro-
posed a convolutional neural network (CNN) that provides the target longitudinal/transverse
speed of the vehicle as output with real-world LiDAR and camera data as inputs. Our pro-
posed method fully utilized a CNN to send out output data directly from input data. Unlike
the previous algorithm that was only laterally controlled using an end-to-end algorithm
based on camera [10], our proposed algorithm simultaneously performed longitudinal
and lateral control using a camera and LiDAR sensor that can provide a depth value. The
output of our proposed network was the vehicle longitudinal/lateral speed targets for
250, 500, 750, 1000, and 1250 ms from the present time. Additionally, different from many
previous end-to-end self-driving, we proposed end-to-end self-driving that complies with
road traffic laws by acquiring real-world data in urban areas in complex environments
such as traffic lights. After training the proposed algorithm with the real-road database,
E2E autonomous driving was confirmed in complex urban environments, such as traffic
lights and intersections, and we used feature maps to check the validity of the proposed
algorithm. This paper is structured as follows. Section 2 explains related works, how to
build our experimental environments, and the data set and convolutional neural network.
The results and analysis of our results are shown in Sections 3 and 4, respectively, and
Section 5 reveals the conclusion and future research.

2. Materials and Methods
2.1. Preliminaries
2.1.1. Convolutional Neural Network

With the invention of Alexnet in 2012, many deep learning-based approaches such as
CNN have been applied to computer vision [11]. CNN has two parts, a feature extractor,
consisting of the convolution layer and pooling layer, and a fully connected layer that
performs classification and regression. Previous machine learning-based computer vision
algorithms extracted features within an image using HOG and SIFT, and the results were
obtained by performing algorithms such as Support Vector Machines with the extracted
features, while CNN extracts the features through learning of the convolution layer and
achieves the results through fully connected layers. Therefore, CNN is also called E2E
learning technology and it is being used in various computer vision areas such as object
detection, tracking, and semantic segmentation [12].

2.1.2. End-to-End Self-Driving

Many studies have been conducted on E2E autonomous driving, which uses CNN’s
E2E characteristics fully to calculate the final output speed from input data without detailed
algorithms to construct autonomous driving. Mariusz et al. proposed a CNN structure
called PilotNet, the start of the CNN-based E2E autonomous driving. PilotNet uses three
camera sensors mounted on the front of the vehicle, and it performs lateral control of the
vehicle [10]. However, PilotNet implemented only the end-to-end self-driving function of
lane keeping using only monocular cameras, and maintaining inter-vehicle distance used a
classical control method, not a learning method. Chen et al. proposed a study that can use
distance information in autonomous driving to effectively learn drivers’ driving patterns
and produce a deep learning model that enables stable longitudinal lateral control [13].
They unveiled a data set that includes a LiDAR sensor, camera sensor, and a label for
longitudinal/lateral control. Based on this data set, a DNN + LSTM deep learning model
that enables longitudinal control using the distance information from the LiDAR sensor
and image information from the camera sensor was constructed. However, to utilize 3D
Point Cloud data, a deep learning network using data from a LiDAR sensor called Point
Cloud Mapping or PointNet was additionally used, which required a large amount of
network parameters [14]. Navarro et al. proposed sensor fusion-based E2E self-driving



Electronics 2021, 10, 2608 3 of 12

using real-world acquired data [15], but they did not analyze how to work their algorithm
in real-world situations such as an urban traffic signal. Huch et al. suggested V2X-based
E2E self-driving for platooning [16]. Prashanth et al. proposed JacintoNet, which was
implemented in Texas Instruments (TI) TDA2x System on Chip, for real-time working [17].
However, it utilized simulation data and implemented autonomous driving at only lane
keeping. Yu et al. proposed end-to-end self-driving capable of longitudinal/lateral control
using a monocular camera [18]. They acquired large-scale data sets and developed end-to-
end self-driving in a real-road environment, but had limitations in realizing self-driving
in a simple environment such as a highway. Sallab et al. proposed a reinforcement
learning-based end-to-end self-driving algorithm using monocamera, but it was applied
only in a lane-keeping system [19]. Table 1 shows the comparison of previous end-to-end
self-driving approaches.

Table 1. Comparison of End-to-End self-driving approaches.

Data Set Sensors Control Target

Mariusz et al. [10] Real world camera Steering
Chen et al. [13] Real world LiDAR, camera Steering, Speed

Navarro et al. [15] Real world LiDAR, IMU,
RGB camera, Depth camera, Steering, Speed

Huch et al. [16] Simulation camera, V2V Steering
Prashanth et al. [17] Simulation camera Steering

Yu et al. [18] Simulation camera Steering, Speed
Sallab et al. [19] Real world camera Steering

2.1.3. Explainable End-to-End Self-Driving System

Zhou et al. introduced a class activation map to analyze the region within the image
that influenced the results when images were classified [20]. The class activation map
interprets the figure for the weight value of the last fully connected layer as important,
representing the most influential part of the image with respect to the results of the network.

Mariusz et al. expanded on Zhou’s paper. They proposed an explanation of what
part of the end-to-end self-driving model focuses on the input driving image to conduct
lateral control judgment, which is similar to the method proposed by Zhou et al., where
the end-to-end self-driving model is the focus and responds accordingly. The network
concentrates on the road environment, although there was a reliability issue because E2E
autonomous driving is not accountable [21].

2.2. Experiemental Setup

In this paper, we generated the data set using information from the environment-
aware sensors and in-vehicle sensors mounted on the vehicle and we conducted training
on the E2E self-driving network using them.

The hardware development environment used in this paper is shown in Figure 1. We
used Hyundai Motor Ionic EV vehicles equipped with one camera and two LiDAR sensors,
a VCU that controls information about the vehicle, and a workstation for E2E self-driving
algorithms and other data-logging programs.

The SW development environment was set up as below, CUDA 9.1 and cuDNN 7.1 in
Ubuntu 16.04 LTS and Python with Keras 2.2.1. The details about the HW setup are shown
in Table 2.
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Figure 1. Autonomous driving platform.

Table 2. Experiment hardware environment for training and data collection.

Component Training Environment Embedded PC on Vehicle

CPU Intel Xeon E5 Intel i7-6820EQ
GPU NVIDIA GTX 1080TI 2ea Nvidia Jetson Xavier

SSD/HDD SSD: 512 GB
HDD: 10 TB

SSD: 250 GB
HDD: 4 TB

RAM 64 GB 32 GB

Additionally, we used the IBEO’s LUX2010 LiDAR and Point Grey’s Blackfly PoEGigE
camera. Table 3 represents the detail specifications of each sensor used.

Table 3. Sensor specifications.

LiDAR
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Model BFLY-PGE-23S6C
FOV 90◦

Sensor format 1/1.2”
FPS 41

Interface Giga Ethernet

2.3. Data Set

For this study, we constructed about 150,000 frames of a data set from camera and
LiDAR sensors and vehicle information by driving 300 km in Seoul and Gyeonggi-do, Korea.
While analyzing the data, we found that the continuity of the frame varied depending on
the speed. Namely, as you can see in Figure 2, the characteristics of consecutive images
varied with the vehicle’s speed. The constructed database had less variation in images per
frame at low speeds, and more variation in images per frame at high-speed intervals.

We summarized the amount of data for each vehicle speed section in Figure 3. We
identified the acquired 2D LiDAR and camera data set with the speed of the vehicle, and we
found the number of each data as vehicle speed, as shown in Figure 3. These unbalanced
data were due to the duplication of the same data acquired at a standstill at low speed
and we needed to eliminate these duplication data. Namely, similar image data were
acquired in succession when the vehicle was stationary or low-speed driving, and data
with significant changes between frames were acquired when high-speed driving.
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Thus, in this paper, data imbalances with vehicle speed were adjusted using down-
sampling techniques. We did down-sampling with the amount of data in the 1030-kph
section with the fewest data. Since it is well known that such random sampling can gener-
ally maintain the distribution of original data, we did randomly extract down-sampling
at 21,426 frames (amount of data in the 10–30-kph range) from data in each vehicle speed
range. However, if we did down-sampling of 0–10-kph data, the image data representing
different situations may be less because of multiple overlapping frames. Consequently, that
number of real, meaningful data on the network training was insufficient. Therefore, at
speeds less than 10 kph, we did not do down-sampling and utilized it for network training
as the number of original data. Finally, the composition of the data utilized for the training,
validation, and testing of the neural network model is shown in Table 4.

Table 4. Data set configuration.

Data Set
Number of Data (Frame) Number of Data (Frame)

With No Down Sampling With Down Sampling

Training 134,208 10,6251
Validation 7063 7063

Test 4656 4656

2.4. Convolutional Neural Network for End-to-End Self-Driving

In this paper, instead of the 3D LiDAR used in Chen et al. [13], we proposed an E2E
self-driving algorithm based on the CNN that predicts the longitudinal and lateral control
values of vehicles by training point cloud data acquired from 2D LiDAR sensors and image
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data acquired from cameras. Figure 4 represents the flow chart of the proposed algorithm.
CNN, which performs E2E self-driving, uses camera and LiDAR data as inputs and result
in vehicle speed and angle as outputs, and updates weight/bias of CNN by comparing
them with data driven by humans.
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2.4.1. Data Preprocessing

We used a camera and LiDAR sensors to construct an E2E self-driving model. In order
to use two-sensor data for our proposed algorithm, we needed to convert original sensor
data to suit the proposed network structure. Figure 5 represents the data preprocessing
process. Each bit data was pre-processed into an appropriate form for the system using
resizing, mapping, and so on.

First, image data from monocular cameras acquired in the driving environment were
resized from 640 × 900 to 299 × 299 resolution for use in pre-trained models, Inception
v3. In this paper, we utilized a size of 299 × 299, which is larger than the 224 × 224 size
used in a general CNN pre-trained model, to ensure that traffic information, such as traffic
lights, can be fully reflected in the learning, depending on the resolution.
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Then, we encoded point cloud data in the driving environment acquired from the
LiDAR sensor into an image form with three channels in two dimensions, utilizing it
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as training data from CNN. Different from many LiDARs, Lux2010 LiDAR gave us 2D
information instead of 3D information, and we used imagenet-based CNN. Equation (1)
indicates how point cloud data acquired from 2D LiDAR sensors were transformed into
RGB channels by distance.

Here, Px and Py represent the lateral and longitude coordinates of the point cloud data
from the vehicle, respectively. The distance was calculated using Equation (1), isolated into
three RGB channels, and the proportional values according to the distance within the RGB
channel were substituted.

Distance =
√

Px2 + Py2 (1)

if Distance < 20 :

ChannelBlue[Px]
[
Py
]
= 255

20 × Distance

otherwise, if Distance < 40 :

ChannelGreen[Px]
[
Py
]
= 255

40 × Distance

otherwise :

ChannelRed[Px]
[
Py
]
= min(255, 255

60 × Distance)

Figure 6 shows the encoding of the point cloud according to the method used in
Equation (1). It was resized to 224 × 224 and used as input data for the pre-trained
network, ResNet50.
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Finally, we constructed a label for training the vehicle’s longitudinal/lateral control
values based on data acquired from 2D LiDAR sensors and front camera sensors. To train
the vehicle control value, which is the output of E2E self-driving, the label utilized the
heading angle and the velocity, which represent the lateral and longitudinal variations
of the vehicle’s information, respectively. It also configured the label data in the 1 × 10
vector format for 250-ms to 1250-ms intervals in 250 ms to predict future values and current
control values. The label data after the five frames were determined by the actual driving
value of the person between the current frame and five frames after.

2.4.2. Proposed Network Architecture

The proposed E2E self-driving network consisted of an input structure consisting of
two separate branches: a 299 × 299-size image acquired from a camera sensor and an image
of 224 × 224 size encoded by a preprocessing algorithm. The Inception V3 [22] model
was used to utilize 299 × 299 images acquired from camera sensors without changing the
size in the pre-trained model, and Resnet50 [23] was used for 224 × 224 LiDAR images.
Figure 7 represents the Network Architecture used for our proposed algorithm.
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Each feature extraction layer was extracted from camera and LiDAR data using the
feature extraction layer of each pre-trained model (Inception v3, Resnet50), and then these
two kinds of features were concatenated for combining. The combined features consisted
of a regression layer that predicted the velocity and angle we wanted through a fully
connected layer. The details of the fully connected layers are shown in Table 5.

Table 5. Fully Connected Layer Architecture for Regression.

Type Filters/Activation Size Output

Layer 1 Concatenate Merge 1 × 4096

Layer 2 Dense ReLU 1024 1024
Layer 3 Dense ReLU 256 256
Layer 4 Dense ReLU 128 128

Layer 5 Regression Linear 10 10

3. Results

We demonstrated the validity of the proposed method using data sets built in
Sections 2.2 and 2.3 on the E2E network architecture proposed in Section 2.4 of this paper.
We proceeded with training on the two sets of data, original and down-sampling data,
to demonstrate the effectiveness of down-sampling of unbalanced data. Quantitative
performance indicators for the predicted results were derived through Expression (2). The
indicator showed the difference between the data driven by a person and the proposed
method. Because the criterion of accurate driving was ambiguous, this paper compared
the differences between human driving data and the proposed E2E algorithm.

Gap rate = ∑ Abs(Human driving label − Prediction)
Num o f data

(2)

Tables 6 and 7 are network prediction results learned with the original data set and the
down-sampling data set for the same test data. The prediction performance was verified
by dividing the situation into low- (<10 kph) and high-speed (≥10 kph) sections according
to the vehicle velocity, and the heading angle was verified by dividing the situation into a
straight (<5◦) and curved road (≥5◦).

Table 6. Experimental results for original data.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Angle < 5◦ 3.83 3.62 2.99 2.83 2.93
Angle ≥ 5◦ 5.14 5.22 5.31 5.54 5.62

Speed < 10 kph 16.05 15.57 14.64 13.70 13.10
Speed ≥ 10 kph 5.67 5.73 5.66 5.89 6.11
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Table 7. Experimental results for down-sampling data.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Angle < 5◦ 4.07 3.66 2.96 2.93 3.10
Angle ≥ 5◦ 4.82 5.43 5.40 5.42 5.83

Speed < 10 kph 7.75 6.29 4.74 3.67 2.90
Speed ≥ 10 kph 5.98 5.93 5.96 6.06 6.26

Table 8 shows the estimation performance differences of the E2E self-driving model in
the low-speed section between the original data set and the down-sampling data set. In the
low-speed section, each frame’s velocities improved performance as a result of learning
with the down-sampling data.

Table 8. Performance difference between down-sampling and normal data in the low-speed section.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Down sampling data 7.75 6.29 4.74 3.67 2.90
Original data 16.05 15.57 14.64 13.70 13.10

To confirm the stable operation of the proposed algorithm, we compared the speed
at which a person drives with the output of the E2E self-driving model for one driving
scenario among test data. The comparison results are shown in Figure 8.
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4. Discussion

As we mentioned in Section 3, we defined and used the gap rate to represent the
quantitative performance; however, a large gap rate does not mean that the E2E self-driving
drive was wrong. If the estimation value of the E2E self-driving was within the permitted
driving range on the actual road, it was a correct operation, even if it differed from the
actual person’s driving. However, the gap rate was used to verify that the actual learning
was done well in this paper. Therefore, we further checked the correct behavior of E2E
self-driving using the activation map.

The advantage of E2E self-driving is that it performs autonomous driving without in-
termediate processing, using only input data, unlike recognizing all objects, and generating
a driving path in conventional rule-based self-driving. To check the behavior of this E2E
self-driving, we visualized the area that was activated by the proposed CNN while driving
using the activation map. Figure 9 is an activation map resulting from a prediction result
of the learned End-to-End self-driving model. The left side of each figure is the activation
map of the image data, and the right side is the activation map of the LiDAR data.
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Activation maps are expressed for a total of four situations: straight driving situation,
driving situation with high curvature, stopping situation without intersection forward ve-
hicles, and stopping situation with intersection forward vehicles. As shown in Figure 9a,b,
in the case of driving in a straight section, we confirmed that the center of the road in the
camera image and the forward portion of the LiDAR sensor were active in the network. If
there were no forward vehicles in the intersection section and only traffic lights existed, the
activation map was concentrated in the area of the traffic lights in Figure 9c,d. As a result
of verifying the activation map of the CNN, we checked that the proposed algorithm was
effective for self-driving.
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In addition, as shown in Figure 10, it was confirmed that the speed of E2E self-
driving did not show much difference from the output speed of human driving, and
it was confirmed that the proposed algorithm drove safely in general road conditions.
While analyzing Figure 8, interestingly the data between 1975 and 2251 frames showed a
large difference between the driver and CNN results. The above data are from situations
when the traffic light changed from green to orange, as shown in the Figure 10. When the
driver met the traffic signal-changing situation, it was confirmed that human drivers drove
without slowing down, while the proposed algorithm reduced the speed as it considered
traffic lights. This does not mean that CNN is safer, but that the proposed algorithm can
confirm that it operates by recognizing traffic lights. In other words, E2E autonomous
driving is not only possible to control the longitudinal/lateral direction that maintains the
distance and lane from the vehicle, but also to operate in compliance with other traffic laws,
such as traffic signal and speed limit.
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5. Conclusions

In this paper, we proposed E2E autonomous driving in general urban environments us-
ing 2D LiDAR and camera sensors’ data. Our proposed method could drive autonomously
using 2D LiDAR sensors to train in-depth information about the driving environment and
a camera sensor to train image data to recognize the driving environment information such
as a traffic signal. Unlike previous studies, we implemented an algorithm of end-to-end
self-driving that can maintain road traffic by acquiring actual road data. Namely, our
proposed algorithm could (1) enable longitudinal/lateral self-driving with an E2E method
and (2) deal with complex situations such as traffic lights in urban areas.

For the quantitative performance evaluation of the model developed of the proposed
method, we developed a gap rate that represented the difference between E2E self-driving
data and the human driving data. The gap rate was 14.61 kph for the original data set
and 5.07 kph for the down-sampling data set. Furthermore, predictions were made after
1250 ms, as well as the values currently needed, to confirm that predictions were possible
for future situations.

The data used in this paper included various driving environment situations, such as
intersections, stopping traffic lights, and sharp curves, and we validated them using the
activation map to check the behavior of E2E autonomous driving in these various envi-
ronments. In the traffic light and intersection sections, the largest activation was observed
near the traffic lights in the input image under stop-and-go conditions. Nevertheless,
due to deep learning’s black box nature, the proposed algorithm had a limitation that
mathematical analysis was not performed and was proven experimentally.

In the future, more database construction and model configuration will be performed
to enable E2E autonomous driving in a wider variety of environments, including more
sensor information, such as around-view monitor cameras and map information, and
will improve the self-driving model to ensure safe driving to a destination. Additionally,
when we acquire data for E2E self-driving, the frame ratio of the camera/LiDAR will be
appropriately adjusted according to the situation so that balanced data can be acquired
and training can be constructed through it.
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