
electronics

Article

A Convolutional Neural Network-Based End-to-End
Self-Driving Using LiDAR and Camera Fusion: Analysis
Perspectives in a Real-World Environment

Mingyu Park 1, Hyeonseok Kim 1 and Seongkeun Park 2,*

����������
�������

Citation: Park, M.; Kim, H.; Park, S.

A Convolutional Neural

Network-Based End-to-End

Self-Driving Using LiDAR and

Camera Fusion: Analysis

Perspectives in a Real-World

Environment. Electronics 2021, 10,

2608. https://doi.org/10.3390/

electronics10212608

Academic Editor:

Jose Eugenio Naranjo

Received: 8 August 2021

Accepted: 22 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Future Convergence Technology, Soonchunhyang University, Asan 31538, Korea;
parkmingyu11@sch.ac.kr (M.P.); hy2onseok_kim@sch.ac.kr (H.K.)

2 Machine Intelligence Laboratory, Department of Smart Automobile, Soonchunhyang University,
Asan 31538, Korea

* Correspondence: keiny@sch.ac.kr

Abstract: In this paper, we develop end-to-end autonomous driving based on a 2D LiDAR sensor and
camera sensor that predict the control value of the vehicle from the input data, instead of modeling
rule-based autonomous driving. Different from many studies utilizing simulated data, we created an
end-to-end autonomous driving algorithm with data obtained from real driving and analyzing the
performance of our proposed algorithm. Based on the data obtained from an actual urban driving
environment, end-to-end autonomous driving was possible in an informal environment such as
a traffic signal by predicting the vehicle control value based on a convolution neural network. In
addition, this paper solves the data imbalance problem by eliminating redundant data for each frame
during stopping and driving in the driving environment so we can improve the performance of self-
driving. Finally, we verified through the activation map how the network predicts the vertical and
horizontal control values by recognizing the traffic facilities in the driving environment. Experiments
and analysis will be shown to show the validity of the proposed algorithm.

Keywords: end-to-end control; convolutional neural network; self-driving; LiDAR sensor; vision sensor

1. Introduction

A self-driving car is a system that recognizes the driving environment, generates the
path, and drives the vehicle itself by utilizing environmental awareness sensors such as
camera, radar, LiDAR, and GPS. Self-driving cars generally consist of three sub-systems of
recognition, decision, and control, such as human driving, and each sub-system serves to
replace the driver [1].

Driving environment recognition serves as a driving environment dynamic, static
object detection, lane detection, and vehicle location estimation based on sensors that
can obtain information about the driving environment, and the decision to determine
the vehicle trajectory, such as the creation and avoidance of routes to the destination [2].
Longitudinal and lateral controls are performed to reliably drive the target control values of
the vehicle determined by recognition and decision [3]. The general self-driving developed
separately for each module can easily debug and troubleshoot in the event of a defect or
abnormal situation.

However, in the case of autonomous driving research, there are some development
restrictions in the actual complex driving environment [4,5]. Autonomous driving occurs
not only in the highway environment but also in complex urban areas, with various vari-
ables such as traffic lights, surrounding vehicles, motorcycles, pedestrians, road structures,
and unpredictable conditions, and recognizing various objects in these complex road envi-
ronments is still a difficult problem [6–9]. In addition, there are many areas that have not
yet been resolved to develop an optimal decision algorithm considering all these complex

Electronics 2021, 10, 2608. https://doi.org/10.3390/electronics10212608 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10212608
https://doi.org/10.3390/electronics10212608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212608
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212608?type=check_update&version=1


Electronics 2021, 10, 2608 2 of 12

environments. In other words, the conventional planning method, a rule-based approach,
recognizes all obstacles affecting safe driving and requires accurate situational decisions
that make it difficult to consider all possible situations on the road.

Unlike previous studies, which consist of perception, decision, and control, we pro-
posed a convolutional neural network (CNN) that provides the target longitudinal/transverse
speed of the vehicle as output with real-world LiDAR and camera data as inputs. Our pro-
posed method fully utilized a CNN to send out output data directly from input data. Unlike
the previous algorithm that was only laterally controlled using an end-to-end algorithm
based on camera [10], our proposed algorithm simultaneously performed longitudinal
and lateral control using a camera and LiDAR sensor that can provide a depth value. The
output of our proposed network was the vehicle longitudinal/lateral speed targets for
250, 500, 750, 1000, and 1250 ms from the present time. Additionally, different from many
previous end-to-end self-driving, we proposed end-to-end self-driving that complies with
road traffic laws by acquiring real-world data in urban areas in complex environments
such as traffic lights. After training the proposed algorithm with the real-road database,
E2E autonomous driving was confirmed in complex urban environments, such as traffic
lights and intersections, and we used feature maps to check the validity of the proposed
algorithm. This paper is structured as follows. Section 2 explains related works, how to
build our experimental environments, and the data set and convolutional neural network.
The results and analysis of our results are shown in Sections 3 and 4, respectively, and
Section 5 reveals the conclusion and future research.

2. Materials and Methods
2.1. Preliminaries
2.1.1. Convolutional Neural Network

With the invention of Alexnet in 2012, many deep learning-based approaches such as
CNN have been applied to computer vision [11]. CNN has two parts, a feature extractor,
consisting of the convolution layer and pooling layer, and a fully connected layer that
performs classification and regression. Previous machine learning-based computer vision
algorithms extracted features within an image using HOG and SIFT, and the results were
obtained by performing algorithms such as Support Vector Machines with the extracted
features, while CNN extracts the features through learning of the convolution layer and
achieves the results through fully connected layers. Therefore, CNN is also called E2E
learning technology and it is being used in various computer vision areas such as object
detection, tracking, and semantic segmentation [12].

2.1.2. End-to-End Self-Driving

Many studies have been conducted on E2E autonomous driving, which uses CNN’s
E2E characteristics fully to calculate the final output speed from input data without detailed
algorithms to construct autonomous driving. Mariusz et al. proposed a CNN structure
called PilotNet, the start of the CNN-based E2E autonomous driving. PilotNet uses three
camera sensors mounted on the front of the vehicle, and it performs lateral control of the
vehicle [10]. However, PilotNet implemented only the end-to-end self-driving function of
lane keeping using only monocular cameras, and maintaining inter-vehicle distance used a
classical control method, not a learning method. Chen et al. proposed a study that can use
distance information in autonomous driving to effectively learn drivers’ driving patterns
and produce a deep learning model that enables stable longitudinal lateral control [13].
They unveiled a data set that includes a LiDAR sensor, camera sensor, and a label for
longitudinal/lateral control. Based on this data set, a DNN + LSTM deep learning model
that enables longitudinal control using the distance information from the LiDAR sensor
and image information from the camera sensor was constructed. However, to utilize 3D
Point Cloud data, a deep learning network using data from a LiDAR sensor called Point
Cloud Mapping or PointNet was additionally used, which required a large amount of
network parameters [14]. Navarro et al. proposed sensor fusion-based E2E self-driving



Electronics 2021, 10, 2608 3 of 12

using real-world acquired data [15], but they did not analyze how to work their algorithm
in real-world situations such as an urban traffic signal. Huch et al. suggested V2X-based
E2E self-driving for platooning [16]. Prashanth et al. proposed JacintoNet, which was
implemented in Texas Instruments (TI) TDA2x System on Chip, for real-time working [17].
However, it utilized simulation data and implemented autonomous driving at only lane
keeping. Yu et al. proposed end-to-end self-driving capable of longitudinal/lateral control
using a monocular camera [18]. They acquired large-scale data sets and developed end-to-
end self-driving in a real-road environment, but had limitations in realizing self-driving
in a simple environment such as a highway. Sallab et al. proposed a reinforcement
learning-based end-to-end self-driving algorithm using monocamera, but it was applied
only in a lane-keeping system [19]. Table 1 shows the comparison of previous end-to-end
self-driving approaches.

Table 1. Comparison of End-to-End self-driving approaches.

Data Set Sensors Control Target

Mariusz et al. [10] Real world camera Steering
Chen et al. [13] Real world LiDAR, camera Steering, Speed

Navarro et al. [15] Real world LiDAR, IMU,
RGB camera, Depth camera, Steering, Speed

Huch et al. [16] Simulation camera, V2V Steering
Prashanth et al. [17] Simulation camera Steering

Yu et al. [18] Simulation camera Steering, Speed
Sallab et al. [19] Real world camera Steering

2.1.3. Explainable End-to-End Self-Driving System

Zhou et al. introduced a class activation map to analyze the region within the image
that influenced the results when images were classified [20]. The class activation map
interprets the figure for the weight value of the last fully connected layer as important,
representing the most influential part of the image with respect to the results of the network.

Mariusz et al. expanded on Zhou’s paper. They proposed an explanation of what
part of the end-to-end self-driving model focuses on the input driving image to conduct
lateral control judgment, which is similar to the method proposed by Zhou et al., where
the end-to-end self-driving model is the focus and responds accordingly. The network
concentrates on the road environment, although there was a reliability issue because E2E
autonomous driving is not accountable [21].

2.2. Experiemental Setup

In this paper, we generated the data set using information from the environment-
aware sensors and in-vehicle sensors mounted on the vehicle and we conducted training
on the E2E self-driving network using them.

The hardware development environment used in this paper is shown in Figure 1. We
used Hyundai Motor Ionic EV vehicles equipped with one camera and two LiDAR sensors,
a VCU that controls information about the vehicle, and a workstation for E2E self-driving
algorithms and other data-logging programs.

The SW development environment was set up as below, CUDA 9.1 and cuDNN 7.1 in
Ubuntu 16.04 LTS and Python with Keras 2.2.1. The details about the HW setup are shown
in Table 2.



Electronics 2021, 10, 2608 4 of 12Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Autonomous driving platform. 

The SW development environment was set up as below, CUDA 9.1 and cuDNN 7.1 
in Ubuntu 16.04 LTS and Python with Keras 2.2.1. The details about the HW setup are 
shown in Table 2. 

Table 2. Experiment hardware environment for training and data collection. 

Component Training Environment Embedded PC on Vehicle 
CPU Intel Xeon E5 Intel i7-6820EQ 
GPU NVIDIA GTX 1080TI 2ea Nvidia Jetson Xavier  

SSD/HDD 
SSD: 512 GB 
HDD: 10 TB 

SSD: 250 GB 
HDD: 4 TB 

RAM 64 GB 32 GB 

Additionally, we used the IBEO’s LUX2010 LiDAR and Point Grey’s Blackfly 
PoEGigE camera. Table 3 represents the detail specifications of each sensor used. 

Table 3. Sensor specifications. 

 LiDAR 

 

Model IBEO LUX2010 
Range 200 m/560 ft 

FOV 
2 layers: 110° 
4 layers: 85° 

Interface Ethernet/CAN/RS232 

 Camera 

 

Model BFLY-PGE-23S6C 
FOV 90° 

Sensor format 1/1.2” 
FPS 41 

Interface Giga Ethernet 

2.3. Data Set 
For this study, we constructed about 150,000 frames of a data set from camera and 

LiDAR sensors and vehicle information by driving 300 km in Seoul and Gyeonggi-do, 
Korea. While analyzing the data, we found that the continuity of the frame varied depend-
ing on the speed. Namely, as you can see in Figure 2, the characteristics of consecutive 
images varied with the vehicle’s speed. The constructed database had less variation in 
images per frame at low speeds, and more variation in images per frame at high-speed 
intervals. 

Figure 1. Autonomous driving platform.

Table 2. Experiment hardware environment for training and data collection.

Component Training Environment Embedded PC on Vehicle

CPU Intel Xeon E5 Intel i7-6820EQ
GPU NVIDIA GTX 1080TI 2ea Nvidia Jetson Xavier

SSD/HDD SSD: 512 GB
HDD: 10 TB

SSD: 250 GB
HDD: 4 TB

RAM 64 GB 32 GB

Additionally, we used the IBEO’s LUX2010 LiDAR and Point Grey’s Blackfly PoEGigE
camera. Table 3 represents the detail specifications of each sensor used.

Table 3. Sensor specifications.

LiDAR

Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Autonomous driving platform. 

The SW development environment was set up as below, CUDA 9.1 and cuDNN 7.1 
in Ubuntu 16.04 LTS and Python with Keras 2.2.1. The details about the HW setup are 
shown in Table 2. 

Table 2. Experiment hardware environment for training and data collection. 

Component Training Environment Embedded PC on Vehicle 
CPU Intel Xeon E5 Intel i7-6820EQ 
GPU NVIDIA GTX 1080TI 2ea Nvidia Jetson Xavier  

SSD/HDD 
SSD: 512 GB 
HDD: 10 TB 

SSD: 250 GB 
HDD: 4 TB 

RAM 64 GB 32 GB 

Additionally, we used the IBEO’s LUX2010 LiDAR and Point Grey’s Blackfly 
PoEGigE camera. Table 3 represents the detail specifications of each sensor used. 

Table 3. Sensor specifications. 

 LiDAR 

 

Model IBEO LUX2010 
Range 200 m/560 ft 

FOV 
2 layers: 110° 
4 layers: 85° 

Interface Ethernet/CAN/RS232 

 Camera 

 

Model BFLY-PGE-23S6C 
FOV 90° 

Sensor format 1/1.2” 
FPS 41 

Interface Giga Ethernet 

2.3. Data Set 
For this study, we constructed about 150,000 frames of a data set from camera and 

LiDAR sensors and vehicle information by driving 300 km in Seoul and Gyeonggi-do, 
Korea. While analyzing the data, we found that the continuity of the frame varied depend-
ing on the speed. Namely, as you can see in Figure 2, the characteristics of consecutive 
images varied with the vehicle’s speed. The constructed database had less variation in 
images per frame at low speeds, and more variation in images per frame at high-speed 
intervals. 

Model IBEO LUX2010
Range 200 m/560 ft

FOV
2 layers: 110◦

4 layers: 85◦

Interface Ethernet/CAN/RS232

Camera

Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Autonomous driving platform. 

The SW development environment was set up as below, CUDA 9.1 and cuDNN 7.1 
in Ubuntu 16.04 LTS and Python with Keras 2.2.1. The details about the HW setup are 
shown in Table 2. 

Table 2. Experiment hardware environment for training and data collection. 

Component Training Environment Embedded PC on Vehicle 
CPU Intel Xeon E5 Intel i7-6820EQ 
GPU NVIDIA GTX 1080TI 2ea Nvidia Jetson Xavier  

SSD/HDD 
SSD: 512 GB 
HDD: 10 TB 

SSD: 250 GB 
HDD: 4 TB 

RAM 64 GB 32 GB 

Additionally, we used the IBEO’s LUX2010 LiDAR and Point Grey’s Blackfly 
PoEGigE camera. Table 3 represents the detail specifications of each sensor used. 

Table 3. Sensor specifications. 

 LiDAR 

 

Model IBEO LUX2010 
Range 200 m/560 ft 

FOV 
2 layers: 110° 
4 layers: 85° 

Interface Ethernet/CAN/RS232 

 Camera 

 

Model BFLY-PGE-23S6C 
FOV 90° 

Sensor format 1/1.2” 
FPS 41 

Interface Giga Ethernet 

2.3. Data Set 
For this study, we constructed about 150,000 frames of a data set from camera and 

LiDAR sensors and vehicle information by driving 300 km in Seoul and Gyeonggi-do, 
Korea. While analyzing the data, we found that the continuity of the frame varied depend-
ing on the speed. Namely, as you can see in Figure 2, the characteristics of consecutive 
images varied with the vehicle’s speed. The constructed database had less variation in 
images per frame at low speeds, and more variation in images per frame at high-speed 
intervals. 

Model BFLY-PGE-23S6C
FOV 90◦

Sensor format 1/1.2”
FPS 41

Interface Giga Ethernet

2.3. Data Set

For this study, we constructed about 150,000 frames of a data set from camera and
LiDAR sensors and vehicle information by driving 300 km in Seoul and Gyeonggi-do, Korea.
While analyzing the data, we found that the continuity of the frame varied depending on
the speed. Namely, as you can see in Figure 2, the characteristics of consecutive images
varied with the vehicle’s speed. The constructed database had less variation in images per
frame at low speeds, and more variation in images per frame at high-speed intervals.

We summarized the amount of data for each vehicle speed section in Figure 3. We
identified the acquired 2D LiDAR and camera data set with the speed of the vehicle, and we
found the number of each data as vehicle speed, as shown in Figure 3. These unbalanced
data were due to the duplication of the same data acquired at a standstill at low speed
and we needed to eliminate these duplication data. Namely, similar image data were
acquired in succession when the vehicle was stationary or low-speed driving, and data
with significant changes between frames were acquired when high-speed driving.



Electronics 2021, 10, 2608 5 of 12Electronics 2021, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Image data from each frame. 

We summarized the amount of data for each vehicle speed section in Figure 3. We 
identified the acquired 2D LiDAR and camera data set with the speed of the vehicle, and 
we found the number of each data as vehicle speed, as shown in Figure 3. These unbal-
anced data were due to the duplication of the same data acquired at a standstill at low 
speed and we needed to eliminate these duplication data. Namely, similar image data 
were acquired in succession when the vehicle was stationary or low-speed driving, and 
data with significant changes between frames were acquired when high-speed driving. 

 
Figure 3. Data distribution of each vehicle speed. 

Thus, in this paper, data imbalances with vehicle speed were adjusted using down-
sampling techniques. We did down-sampling with the amount of data in the 1030-kph 
section with the fewest data. Since it is well known that such random sampling can gen-
erally maintain the distribution of original data, we did randomly extract down-sampling 
at 21,426 frames (amount of data in the 10–30-kph range) from data in each vehicle speed 
range. However, if we did down-sampling of 0–10-kph data, the image data representing 
different situations may be less because of multiple overlapping frames. Consequently, 
that number of real, meaningful data on the network training was insufficient. Therefore, 
at speeds less than 10 kph, we did not do down-sampling and utilized it for network train-
ing as the number of original data. Finally, the composition of the data utilized for the 
training, validation, and testing of the neural network model is shown in Table 4. 

  

53,778

21,426

45,984

62,001

0 10000 20000 30000 40000 50000 60000 70000

0~10(km/h)

10~30(km/h)

30~50(km/h)

50~(km/h)

Number of Data(frame)

Ve
lo

cit
y(

km
/h

)

Data Distribution

Figure 2. Image data from each frame.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Image data from each frame. 

We summarized the amount of data for each vehicle speed section in Figure 3. We 
identified the acquired 2D LiDAR and camera data set with the speed of the vehicle, and 
we found the number of each data as vehicle speed, as shown in Figure 3. These unbal-
anced data were due to the duplication of the same data acquired at a standstill at low 
speed and we needed to eliminate these duplication data. Namely, similar image data 
were acquired in succession when the vehicle was stationary or low-speed driving, and 
data with significant changes between frames were acquired when high-speed driving. 

 
Figure 3. Data distribution of each vehicle speed. 

Thus, in this paper, data imbalances with vehicle speed were adjusted using down-
sampling techniques. We did down-sampling with the amount of data in the 1030-kph 
section with the fewest data. Since it is well known that such random sampling can gen-
erally maintain the distribution of original data, we did randomly extract down-sampling 
at 21,426 frames (amount of data in the 10–30-kph range) from data in each vehicle speed 
range. However, if we did down-sampling of 0–10-kph data, the image data representing 
different situations may be less because of multiple overlapping frames. Consequently, 
that number of real, meaningful data on the network training was insufficient. Therefore, 
at speeds less than 10 kph, we did not do down-sampling and utilized it for network train-
ing as the number of original data. Finally, the composition of the data utilized for the 
training, validation, and testing of the neural network model is shown in Table 4. 

  

53,778

21,426

45,984

62,001

0 10000 20000 30000 40000 50000 60000 70000

0~10(km/h)

10~30(km/h)

30~50(km/h)

50~(km/h)

Number of Data(frame)

Ve
lo

cit
y(

km
/h

)

Data Distribution

Figure 3. Data distribution of each vehicle speed.

Thus, in this paper, data imbalances with vehicle speed were adjusted using down-
sampling techniques. We did down-sampling with the amount of data in the 1030-kph
section with the fewest data. Since it is well known that such random sampling can gener-
ally maintain the distribution of original data, we did randomly extract down-sampling
at 21,426 frames (amount of data in the 10–30-kph range) from data in each vehicle speed
range. However, if we did down-sampling of 0–10-kph data, the image data representing
different situations may be less because of multiple overlapping frames. Consequently, that
number of real, meaningful data on the network training was insufficient. Therefore, at
speeds less than 10 kph, we did not do down-sampling and utilized it for network training
as the number of original data. Finally, the composition of the data utilized for the training,
validation, and testing of the neural network model is shown in Table 4.

Table 4. Data set configuration.

Data Set
Number of Data (Frame) Number of Data (Frame)

With No Down Sampling With Down Sampling

Training 134,208 10,6251
Validation 7063 7063

Test 4656 4656

2.4. Convolutional Neural Network for End-to-End Self-Driving

In this paper, instead of the 3D LiDAR used in Chen et al. [13], we proposed an E2E
self-driving algorithm based on the CNN that predicts the longitudinal and lateral control
values of vehicles by training point cloud data acquired from 2D LiDAR sensors and image



Electronics 2021, 10, 2608 6 of 12

data acquired from cameras. Figure 4 represents the flow chart of the proposed algorithm.
CNN, which performs E2E self-driving, uses camera and LiDAR data as inputs and result
in vehicle speed and angle as outputs, and updates weight/bias of CNN by comparing
them with data driven by humans.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

Table 4. Data set configuration. 

Data Set 
Number of Data (Frame) Number of Data (Frame) 
With no Down Sampling With Down Sampling 

Training 134,208 10,6251 
Validation 7063 7063 

Test 4656 4656 

2.4. Convolutional Neural Network for End-to-End Self-Driving 
In this paper, instead of the 3D LiDAR used in Chen et al. [13], we proposed an E2E 

self-driving algorithm based on the CNN that predicts the longitudinal and lateral control 
values of vehicles by training point cloud data acquired from 2D LiDAR sensors and im-
age data acquired from cameras. Figure 4 represents the flow chart of the proposed algo-
rithm. CNN, which performs E2E self-driving, uses camera and LiDAR data as inputs and 
result in vehicle speed and angle as outputs, and updates weight/bias of CNN by compar-
ing them with data driven by humans. 

 
Figure 4. Flow chart of the E2E self-driving system. 

2.4.1. Data Preprocessing 
We used a camera and LiDAR sensors to construct an E2E self-driving model. In or-

der to use two-sensor data for our proposed algorithm, we needed to convert original 
sensor data to suit the proposed network structure. Figure 5 represents the data prepro-
cessing process. Each bit data was pre-processed into an appropriate form for the system 
using resizing, mapping, and so on. 

First, image data from monocular cameras acquired in the driving environment were 
resized from 640 × 900 to 299 × 299 resolution for use in pre-trained models, Inception v3. 
In this paper, we utilized a size of 299 × 299, which is larger than the 224 × 224 size used 
in a general CNN pre-trained model, to ensure that traffic information, such as traffic 
lights, can be fully reflected in the learning, depending on the resolution. 

Then, we encoded point cloud data in the driving environment acquired from the 
LiDAR sensor into an image form with three channels in two dimensions, utilizing it as 
training data from CNN. Different from many LiDARs, Lux2010 LiDAR gave us 2D infor-
mation instead of 3D information, and we used imagenet-based CNN. Equation (1) indi-
cates how point cloud data acquired from 2D LiDAR sensors were transformed into RGB 
channels by distance. 

Figure 4. Flow chart of the E2E self-driving system.

2.4.1. Data Preprocessing

We used a camera and LiDAR sensors to construct an E2E self-driving model. In order
to use two-sensor data for our proposed algorithm, we needed to convert original sensor
data to suit the proposed network structure. Figure 5 represents the data preprocessing
process. Each bit data was pre-processed into an appropriate form for the system using
resizing, mapping, and so on.

First, image data from monocular cameras acquired in the driving environment were
resized from 640 × 900 to 299 × 299 resolution for use in pre-trained models, Inception
v3. In this paper, we utilized a size of 299 × 299, which is larger than the 224 × 224 size
used in a general CNN pre-trained model, to ensure that traffic information, such as traffic
lights, can be fully reflected in the learning, depending on the resolution.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 5. Flow chart of data preprocessing (image, point cloud, vehicle target state). 

Here, 𝑃  and 𝑃  represent the lateral and longitude coordinates of the point cloud 
data from the vehicle, respectively. The distance was calculated using Equation (1), iso-
lated into three RGB channels, and the proportional values according to the distance 
within the RGB channel were substituted. Distance  𝑃 𝑃  

(1)if Distance 20:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  25520 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 otherwise, if Distance 40:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  25540 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 otherwise:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  𝑚𝑖𝑛 255, 25560 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

Figure 6 shows the encoding of the point cloud according to the method used in 
Equation (1). It was resized to 224 × 224 and used as input data for the pre-trained net-
work, ResNet50. 

 
Figure 6. Encoding point cloud data to three-channel image data. 

Finally, we constructed a label for training the vehicle’s longitudinal/lateral control 
values based on data acquired from 2D LiDAR sensors and front camera sensors. To train 
the vehicle control value, which is the output of E2E self-driving, the label utilized the 
heading angle and the velocity, which represent the lateral and longitudinal variations of 

Figure 5. Flow chart of data preprocessing (image, point cloud, vehicle target state).

Then, we encoded point cloud data in the driving environment acquired from the
LiDAR sensor into an image form with three channels in two dimensions, utilizing it



Electronics 2021, 10, 2608 7 of 12

as training data from CNN. Different from many LiDARs, Lux2010 LiDAR gave us 2D
information instead of 3D information, and we used imagenet-based CNN. Equation (1)
indicates how point cloud data acquired from 2D LiDAR sensors were transformed into
RGB channels by distance.

Here, Px and Py represent the lateral and longitude coordinates of the point cloud data
from the vehicle, respectively. The distance was calculated using Equation (1), isolated into
three RGB channels, and the proportional values according to the distance within the RGB
channel were substituted.

Distance =
√

Px2 + Py2 (1)

if Distance < 20 :

ChannelBlue[Px]
[
Py
]
= 255

20 × Distance

otherwise, if Distance < 40 :

ChannelGreen[Px]
[
Py
]
= 255

40 × Distance

otherwise :

ChannelRed[Px]
[
Py
]
= min(255, 255

60 × Distance)

Figure 6 shows the encoding of the point cloud according to the method used in
Equation (1). It was resized to 224 × 224 and used as input data for the pre-trained
network, ResNet50.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 5. Flow chart of data preprocessing (image, point cloud, vehicle target state). 

Here, 𝑃  and 𝑃  represent the lateral and longitude coordinates of the point cloud 
data from the vehicle, respectively. The distance was calculated using Equation (1), iso-
lated into three RGB channels, and the proportional values according to the distance 
within the RGB channel were substituted. Distance  𝑃 𝑃  

(1)if Distance 20:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  25520 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 otherwise, if Distance 40:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  25540 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 otherwise:      𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑃 𝑃  𝑚𝑖𝑛 255, 25560 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

Figure 6 shows the encoding of the point cloud according to the method used in 
Equation (1). It was resized to 224 × 224 and used as input data for the pre-trained net-
work, ResNet50. 

 
Figure 6. Encoding point cloud data to three-channel image data. 

Finally, we constructed a label for training the vehicle’s longitudinal/lateral control 
values based on data acquired from 2D LiDAR sensors and front camera sensors. To train 
the vehicle control value, which is the output of E2E self-driving, the label utilized the 
heading angle and the velocity, which represent the lateral and longitudinal variations of 

Figure 6. Encoding point cloud data to three-channel image data.

Finally, we constructed a label for training the vehicle’s longitudinal/lateral control
values based on data acquired from 2D LiDAR sensors and front camera sensors. To train
the vehicle control value, which is the output of E2E self-driving, the label utilized the
heading angle and the velocity, which represent the lateral and longitudinal variations
of the vehicle’s information, respectively. It also configured the label data in the 1 × 10
vector format for 250-ms to 1250-ms intervals in 250 ms to predict future values and current
control values. The label data after the five frames were determined by the actual driving
value of the person between the current frame and five frames after.

2.4.2. Proposed Network Architecture

The proposed E2E self-driving network consisted of an input structure consisting of
two separate branches: a 299 × 299-size image acquired from a camera sensor and an image
of 224 × 224 size encoded by a preprocessing algorithm. The Inception V3 [22] model
was used to utilize 299 × 299 images acquired from camera sensors without changing the
size in the pre-trained model, and Resnet50 [23] was used for 224 × 224 LiDAR images.
Figure 7 represents the Network Architecture used for our proposed algorithm.



Electronics 2021, 10, 2608 8 of 12

Electronics 2021, 10, x FOR PEER REVIEW 8 of 13 
 

 

the vehicle’s information, respectively. It also configured the label data in the 1×10 vector 
format for 250-ms to 1250-ms intervals in 250 ms to predict future values and current con-
trol values. The label data after the five frames were determined by the actual driving 
value of the person between the current frame and five frames after. 

2.4.2. Proposed Network Architecture 
The proposed E2E self-driving network consisted of an input structure consisting of 

two separate branches: a 299 × 299-size image acquired from a camera sensor and an image 
of 224 × 224 size encoded by a preprocessing algorithm. The Inception V3 [22] model was 
used to utilize 299 × 299 images acquired from camera sensors without changing the size 
in the pre-trained model, and Resnet50 [23] was used for 224 × 224 LiDAR images. Figure 
7 represents the Network Architecture used for our proposed algorithm. 

 
Figure 7. End-to-end self-driving network architecture. 

Each feature extraction layer was extracted from camera and LiDAR data using the 
feature extraction layer of each pre-trained model (Inception v3, Resnet50), and then these 
two kinds of features were concatenated for combining. The combined features consisted 
of a regression layer that predicted the velocity and angle we wanted through a fully con-
nected layer. The details of the fully connected layers are shown in Table 5. 

Table 5. Fully Connected Layer Architecture for Regression. 

 Type Filters/Activation Size Output 
Layer 1 Concatenate Merge  1 4096 
Layer 2 Dense ReLU 1024 1024 
Layer 3 Dense ReLU 256 256 
Layer 4 Dense ReLU 128 128 
Layer 5 Regression Linear 10 10 

3. Results 
We demonstrated the validity of the proposed method using data sets built in Sec-

tions 2.2 and 2.3 on the E2E network architecture proposed in Section 2.4 of this paper. 
We proceeded with training on the two sets of data, original and down-sampling data, to 
demonstrate the effectiveness of down-sampling of unbalanced data. Quantitative perfor-
mance indicators for the predicted results were derived through Expression (2). The indi-
cator showed the difference between the data driven by a person and the proposed 
method. Because the criterion of accurate driving was ambiguous, this paper compared 
the differences between human driving data and the proposed E2E algorithm. 𝐺𝑎𝑝 rate  ∑ 𝐴𝑏𝑠 𝐻𝑢𝑚𝑎𝑛 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚 𝑜𝑓 𝑑𝑎𝑡𝑎  (2) 

Figure 7. End-to-end self-driving network architecture.

Each feature extraction layer was extracted from camera and LiDAR data using the
feature extraction layer of each pre-trained model (Inception v3, Resnet50), and then these
two kinds of features were concatenated for combining. The combined features consisted
of a regression layer that predicted the velocity and angle we wanted through a fully
connected layer. The details of the fully connected layers are shown in Table 5.

Table 5. Fully Connected Layer Architecture for Regression.

Type Filters/Activation Size Output

Layer 1 Concatenate Merge 1 × 4096

Layer 2 Dense ReLU 1024 1024
Layer 3 Dense ReLU 256 256
Layer 4 Dense ReLU 128 128

Layer 5 Regression Linear 10 10

3. Results

We demonstrated the validity of the proposed method using data sets built in
Sections 2.2 and 2.3 on the E2E network architecture proposed in Section 2.4 of this paper.
We proceeded with training on the two sets of data, original and down-sampling data,
to demonstrate the effectiveness of down-sampling of unbalanced data. Quantitative
performance indicators for the predicted results were derived through Expression (2). The
indicator showed the difference between the data driven by a person and the proposed
method. Because the criterion of accurate driving was ambiguous, this paper compared
the differences between human driving data and the proposed E2E algorithm.

Gap rate = ∑ Abs(Human driving label − Prediction)
Num o f data

(2)

Tables 6 and 7 are network prediction results learned with the original data set and the
down-sampling data set for the same test data. The prediction performance was verified
by dividing the situation into low- (<10 kph) and high-speed (≥10 kph) sections according
to the vehicle velocity, and the heading angle was verified by dividing the situation into a
straight (<5◦) and curved road (≥5◦).

Table 6. Experimental results for original data.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Angle < 5◦ 3.83 3.62 2.99 2.83 2.93
Angle ≥ 5◦ 5.14 5.22 5.31 5.54 5.62

Speed < 10 kph 16.05 15.57 14.64 13.70 13.10
Speed ≥ 10 kph 5.67 5.73 5.66 5.89 6.11



Electronics 2021, 10, 2608 9 of 12

Table 7. Experimental results for down-sampling data.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Angle < 5◦ 4.07 3.66 2.96 2.93 3.10
Angle ≥ 5◦ 4.82 5.43 5.40 5.42 5.83

Speed < 10 kph 7.75 6.29 4.74 3.67 2.90
Speed ≥ 10 kph 5.98 5.93 5.96 6.06 6.26

Table 8 shows the estimation performance differences of the E2E self-driving model in
the low-speed section between the original data set and the down-sampling data set. In the
low-speed section, each frame’s velocities improved performance as a result of learning
with the down-sampling data.

Table 8. Performance difference between down-sampling and normal data in the low-speed section.

Frame 10 20 30 40 50
Time (ms) 250 500 750 1000 1250

Down sampling data 7.75 6.29 4.74 3.67 2.90
Original data 16.05 15.57 14.64 13.70 13.10

To confirm the stable operation of the proposed algorithm, we compared the speed
at which a person drives with the output of the E2E self-driving model for one driving
scenario among test data. The comparison results are shown in Figure 8.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 13 
 

 

Tables 6 and 7 are network prediction results learned with the original data set and 
the down-sampling data set for the same test data. The prediction performance was veri-
fied by dividing the situation into low- (<10 kph) and high-speed (≥10 kph) sections ac-
cording to the vehicle velocity, and the heading angle was verified by dividing the situa-
tion into a straight (<5°) and curved road (≥5°). 

Table 6. Experimental results for original data. 

Frame 10 20 30 40 50 
Time (ms) 250 500 750 1000 1250 
Angle < 5° 3.83 3.62 2.99 2.83 2.93 

Angle ≥ 5° 5.14 5.22 5.31 5.54 5.62 

Speed < 10 kph 16.0
5 

15.57 14.64 13.70 13.10 

Speed ≥ 10 kph 5.67 5.73 5.66 5.89 6.11 

Table 7. Experimental results for down-sampling data. 

Frame 10 20 30 40 50 
Time (ms) 250 500 750 1000 1250 
Angle < 5° 4.07 3.66 2.96 2.93 3.10 

Angle ≥ 5° 4.82 5.43 5.40 5.42 5.83 
Speed < 10 kph 7.75 6.29 4.74 3.67 2.90 

Speed ≥ 10 kph 5.98 5.93 5.96 6.06 6.26 

Table 8 shows the estimation performance differences of the E2E self-driving model 
in the low-speed section between the original data set and the down-sampling data set. In 
the low-speed section, each frame’s velocities improved performance as a result of learn-
ing with the down-sampling data. 

Table 8. Performance difference between down-sampling and normal data in the low-speed sec-
tion. 

Frame 10 20 30 40 50 
Time (ms) 250 500 750 1000 1250 

Down sampling data 7.75 6.29 4.74 3.67 2.90 
Original data 16.05 15.57 14.64 13.70 13.10 

To confirm the stable operation of the proposed algorithm, we compared the speed 
at which a person drives with the output of the E2E self-driving model for one driving 
scenario among test data. The comparison results are shown in Figure 8. 

 
Figure 8. End-to-end self-driving network architecture. Figure 8. The comparison results.

4. Discussion

As we mentioned in Section 3, we defined and used the gap rate to represent the
quantitative performance; however, a large gap rate does not mean that the E2E self-driving
drive was wrong. If the estimation value of the E2E self-driving was within the permitted
driving range on the actual road, it was a correct operation, even if it differed from the
actual person’s driving. However, the gap rate was used to verify that the actual learning
was done well in this paper. Therefore, we further checked the correct behavior of E2E
self-driving using the activation map.

The advantage of E2E self-driving is that it performs autonomous driving without in-
termediate processing, using only input data, unlike recognizing all objects, and generating
a driving path in conventional rule-based self-driving. To check the behavior of this E2E
self-driving, we visualized the area that was activated by the proposed CNN while driving
using the activation map. Figure 9 is an activation map resulting from a prediction result
of the learned End-to-End self-driving model. The left side of each figure is the activation
map of the image data, and the right side is the activation map of the LiDAR data.



Electronics 2021, 10, 2608 10 of 12

Activation maps are expressed for a total of four situations: straight driving situation,
driving situation with high curvature, stopping situation without intersection forward ve-
hicles, and stopping situation with intersection forward vehicles. As shown in Figure 9a,b,
in the case of driving in a straight section, we confirmed that the center of the road in the
camera image and the forward portion of the LiDAR sensor were active in the network. If
there were no forward vehicles in the intersection section and only traffic lights existed, the
activation map was concentrated in the area of the traffic lights in Figure 9c,d. As a result
of verifying the activation map of the CNN, we checked that the proposed algorithm was
effective for self-driving.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 13 
 

 

4. Discussion 
As we mentioned in Section 3, we defined and used the gap rate to represent the 

quantitative performance; however, a large gap rate does not mean that the E2E self-driv-
ing drive was wrong. If the estimation value of the E2E self-driving was within the per-
mitted driving range on the actual road, it was a correct operation, even if it differed from 
the actual person’s driving. However, the gap rate was used to verify that the actual learn-
ing was done well in this paper. Therefore, we further checked the correct behavior of E2E 
self-driving using the activation map. 

The advantage of E2E self-driving is that it performs autonomous driving without 
intermediate processing, using only input data, unlike recognizing all objects, and gener-
ating a driving path in conventional rule-based self-driving. To check the behavior of this 
E2E self-driving, we visualized the area that was activated by the proposed CNN while 
driving using the activation map. Figure 9 is an activation map resulting from a prediction 
result of the learned End-to-End self-driving model. The left side of each figure is the ac-
tivation map of the image data, and the right side is the activation map of the LiDAR data. 

Activation maps are expressed for a total of four situations: straight driving situation, 
driving situation with high curvature, stopping situation without intersection forward ve-
hicles, and stopping situation with intersection forward vehicles. As shown in Figure 9 
a,b, in the case of driving in a straight section, we confirmed that the center of the road in 
the camera image and the forward portion of the LiDAR sensor were active in the net-
work. If there were no forward vehicles in the intersection section and only traffic lights 
existed, the activation map was concentrated in the area of the traffic lights in Figure 9 c,d. 
As a result of verifying the activation map of the CNN, we checked that the proposed 
algorithm was effective for self-driving. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Activation map of end-to-end model prediction results: (a) straight road driving situation; (b) curve road driving 
situation; (c) stop situation with only traffic lights; (d) stop situation with traffic light and vehicle. 

In addition, as shown in Figure 10, it was confirmed that the speed of E2E self-driving 
did not show much difference from the output speed of human driving, and it was con-
firmed that the proposed algorithm drove safely in general road conditions. While ana-
lyzing Figure 8, interestingly the data between 1975 and 2251 frames showed a large dif-
ference between the driver and CNN results. The above data are from situations when the 

Figure 9. Activation map of end-to-end model prediction results: (a) straight road driving situation; (b) curve road driving
situation; (c) stop situation with only traffic lights; (d) stop situation with traffic light and vehicle.

In addition, as shown in Figure 10, it was confirmed that the speed of E2E self-
driving did not show much difference from the output speed of human driving, and
it was confirmed that the proposed algorithm drove safely in general road conditions.
While analyzing Figure 8, interestingly the data between 1975 and 2251 frames showed a
large difference between the driver and CNN results. The above data are from situations
when the traffic light changed from green to orange, as shown in the Figure 10. When the
driver met the traffic signal-changing situation, it was confirmed that human drivers drove
without slowing down, while the proposed algorithm reduced the speed as it considered
traffic lights. This does not mean that CNN is safer, but that the proposed algorithm can
confirm that it operates by recognizing traffic lights. In other words, E2E autonomous
driving is not only possible to control the longitudinal/lateral direction that maintains the
distance and lane from the vehicle, but also to operate in compliance with other traffic laws,
such as traffic signal and speed limit.



Electronics 2021, 10, 2608 11 of 12

Electronics 2021, 10, x FOR PEER REVIEW 11 of 13 
 

 

traffic light changed from green to orange, as shown in the Figure 10. When the driver 
met the traffic signal-changing situation, it was confirmed that human drivers drove with-
out slowing down, while the proposed algorithm reduced the speed as it considered traf-
fic lights. This does not mean that CNN is safer, but that the proposed algorithm can con-
firm that it operates by recognizing traffic lights. In other words, E2E autonomous driving 
is not only possible to control the longitudinal/lateral direction that maintains the distance 
and lane from the vehicle, but also to operate in compliance with other traffic laws, such 
as traffic signal and speed limit. 

  
(a) (b) 

Figure 10. Traffic Signal Change situation over time: (a) near traffic signal, (b) in front of traffic signal. 

5. Conclusions 
In this paper, we proposed E2E autonomous driving in general urban environments 

using 2D LiDAR and camera sensors’ data. Our proposed method could drive autono-
mously using 2D LiDAR sensors to train in-depth information about the driving environ-
ment and a camera sensor to train image data to recognize the driving environment infor-
mation such as a traffic signal. Unlike previous studies, we implemented an algorithm of 
end-to-end self-driving that can maintain road traffic by acquiring actual road data. 
Namely, our proposed algorithm could (1) enable longitudinal/lateral self-driving with 
an E2E method and (2) deal with complex situations such as traffic lights in urban areas. 

For the quantitative performance evaluation of the model developed of the proposed 
method, we developed a gap rate that represented the difference between E2E self-driving 
data and the human driving data. The gap rate was 14.61 kph for the original data set and 
5.07 kph for the down-sampling data set. Furthermore, predictions were made after 1250 
ms, as well as the values currently needed, to confirm that predictions were possible for 
future situations. 

The data used in this paper included various driving environment situations, such as 
intersections, stopping traffic lights, and sharp curves, and we validated them using the 
activation map to check the behavior of E2E autonomous driving in these various envi-
ronments. In the traffic light and intersection sections, the largest activation was observed 
near the traffic lights in the input image under stop-and-go conditions. Nevertheless, due 
to deep learning’s black box nature, the proposed algorithm had a limitation that mathe-
matical analysis was not performed and was proven experimentally. 

In the future, more database construction and model configuration will be performed 
to enable E2E autonomous driving in a wider variety of environments, including more 
sensor information, such as around-view monitor cameras and map information, and will 
improve the self-driving model to ensure safe driving to a destination. Additionally, when 
we acquire data for E2E self-driving, the frame ratio of the camera/LiDAR will be appro-
priately adjusted according to the situation so that balanced data can be acquired and 
training can be constructed through it. 

Figure 10. Traffic Signal Change situation over time: (a) near traffic signal, (b) in front of traffic signal.

5. Conclusions

In this paper, we proposed E2E autonomous driving in general urban environments us-
ing 2D LiDAR and camera sensors’ data. Our proposed method could drive autonomously
using 2D LiDAR sensors to train in-depth information about the driving environment and
a camera sensor to train image data to recognize the driving environment information such
as a traffic signal. Unlike previous studies, we implemented an algorithm of end-to-end
self-driving that can maintain road traffic by acquiring actual road data. Namely, our
proposed algorithm could (1) enable longitudinal/lateral self-driving with an E2E method
and (2) deal with complex situations such as traffic lights in urban areas.

For the quantitative performance evaluation of the model developed of the proposed
method, we developed a gap rate that represented the difference between E2E self-driving
data and the human driving data. The gap rate was 14.61 kph for the original data set
and 5.07 kph for the down-sampling data set. Furthermore, predictions were made after
1250 ms, as well as the values currently needed, to confirm that predictions were possible
for future situations.

The data used in this paper included various driving environment situations, such as
intersections, stopping traffic lights, and sharp curves, and we validated them using the
activation map to check the behavior of E2E autonomous driving in these various envi-
ronments. In the traffic light and intersection sections, the largest activation was observed
near the traffic lights in the input image under stop-and-go conditions. Nevertheless,
due to deep learning’s black box nature, the proposed algorithm had a limitation that
mathematical analysis was not performed and was proven experimentally.

In the future, more database construction and model configuration will be performed
to enable E2E autonomous driving in a wider variety of environments, including more
sensor information, such as around-view monitor cameras and map information, and
will improve the self-driving model to ensure safe driving to a destination. Additionally,
when we acquire data for E2E self-driving, the frame ratio of the camera/LiDAR will be
appropriately adjusted according to the situation so that balanced data can be acquired
and training can be constructed through it.

Author Contributions: Conceptualization, M.P., H.K. and S.P.; data curation, M.P., H.K. and S.P.;
methodology, M.P., H.K. and S.P.; software, M.P. and H.K.; validation, M.P. and H.K.; formal analysis,
M.P., H.K. and S.P.; writing—original draft preparation, M.P., H.K. and S.P.; writing—review and
editing, S.P.; visualization, M.P., H.K. and S.P.; supervision, S.P.; project administration, S.P.; funding
acquisition, S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This works was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (NRF-
2017RIC1B5018101), Institute for Information & communications Technology Planning&Evaluation
(IITP) grant funded by the Korea government(MSIT) (No.2019-0-01343, Regional strategic industry
convergence security core talent training business) and Soonchunhyang university research fund.

Data Availability Statement: Data sharing is not applicable to this article.



Electronics 2021, 10, 2608 12 of 12

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cho, S.T.; Park, Y.J.; Jung, S. Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus. J. Korean

Inst. Intell. Syst. 2016, 26, 105–112.
2. Jo, H.J.; Kwak, S.W.; Yang, J.-M. Vehicle Localization Using Internal Sensors and Low-Cost GPS for Autonomous Driving. J.

Korean Inst. Intell. Syst. 2017, 27, 209–214.
3. Lee, Y.; Cho, E.; Choi, H.; Park, S. A Study on the Obstacle Detection and Path Planning of Automobile Using LiDAR. J. Korean

Inst. Intell. Syst. 2019, 29, 30–35. [CrossRef]
4. Chu, K.; Han, J.; Lee, M.; Kim, D.; Jo, K.; Oh, D.; Yoon, E.; Gwak, M.; Han, K.; Lee, D.; et al. Development of an Autonomous

Vehicle: A1. Trans. Korean Soc. Automot. Eng. 2011, 19, 146–154.
5. Geng, X.; Liang, H.; Yu, B.; Zhao, P.; He, L.; Huang, R. A Scenario-Adaptive Driving Behavior Prediction Approach to Urban

Autonomous Driving. Appl. Sci. 2017, 7, 426. [CrossRef]
6. Park, C.; Kee, S.-C. Implementation of Autonomous Driving System in the Intersection Area Equipped with Traffic Lights. Trans.

Korean Soc. Automot. Eng. 2019, 27, 379–387. [CrossRef]
7. Kumar, G.A.; Lee, J.H.; Hwang, J.; Park, J.; Youn, S.H.; Kwon, S. LiDAR and Camera Fusion Approach for Object Distance

Estimation in Self-Driving Vehicles. Symmetry 2020, 12, 324. [CrossRef]
8. Hoang, T.M.; Baek, N.R.; Cho, S.W.; Kim, K.W.; Park, K.R. Road Lane Detection Robust to Shadows Based on a Fuzzy System

Using a Visible Light Camera Sensor. Sensors 2017, 17, 2475. [CrossRef] [PubMed]
9. Yu, J.; Su, Y.; Liao, Y. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning. Front.

Neurorobot. 2020, 14, 63. [CrossRef] [PubMed]
10. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to End Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316.
11. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings

of the 25th International Conference on Neural Information Processing Systems, Toronto, ON, Canada, 3–8 December 2012;
pp. 1097–1105.

13. Chen, Y.; Wang, J.; Li, J.; Lu, C.; Luo, Z.; Xue, H.; Wang, C. Lidar-video driving dataset: Learning driving policies effectively. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 5870–5878.

14. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

15. Navarro, P.J.; Miller, L.; Rosique, F.; Fernández-Isla, C.; Gila-Navarro, A. End-to-End Deep Neural Network Architectures for
Speed and Steering Wheel Angle Prediction in Autonomous Driving. Electronics 2021, 10, 1266. [CrossRef]

16. Huch, S.; Ongel, A.; Betz, J.; Lienkamp, M. Multi-Task End-to-End Self-Driving Architecture for CAV Platoons. Sensors 2021,
21, 1039. [CrossRef] [PubMed]

17. Prashanth, V.; Soyeb, N.; Mihir, M.; Manu, M.; Pramod, K.S. End to End Learning based Self-Driving using JacintoNet. In
Proceedings of the IEEE 8th International Conference on Consumer Electronics, Berlin, Germany, 2–5 September 2018; pp. 1–4.

18. Yu, H.; Yang, S.; Gu, W.; Zhang, S. Baidu driving dataset and end-to-end reactive control model. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 341–345.

19. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. End-to-end deep reinforcement learning for lane keeping assist. arXiv 2016,
arXiv:1612.04340.

20. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

21. Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.; Muller, U. Explaining how a deep neural network
trained with end-to-end learning steers a car. arXiv 2017, arXiv:1704.07911.

22. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016; pp. 2818–2826.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://doi.org/10.5391/JKIIS.2019.29.1.30
http://doi.org/10.3390/app7040426
http://doi.org/10.7467/KSAE.2019.27.5.379
http://doi.org/10.3390/sym12020324
http://doi.org/10.3390/s17112475
http://www.ncbi.nlm.nih.gov/pubmed/29143764
http://doi.org/10.3389/fnbot.2020.00063
http://www.ncbi.nlm.nih.gov/pubmed/33132890
http://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://doi.org/10.3390/electronics10111266
http://doi.org/10.3390/s21041039
http://www.ncbi.nlm.nih.gov/pubmed/33546336

	Introduction 
	Materials and Methods 
	Preliminaries 
	Convolutional Neural Network 
	End-to-End Self-Driving 
	Explainable End-to-End Self-Driving System 

	Experiemental Setup 
	Data Set 
	Convolutional Neural Network for End-to-End Self-Driving 
	Data Preprocessing 
	Proposed Network Architecture 


	Results 
	Discussion 
	Conclusions 
	References

