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Abstract: This article presents CHiPReP, a C compiler for the HiPReP processor, which is a high-
performance Coarse-Grained Reconfigurable Array employing Floating-Point Units. CHiPReP is
an extension of the LLVM and CCF compiler frameworks. Its main contributions are (i) a Splitting
Algorithm for Data Dependence Graphs, which distributes the computations of a C loop to Address-
Generator Units and Processing Elements; (ii) a novel instruction clustering and scheduling heuristic;
and (iii) an integrated placement, pipeline balancing and routing optimization method based on
Simulated Annealing. The compiler was verified and analyzed using a cycle-accurate HiPReP
simulation model.

Keywords: coarse-grained reconfigurable array; high-performance computing; C compiler; LLVM;
graph clustering; scheduling; placement & routing

1. Introduction

For several decades, architecture and compiler research in the domain of High-
Performance Computing (HPC) has concentrated on parallel manycore and multicore
systems. However, multicore systems may soon hit scaling limits [1]. In light of these
limitations, reconfigurable computing systems are increasingly in the focus of researchers.

The computational parallelism and energy efficiency inherent in these reconfigurable
hardware architectures, including fine-grained Field-Programmable Gate Arrays (FPGAs) [2]
and Coarse-Grained Reconfigurable Arrays (CGRAs) [3], were thus far mostly exploited
for multimedia applications; however, these properties are beneficial for HPC as well. In
contrast to the widely used FPGA technology, CGRAs targeted by the compiler developed
in this work consist of

A spatial array of Processing Elements (PEs) which are tightly connected and perform
the computations of an algorithm in parallel.

However, processing floating-point data as required in most HPC applications is
problematic on almost all current FPGAs and CGRAs as they do not provide efficient
floating-point units (FPUs). CGRAs extended by FPUs as a High-Performance Reconfig-
urable Processor (HiPReP) [4,5] are a promising option for computation-intensive algo-
rithms, e.g., in the domains of scientific computing, artificial intelligence, or simulations.
HiPReP requires novel compilation approaches since its Processing Elements (PEs) are
more complex than those of typical CGRAs based on integer Arithmetic Logic units (ALUs).
Due to multi-cycle instructions in the PEs, the compiler cannot generate a static schedule.

This article presents CHiPReP, a C compiler for HiPReP. The main contributions
are (i) a Splitting Algorithm for Data Dependence Graphs (DDGs) that distributes the
computations of a C loop to Address-Generator Units (AGUs) and to the PE array; (ii) a
novel instruction clustering and scheduling heuristic; and (iii) an integrated placement,
pipeline balancing and routing optimization method based on Simulated Annealing. Both
the HiPReP hardware design and the accompanying compiler were developed in the
HiPReP project [6].
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The remainder of this article is organized as follows: First, the related work is summa-
rized. Next, an overview of the parameterizable HiPReP Architecture Template is presented
in Section 3. Section 4 then discusses the CHiPReP C Compiler in detail with a focus on the
novel contributions mentioned above. Next, Section 5 presents performance results obtained
with this compiler. Finally, our conclusions and future work are discussed in Section 6.

2. Related Work

In this section, we will review CGRA hardware architectures only briefly since they
are not in the main focus of this article. The focus of the review is on compiler technology
for CGRAs.

2.1. CGRA Hardware Architectures

The development of CGRA architectures has been described in several survey articles [7–9].
Early CGRAs, including the PACT XPP architecture [10], were statically reconfigurable, i.e.,
the connections between the PEs are fixed after configuration. It is possible to directly map
a dataflow graph (DFG) to the instructions and connections of the PEs and execute it in a
pipelined manner. Since the reconfiguration typically takes several thousand cycles, every
configuration should execute during a long phase of the algorithm.

Multi-context CGRAs are dynamically reconfigurable. Since every PE stores several
instructions (or contexts), it is possible to change the contexts in one cycle. This results in a
higher PE utilization. The most popular multi-context CGRA is the ADRES architecture
template [11], which combines a Very-Long Instruction Word (VLIW) processor with a
CGRA. Each PE consists of a functional unit capable of performing integer operations and
of a local register file. The inputs of the instructions are taken from the neigboring PEs or
from the register file. Hence, values can be fed back to the same PE. In ADRES, the PEs are
connected in a two-dimensional torus topology.

The HiPReP architecture used in this work is described in Section 3 below. Apart from
the support of floating-point operations, it differs significantly from ADRES-like architec-
tures in the following aspect: While ADRES uses a fixed schedule where all PEs process a
program in lock-step, HiPReP uses a dynamic schedule, i.e., every PE executes its contexts
independently. An instruction is executed when the operands are available. For this,
neighboring PEs and the memory interface use a handshake protocol for synchronization.

2.2. CGRA Compiler Technology

As the hardware architecture, the programming of CGRAs has changed over time as
elaborated in surveys [12,13]. The configurations of early, statically reconfigurable CGRAs
were often structurally assembled from the operators available on the hardware. The pro-
cess resembled hardware design more than software design. An extension of this approach
is the usage of data stream and single assignment languages, such as Streams-C [14]. Here,
the description is in the form of a parallel DFG. Its operators are then automatically mapped
to the CGRA’s PEs by a Place and Route (P&R) algorithm. In order to operate pipelines
with the highest throughput, they have to be balanced so that there are the same number
of register stages on all paths.

2.2.1. Electronic Design Automation Algorithms

Some algorithms known from Electronic Design Automation for FPGAs are also used
for CGRAs: For placing computations on PEs, Simulated Annealing [15,16] is often used.
Popular congestion-based routing algorithms are Pathfinder [17] and VPR [18], which con-
tain maze routers [19] based on Dijkstra’s algorithm [20] (Section 25.2). Finally, for pipeline
balancing, scheduling algorithms first used in high-level synthesis [21] are employed.

2.2.2. Compilers for Statically Reconfigurable CGRAs

When programming CGRAs in sequential, imperative programming languages, such
as C, in most cases inner program loops are mapped to the CGRA. They have to be
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parallelized or vectorized first [22,23]. Then, DFGs are generated for the loops. In order to
use large loop bodies without jumps, conditional statements (if–then–else) are replaced
by predicated statements or multiplexers as far as possible (a transformation called if
conversion). It is then possible to execute the loop iterations in a pipelined manner.
Next, the DFGs are automatically mapped to the CGRA. One example of such a method
is the XPP-VC-Compiler [24]. Note that loop-carried dependences are problematic for
these approaches since they require a sequential execution of the operations and lead to
recurrences in the DFG.

2.2.3. Compilers for Dynamically Reconfigurable CGRAs

As mentioned in Section 2.1, multi-context CGRAs achieve a higher PE utilization by
context-switches in every clock cycle. For this goal, a variant of Software Pipelining [25],
called Modulo-Scheduling [26], is often used as in compilers for Very-Long Instruction
Word (VLIW) processors. It attempts to find a schedule with a minimal Initiation Interval
(I I), i.e., it attempts to initiate consecutive loop iterations with as few cycles as possible
between them. The schedule overlaps consecutive loop iterations using the available
functional units (FUs) of the VLIW processor in parallel.

This method was first adapted to CGRAs for the DRESC-Compiler [27], which was
developed together with the ADRES processor. As opposed to VLIW processors with
linearly arranged FUs and (for non-clustered VLIWs) registers accessible from all FUs, code
generation for a two-dimensional multi-context CGRA with mainly local register files is
much more complex.

DRESC constructs a modulo routing resource graph (MRRG) which combines the
modulo reservation table of Software Pipelining [25] with a routing resource graph as it is
used in FPGA P&R algorithms. The scheduling, placement and routing of the loop body’s
instructions is simultaneously performed on this three-dimensional area/time graph. In
DRESC, this optimization problem is solved by Simulated Annealing. Many variants of
these modulo-scheduling approaches have been suggested and are discussed in the surveys
mentioned above.

Another approach was suggested in [28]. This method called Function Folding first
constructs a DFG of the source program’s loop body. Next, neighboring nodes of the graph,
which are supposed to be executed sequentially on a PE, are clustered. Finally, an internal
schedule is determined for each cluster, and the clusters are placed, routed and balanced.
This idea is flexible and also suitable for multi-cycle operations in floating-point PEs and
was, therefore, extended in the CHiPReP compiler.

2.2.4. CGRA Compiler Frameworks

Several CGRA compiler frameworks have been proposed to simplify CGRA compiler
development, e.g., CGRA-ME [29], SPR [30] and CCF [31]. We decided to use CCF as the
base of the CHiPReP compiler. However, the mentioned frameworks are quite specialized
for CGRAs following the ADRES architecture style. Therefore, we could not use the entire
CCF framework but only the frontend, cf. Section 4.

3. HiPReP Hardware Architecture Template Overview

HiPReP is a coprocessor implemented in the hardware construction language Chisel [32]
(www.chisel-lang.org, accessed on 21 October 2021) that allows fast, cycle-accurate simulation
as well as FPGA or ASIC synthesis via generated Verilog code.

3.1. Array Architecture

A block diagram of a HiPReP instance is given in Figure 1, cf. [4]. The core of the
CGRA consists of a two-dimensional array of PEs. The PEs directly communicate with
their eight nearest neighbors over 32-bit wide bidirectional connections (represented as
undirected edges in the figure). HiPReP uses streamed load-store (cf. [33,34]), i.e., memory is
accessed using Address Generator Units (AGUs). In Figure 1, they are combined with the

www.chisel-lang.org


Electronics 2021, 10, 2590 4 of 28

HiPReP Arbiter in one block. The AGUs enable address access patterns in nested loops by
setting count, stride, span and skip parameters and, therefore, save PE resources that would
otherwise be required to generate the address patterns. In a 4× 4 CGRA, eight Load-AGUs
are connected to four horizontal and four vertical long-lines, which send values to the PEs
in a row or column, respectively. The additional AGU parameter mask indicates which PEs
connected to the AGU’s long-line receive the values.

Figure 1. HiPReP CGRA instance with 4× 4 PE array.

By setting one or more bits in this mask, values from memory can be sent to individual
PEs or broadcast to a PE subset or to all PEs on a long-line. Using a mask with several
bits set synchronizes the addressed PEs, i.e., all PEs must consume the values (by reading
input registers I0 or I1 as explained below) before the next value is broadcast. The PEs on
the eastern side of the array are connected to Store-AGUs (four Store AGUs in the CGRA
of Figure 1).

The AGU configuration store stores up to 10 parameter sets, which are executed one after
another. This allows to change access patterns in different phases of an algorithm. e.g., it is
possible to load scalar live-in variables from main memory or save scalar live-out variables
to main memory by using AGU configurations with parameter count = 1, which only read
or write one word. Note that all internal and external connections are synchronized by
handshake signals. Hence, the operations stall automatically and dynamically if a slow
computation or slow memory access occurs.

In addition to the AGUs, standard load-store units could easily be added to some PEs,
thus, allowing addressed load-store, if demanded by algorithms.

The HiPReP Arbiter combines and arbitrates the memory accesses. By assigning one
or several AGU interfaces to a memory channel, HiPReP can be adjusted very flexibly to
different memory systems. We currently extend the Chisel model with a tightly-coupled
host processor [35] where each memory channel is connected to its own L1 data cache
(separate for reading and writing) integrated in the host processor’s memory hierarchy.
In the subsequent examples, the fastest memory connection is assumed, i.e., each AGU
is connected to its own memory channel and L1 cache. Note that, since the HiPReP
kernel does not imply a fixed memory hierarchy, a loosely-coupled system where the
memory channels are connected to local multi-bank SRAM (explicitly managed cache) is
also feasible.
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3.2. Processing Element

The HiPReP PE is a simple 32-bit processor kernel and, thus, differs considerably
from usual CGRA-PEs. All operations process 32-bit wide signed integer or floating-point
data. In addition to an integer ALU, each PE contains an integer multiplier, a barrel shifter
(supporting logic shift-left and arithmetic shift-right) and converters between integer and
floating-point numbers. For computation-intensive numerical applications, there is also a
single-precision, pipelined Floating-Point Unit (FPU) with a Fused-Multiply Add (FMA)
operator, which is important for efficient execution of the frequent multiply-accumulate
and multiply-add instructions. The functional units of the PEs are also parameterized so
that heterogeneous arrays can be synthesized and simulated as well as homogenous ones.
Dividers and more complex operators are not implemented in the current HiPReP design,
but these operations can be implemented by assembler macros.

Each PE has its own context memory containing a PE program with, at most, 32 instruc-
tions. These RISC-like three-address instructions are independently executed in a processor
pipeline with at least three stages (or more for floating-point operations). The instructions
are also 32-bit wide and support 6-bit unsigned immediate values. Increases and decreases
can be implemented using the ADDI_INT and SUBI_INT immediate instructions.

Each PE executes its context independently, i.e., there is no global controller synchro-
nizing the PEs. The operands are read from an internal register file (with 31 registers R1
to R31 and a R0 pseudo-register providing the constant zero) or from the output registers
of the neighboring PEs (referred to as input registers of the receiving PE), and the results
are written to an internal register or an output register. For efficient operation, register
forwarding is supported.

Hence, the input and output registers implement the inter-PE communication and
synchronization on HiPReP. Every value can only be read once from an input register. If
it is required several times, it must first be moved to a local register. The input registers
I0 and I1 address the horizontal and vertical long-lines, respectively, and synchronize
with the Load-AGUs. Similarly, for the eastern PEs, the output register O0 addresses the
output to the Store-AGU. The remaining input and output registers are numbered I2–I9
and O1–O8, respectively, and refer to the neighbor PEs starting with the eastern neighbor
in clockwise order.

The synchronization of operations with varying latencies and input/output registers
requires a new structural hazard detector comparable to the scoreboards used in conven-
tional RISC processors, cf. [5]. The PE also supports comparisons, an unconditional jump
(JUMP) and conditional branches (BEZ and BNEZ), which compare a register to zero. The
unconditional jump never incurs a delay, and the conditional branches only incur a delay
if the jump is not taken. Hence, jumping back to the start of a loop body does not incur a
runtime penalty.

The special instruction SET_MAX_PCx, y implements a zero-delay infinite loop with
a loop body ranging from instruction x to y. This accommodates the frequent situation
that some values must be loaded once in a prologue before an infinite loop starts. If this
instruction is used, the termination of the HiPReP execution must be detected by the Store-
AGUs, i.e., when all generated results have been stored to memory, the execution terminates.
Otherwise, the PEs terminate individually when the instruction END is reached.

Note that there are no explicit routing resources (apart from the long-lines connecting
to the AGUs). Hence, routing has to be realized by MOVE instructions from an input to an
output register in a PE’s context memory as part of the executing PE program.

4. CHiPReP Design and Implementation

The Compiler for HiPReP (CHiPReP) is a C Compiler, which maps inner loops annotated
with a pragma to HiPReP. It is based on the CCF tool [31] (https://github.com/MPSLab-
ASU/ccf, accessed on 21 October 2021), which, in turn, is based on the LLVM compiler
framework [36]. CCF is a co-design compiler that generates combined excutables contain-
ing host processor code and CGRA code. The host processor code is transformed such that

https://github.com/MPSLab-ASU/ccf
https://github.com/MPSLab-ASU/ccf
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scalar live-in variables processed by the CGRA are stored in global variables by the host
processor, and live-out variables are stored by the CGRA in global variables. CCF does not
support streamed load-store.

In contrast to CCF, CHiPReP currently only generates CGRA (HiPReP) executables
since we do not yet have a co-simulator. We plan to utilize CCF’s co-design capabilities to
simulate an entire system in future work. Nevertheless, live-in and live-out variables and
streamed load/store of array data is supported.

Figure 2 shows the overall compilation flow. The top part contains the compiler passes
directly integrated in LLVM. The remaining three passes (CMM, Assembler and AGUG) are
implemented independently of LLVM and work on graph representations of the loops
mapped to HiPReP. The blue and yellow blocks were implemented in this project, and the
turquoise block DDGGen was adjusted from CCF.

The next sections describe these passes in detail. Note that some of the presented
algorithms are simplified for the sake of clarity. We use the C progam shown in Listing 1 as
running example. It is a simple box filter (a two-dimensional convolution using a 2× 2
window [37]) on integer images. A box filter computes a target image pixel by taking the
average of the source pixel values in the filter window, in this case the pixels src[v][h],
src[v][h+1], src[v+1][h] and src[v+1][h+1]. In this example, the innermost loop (after
#pragma CGRA) is executed on HiPReP.

Note that CHiPReP does not implement advanced loop optimzations as loop unrolling,
loop tiling, loop interchange etc. as discussed in earlier work [22,23]. These optimizations
can be included in the LLVM optimizer OPT, e.g., [38] and willl be executed before the
CHiPReP main passes are executed.

Listing 1. Example 1: A simple 2 × 2 boxfilter program for integer images.

#define VERLEN 20 // image height
#define HORLEN 20 // image width

int src[VERLEN][HORLEN] = { /* source image initialization */ };
int targ[VERLEN][HORLEN]; // target image

int main() {
// simple 2x2 box filter
for (int v=0; v<=VERLEN-2; v++) {
#pragma CGRA // pragma for CGRA mapping
for (int h=0; h<=HORLEN-2; h++) {
targ[v][h] = (src[v][h] + src[v][h+1] +
src[v+1][h] + src[v+1][h+1]) >> 2;
}
}
// display/write target image
}

4.1. LLVM Passes

The first two LLVM passes (green boxes CLANG and OPT) in the top block of Figure 2
are standard LLVM passes, while the pass DDGGen is an extended version based on a
CCF pass. The auxiliary pass RGVs was newly developed for use with the standalone
HiPReP simulator.

4.1.1. LLVM Frontend: CLANG

First, the input program is parsed by the LLVM frontend CLANG. It contains a
standard-compliant C parser and semantic analyzer that generate the program’s LLVM
Intermediate Representation (IR), which is stored as a readable text file in the .ll format.
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Figure 2. CHiPReP Compilation Flow.

4.1.2. LLVM Optimizer: OPT

Next, the program is processed by the LLVM optimizer OPT. OPT implements a
large set of machine-independent standard optimizations comparable to GCC (gcc.gnu.org,
accessed on 21 October 2021). In CHiPReP, OPT parameters to perform several loop
normalizations and transformations are used, e.g., array accesses are optimized such that
values reused in the next inner loop iteration do not have to be read from memory again.
Effectively, the inner loop of the boxfilter program (Listing 1) is replaced by the loop in
Listing 2. (For clarity, we do not show the internal representation but the corresponding C

gcc.gnu.org
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source code.) Note that the transformed loop only requires two memory read accesses per
iteration, one for each accessed source image row. However, the newly generated variables
src_0_0 and src_1_0 have to be set to the first pixels of the two rows before the inner loop
and set to the newly read values within the loop.

Listing 2. Example 1: Boxfilter’s inner loop after input–reuse transformation.
...
int src_0_0 = src[v][0];
int src_1_0 = src[v+1][0];
#pragma CGRA // pragma for CGRA mapping
for (int h=0; h<=HORLEN-2; h++) {
int src_0_1 = src[v][h+1];
int src_1_1 = src[v+1][h+1];
targ[v][h] = (src_0_0 + src_0_1 +
src_1_0 + src_1_1) >> 2;
src_0_0 = src0_1;
src_1_0 = src1_1;
}
...

4.1.3. Data Dependence Graph Generation: DDGGen

The next pass, DDGGen (Data Dependence Graph Generation), actually is an additional
transformation, which is dynamically loaded to a second call of the LLVM OPT pass. It
is based on CCF’s DDGGen pass and was extended to handle accesses to one- and two-
dimensional arrays using HiPReP’s AGUs. DDGGen scans the source code for #pragma
CGRA annotations. For all innermost loops preceded by this pragma, the live-in and live-out
variables are discovered and directed Data Dependence Graphs (DDGs) are generated in
separate directories for every loop. If the loop cannot be mapped to HiPReP, a warning for
the user is printed.

This is the case if the loop body contains function calls, pointer accesses or non-linear
array accesses. The graphs are stored in text files containing node and edge lists independent
of the LLVM IR. Additionally, the graphs are stored as .dot files, which can be displayed
using the GraphViz tool [39] (www.graphviz.org, accessed on 21 October 2021) for debugging
and illustration. Figure 3 shows the DDG generated from the annotated loop in Listing 2.
The nodes represent the loop’s instructions and the edges represent data dependences
between the nodes. The distinction between the MMP part and the EXP part of the graph
is explained in the next paragraph below.

The graph contains the following components [31]:

• Arithmetic and logic instruction nodes are represented by black ovals filled with the
opcode and node numbers, and constant inputs are represented by grey ovals named
Co.... The edges between these nodes represent direct dataflow from source to target.

• The same holds for the move nodes (black rectangles), which only copy data. They
are not functionally required, but are inserted to enable correct pipeline balancing as
is explained in Section 4.2.4.

• The red phi nodes represent the phi functions inserted by LLVM because it uses
static single assignment (SSA) form [40]. The red edges entering phi nodes represent
loop-carried dependences, with the edge weight equal to the dependence distance.

• Nodes named by array names (src and targ in the example) represent the arrays’
base addresses.

• Source and sink nodes named gV... represent global variables used for live-in and
live-out variables as explained above. The yellow input or output edges are labeled
with the alignment of the memory access (always 4 = 32 bit for HiPReP).

• The blue ovals represent load and store accesses as discussed in the next paragraph.
• Conditional assignments are mapped to three-input select instructions (not occurring

in Example 1), which act as multiplexers, see Section 2.2.2. A boolean control input

www.graphviz.org
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decides which of two data inputs are forwarded to the output. Conditional blocks
that cannot be mapped to select nodes cannot be handled by DDDGen.
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Figure 3. Example 1: Boxfilter’s Data Dependence Graph (as generated by DDDGen), with separated
(a) MMP and (b) EXP parts.

DDG Splitting Algorithm As the CGRA targeted by CCF uses addressed load-store,
the entire loop body (i.e., the entire DDG) is mapped to that CGRA’s PEs. In contrast
to this, HiPReP uses streamed load-store. Therefore, the DDG is split in two parts: the
EXecution Part EXP mapped to the PE array and the Memory Movement Part MMP mapped
to the AGUs. Two additional graphs are generated for each loop, EXP and MMP. The MMP
graph contains load and store operations including the counters, incrementers and offsets
required for the AGU instructions.

For the boxfilter example, the MMP graph contains the upper part of the graph as
well as the load and store nodes, and the EXP part contains the nodes between ld_data or
live-in nodes and live-out nodes or (excluding) st_data nodes in the lower part of Figure 3.
The dotted lines connecting ld_add with ld_data or st_add with st_data nodes represent
memory loads and stores, respectively. The edge labels (always 4 for HiPReP) indicate
that four byte values are loaded or stored. The ld_add and st_add nodes in the MMP graph
are connected to the address generation expressions, and the corresponding ld_data and
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st_data nodes generate or consume the memory data being accessed. The special nodes
named mul-idxprom... only occur in the MMP part and are derived from LLVM array
access operators.

DDGGen uses the algorithm described in pseudo-code in Figure 4 to annotate the
DDG’s nodes as MMP nodes or EXP nodes. This information is then used to generate the
graphs for the MMP and the EXP part.

The algorithm annotates DDG nodes as belonging to the EXP or MMP part by re-
cursively traversing the DDG starting from the outputs up to the ld_data nodes (for the
EXP part) or starting from the ld_add and st_add nodes (for the MMP part). Note that
some nodes can be annotated as belonging to both the EXP and the MMP par—e.g., this
is the case if the loop variable (represented by a phi node) is used both for array address
generation and for computing values in the EXP part.

4.1.4. LLVM Pass RGVs

The auxiliary LLVM transformation RGVs (Read Global Variables) is only required as
long as there is no co-simulator available for HiPReP. It generates a text file datav.dat,
which contains the names, sizes and initialization values of the global variables. These
values are included in the memory image used by the HiPReP standalone simulator (see
Section 4.4.3) and allows limited loop testing without co-simulating the host processor.

4.2. CHiPReP Module Mapper: CMM

The CHiPReP Module Mapper (CMM) allocates the EXP-DDG nodes to PEs and places
them on the PE array. In the following, we refer to the EXP-DDG as the loop dataflow graph
(DFG), as opposed to the MMP-DDG, which handles the memory accesses.

As a first step, some combinations of CCF instructions are replaced by complex
HiPReP-specific instructions, see Section 4.2.1. Then, the actual mapping to PEs takes place.
In simple cases, where a small DFG is mapped to a large CGRA, an approach as for a
single-context CGRA [10] could be used: Each operation is mapped to its own PE, which
executes the DFG as a pipeline. Since HiPReP PEs execute PE programs, in this case, every
PE repeatedly executes the same instruction in an infinite loop.

However, in most cases, a more complex approach is required as several instructions
need to be combined in one PE for space reasons or to increase PE utilization. Since the
overall DFG is excuted in a pipelined fashion in this case as well, these instruction combi-
nations have to be scheduled according to their internal and external data dependencies
and are also repeated for each loop iteration, see Section 4.3.1. Hence, all PEs execute short
loops, which together execute the C program’s annotated loop. The execution of the PE
contexts are scheduled dynamically by the AGUs and the data read from and written to
neighboring PEs.

An instruction clustering method that combines the instructions mapped to one PE
was developed for the DFG, see Section 4.2.2. It generates small, independent programs for
each PE, which tightly interact with their neighbor PEs. Furthermore, the AGU instructions
must be generated and placed accordingly to interact with the PEs, see Section 4.4.2.

Before it maps a loop, CMM reads the following parameters of the given HiPReP instance:

• Number of PEs in X- and Y-direction (i.e., the array dimensions dimX and dimY)
• AGU availability: Apart from the default setting (all AGUs available as described in

Section 3.1), instances with a restricted number of AGUs are supported. It is possible
to restrict the usage to the Load-AGUs connected to either the horizontal or the vertical
long-lines, or to use only every other AGU (for Load-AGUs and/or Store-AGUs).

• AGU usage preference: Selects whether ld_data nodes with several connected outputs
(as in Example 1) (a) should—if possible—be connected to one Load-AGU or (b) if
they should be distributed to several Load-AGUs. Option (a) is more effective for
explicitly managed local memory (cf. Section 3.1) because explicitly copying input
data to several local memories is slow. On the other hand, option (b) is feasible if the
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AGUs are connected to L1 caches since a fast L1–L2 cache interface is assumed, which
makes loading several copies to several L1 caches relatively fast.
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Notation:
Graph DDG = (N, E) with n ∈ N (set of nodes) and e = (n1, n2) ∈ E (set of edges)
pred(n): Set of predecessors of n (i.e., its input nodes)
succ(n): Set of successors of n (i.e., its output nodes)
live_in and live_out: Sets of scalar live-in and live-out variables, respectively

Attributes of every node n:
nopcode: opcode of n
nvisited: flag used to avoid infinite recursion in recursive graph traversals;

initialized to f alse

Split_DFG(DDG):
for all n ∈ DDG do

if nopcode ∈ {ld_data, st_add} do
Rec_Annotate_MEM(n)

else if nopcode = st_data ∨ n ∈ live_out do
Rec_Annotate_EXP(n)

Rec_Annotate_MEM(n):
nvisited := true
annotate n as MEM
for all p ∈ pred(n) do

if ¬pvisited
Rec_Annotate_MEM(p)

nvisited := f alse

Rec_Annotate_EXP(n):
nvisited := true
if nopcode = st_data

annotate n as MEM
else

annotate n as EXP
for all p ∈ pred(n) do

if popcode 6= ld_data ∧ ¬pvisited
Rec_Annotate_EXP(p)

nvisited := f alse

Figure 4. DDG Splitting Algorithm Split_DFG.

CMM also performs a combined optimization for cluster placement, pipeline balancing
and routing as detailed in Section 4.2.5. Note that all these tasks—including clustering
itself—are NP-hard combinatorial optimization problems, which are computationally
intractable [20] [Chapter 36]. To make things more difficult, the partial problems depend
on each other. Therefore, heuristic algorithms to find feasible solutions are devised in the
following sections.

4.2.1. HiPReP-Specific Instruction Replacement

In this preprocessing step, a simple pattern matcher algorithm traverses the DFG and
replaces appropriate instruction combinations by the complex floating-point instructions
FMA (fused multiply-add), FMS (fused multiply-subtract) or MACC (multiply-accumulate).
Note that the resulting, modified DFG contains three-input instructions that require special
handling in the register allocation phase, cf. Section 4.3.1.

4.2.2. Instruction Clustering

Mapping the loop instructions (i.e., DFG nodes) to PEs has a direct influence on the
schedule of the entire loop because the instructions in one PE are executed sequentially. As
for the modulo scheduling methods often used for other multi-context CGRAs, the main
goal of CMM is to minimize the Initialization Interval (II) of the loop body, i.e., the rate at
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CMM also performs a combined optimization for cluster placement, pipeline balancing
and routing as detailed in Section 4.2.5. Note that all these tasks—including clustering
itself—are NP-hard combinatorial optimization problems, which are computationally
intractable [20] [Chapter 36]. To make things more difficult, the partial problems depend
on each other. Therefore, heuristic algorithms to find feasible solutions are devised in the
following sections.

4.2.1. HiPReP-Specific Instruction Replacement

In this preprocessing step, a simple pattern matcher algorithm traverses the DFG and
replaces appropriate instruction combinations by the complex floating-point instructions
FMA (fused multiply-add), FMS (fused multiply-subtract) or MACC (multiply-accumulate).
Note that the resulting, modified DFG contains three-input instructions that require special
handling in the register allocation phase, cf. Section 4.3.1.

4.2.2. Instruction Clustering

Mapping the loop instructions (i.e., DFG nodes) to PEs has a direct influence on the
schedule of the entire loop because the instructions in one PE are executed sequentially. As
for the modulo scheduling methods often used for other multi-context CGRAs, the main
goal of CMM is to minimize the Initialization Interval (II) of the loop body, i.e., the rate at
which new loop iterations can be initialized. This maximizes the loop’s throughput. In
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an optimally pipelined and balanced DFG (whether implemented on an ASIC, FPGA or
CGRA) where all operations execute with I I = 1, every cycle a new iteration is initialized
(and finalized after the pipeline is filled), i.e., the overall I Iloop = 1 as well.

However, there are several reasons which restrict the achievable Minimum Initiation
Interval (MII) [26]:

• Recurrences: Feedback cycles in the DFG (realized by phi nodes) prohibit pipelining.
The length of the longest feedbeack cycle is the recurrence-constrained MII (RecMII).

• Resource conflicts: If several nodes need to share a resource (e.g., a load/store-unit or
AGU or a computational resource, i.e., an operator in a PE), the maximal number of
nodes sharing a resource is the resource-constrained MII (ResMII).

The overall achievable MII is therefore defined as MII = max(ResMII, RecMII) [26].
Furthermore, an unbalanced pipeline can lead to "bubbles" in the execution reducing the I I
or even to deadlocks, cf. Section 4.2.4.

To achieve a minimal I Iloop value close to MII, we devised a clustering heuristic for the
DFG. A clustering partitions the node set of a DFG into disjoint clusters. The clusters (which
will later be mapped to PEs) are defined such that the PE utilization is evenly distributed
and in turn the maximum I I of all PEs (which determines the overall I Iloop) is minimized.
However, the routing connections cannot be considered in this phase because the clusters
are not yet placed.

Nevertheless, routing requires MOVE nodes, which increase a PE’s I I. Therefore, the
heuristic also attempts to minimize the number of connections to other PEs. The method
has some similarities with the Function Folding approach [28] developed for the PACT XPP
CGRA but attempts to find the smallest I I for each loop, while, in [28], a fixed I I is given
by the hardware architecture.

In the first processing step, DFG nodes forming a Strongly-Connected Component (SCC)
are detected using Tarjan’s algorithm [20] (Section 23.5) and are combined in one cluster
because distributing nodes in a cycle on several PEs would increase RecMII since moving
values between PEs adds additional delays. Only if the number of instructions available in
the PE’s context memory is exceeded, are several PEs used.

Then, a new cluster is allocated for every remaining node, resulting in an initial
clustering C, which may be infeasible because the number of clusters is larger than the
number Pn = dimX · dimY of PEs in the given HiPReP instance.

Clustering Heuristic Figure 5 describes the clustering heurisic. The algorithm as-
sumes a homogenous PE array, i.e., all instructions can be mapped to all PEs. For inho-
mogenous CGRAs, this algorithm and the subsequent placement method could be adjusted
to the restricted mapping options.

The heuristic uses the initial clustering C and the number of available PEs Pn as inputs.
Note that C inherits the predecessor relation from the underlying DFG (see Notation in the
figure). As the DFG cycles are mapped to single clusters, the resulting cluster graph C is
a directed acyclic graph (DAG). If this is not the case because a cycle had to be split over
several clusters, these clusters have to be treated as one larger cluster in this algorithm. The
result of the algorithm is an optimized clustering (i.e., cluster graph) with minimal I I and
|C| ≤ Pn, i.e., with enough PEs for all clusters.

First, the algorithm determines I Imin, the I I resulting from an even distribution of all
instructions on the Pn available PEs. Then, I Ic is computed for all clusters c (normally 1).
Only for SCCs, I Imin is increased accordingly. The outer repeat-loop attempts to find
a clustering with I Imin. This loop is repeated with increasing values for I Imin until a
clustering is found.
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Notation:
Dataflow Graph DFG = (N, E) (cf. DDG in Figure 4)
clust(n) = c if n ∈ c, ∅ otherwise (cluster to which node n belongs)
pred(c) = {clust(v) : v /∈ c ∧ ∃v′ ∈ c : (v, v′) ∈ E} (predecessors of cluster c)
f anin(c) and f anout(c): number of predecessor or successor DFG nodes of a

cluster, respectively
c1 + c2: the merging result of clusters c1 and c2
(c1 + c2)I I : initiation interval for result of merging c1 and c2

Attributes of every cluster c:
cvisited: Visited flag of cluster c
cI I : Initiation Interval of cluster c

Order relation c′ ≺ c c′′ (sorts c′ and c′′ by I I; if equal, f anin of combination
with c is compared):

c′ ≺ c c′′ ⇔ c′ I I < c′′ I I ∨ (c′ I I = c′′ I I ∧ f anin(c′ + c) < f anin(c′′ + c))

Cluster(C, Pn):
I Imin := d|N|/Pne // number of instructions per PE if ideally distributed
repeat

C′ := C // copy original clustering to C′

if I Imin > number of instructions allowed per PE
return FAIL // algorithm failed, no clustering found

for all c ∈ C′ do
cvisited := f alse
compute cI I // length of longest sequence of instructions in c

// including move instructions if a node has f anout > 1
if cI I > I Imin // consider large SCC clusters

I Imin := cI I

generate list LC′ of all c ∈ C′, sorted by growing f anout
repeat

set c to first cluster in LC′ where ∀c′ ∈ pred(c) : c′visited is set
cvisited := true
remove c from LC′

generate a predecessor list LP of all c′ ∈ pred(c), sorted by ≺ c
while cI I ≤ I Imin ∧ LP 6= {} do

c′ = pop(LP) // remove first element from predecessor list
if Merge_cluster(c, c′, I Imin, C′)

recompute cI I
until LC′ is empty
I Imin := I Imin + 1

until |C′| ≤ Pn // clusters fit on given CGRA size
return C′

Merge_cluster(c1, c2, I Imin, C):
if ((c1 + c2)I I > I Imin∨
number of nodes, load or store access in (c1 + c2) larger than available in a PE
return f alse

else
add nodes of c2 to c1
remove c2 from C
return true

Figure 5. Clustering Heuristic Cluster.

As the number of inter-PE connections must be as small as possible, only clusters with
connected nodes (i.e., with data dependencies) are merged. Therefore, clusters are merged
with their predecessors. The inner repeat loop traverses C topologically in a top-down
direction and first processes clusters with small fanout (in the order of the list LC′ ). Small
fanout values are preferred because they lead to a smaller fanout of the merged cluster if
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As the number of inter-PE connections must be as small as possible, only clusters with
connected nodes (i.e., with data dependencies) are merged. Therefore, clusters are merged
with their predecessors. The inner repeat loop traverses C topologically in a top-down
direction and first processes clusters with small fanout (in the order of the list LC′ ). Small
fanout values are preferred because they lead to a smaller fanout of the merged cluster if
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merged with a successor, e.g., if a cluster has only one successor and is merged with this
successor, the resulting node does not have a larger fanout than the successor alone.

For the selected node c, a list of predecessors LP is generated, and as many predeces-
sors as possible are merged with c. Clusters are not merged if the resulting I Ic would be
larger than I Imin or if c would require more connections to Load-AGUs or Store-AGUs
than available.

Leaf nodes (only connected to memory-loads) are not changed because they have no
predecessors in C (i.e., in the DFG). However, their successors are combined with these
clusters to form larger clusters. Since DFGs tend to have more inputs than outputs (because
expressions translate to trees in the DFG), the number of inter-PE connections can be
reduced by a top-down clustering. The order relation ≺ c is used to add predecessors
in clusters with smaller I I first to the predecessor list LP because the chance of merging
them successfully with c is larger. For clusters with the same I I value, the one with fewer
predecessors (i.e., fanin after merging with c) is added first. This strategy reduces the
number of inter-PE connections further.

Figure 6 shows the clustering results for Example 1 for two different HiPReP instances:
(a) For the larger CGRA with 16 PEs, no nodes are clustered. All the clusters C1 to C8
contain one node (the node or instruction numbers are reported in parenthesis), and I I = 1
can be achieved for the entire CGRA. (b) For the smaller CGRA with four PEs, up to
three instructions are clustered, resulting in the clusters C1, C3 and C4. Though the move
nodes 41 and 42 can be removed in this case, only I Iloop = 3 can be achieved as is discussed
in Section 4.3.2. An even distribution of the eight clusters on four PEs would require
clustering two unconnected instructions. This solution is not considered by our heurisic as
it would likely lead to routing problems.

The ld_data nodes are not part of the cluster graphs but were added for clarity. The
pipeline balancing levels of the clusters are given; see Section 4.2.4 below.

C1 level 0
(13)

C2 level 1
(12)

C3 level 2 
(8)

C8 level 2
(42)

C4 level 3
(7)

C6 level 3
(0)

C5 level 5
(1)

C7 level 4
(41)

ld_data-6

ld_data-11

(a)

C1 level 0
(13-12-42)

C3 level 1
(8-0)

C4 level 2
(7-1-41)

ld_data-6

ld_data-11

(b)

Figure 6. Example 1: Clustergraphs (as generated by CMM) for (a) 4 × 4 PE array and (b) 2 × 2
PE array.

4.2.3. Ad-Hoc Cluster Placement

Next, CMM generates an ad-hoc placement P of the clusters in two steps that focuses
on AGU connections and does not optimize routing connections:

1. Load/store Placement: First, clusters connected to two ld_data nodes are placed such that
the values can be loaded from the two Load-AGUs connected to the PE’s horizontal
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and vertical long-lines. The Load-AGUs are reserved for these ld_data instructions. If
a ld_data node is already mapped to a Load-AGU, it is attempted to reuse this AGU
for the next cluster connected to this ld_data in order to avoid duplicating values in
local memories or L1 caches. Next, clusters connected to one ld_data node are handled
similarly. If a cluster is also connected to a st_data node, it is preferably mapped to the
eastern column (to avoid routing connections to the Store-AGU), and the Store-AGU
is reserved. The same happens to all other clusters connected to a st_data node.

2. Internal Node Placement: Finally, the remaining nodes are placed in top-down fashion
below their predecessors if possible, or on other available PEs.

The ad-hoc placement result P of the clustergraph from Figure 6a to a 4 × 4 CGRA is
displayed in Figure 7a. The black arrows represent the long-line connections to the Load-AGU
and the connection to the Store-AGU. It is obvious that the inter-PE connections (light-blue
arrows) are suboptimal and require additional MOVE instructions for routing. The placement
resulting from the optimization discussed in Section 4.2.5 is shown in Figure 7b. The ad-hoc
placement of the clustergraph from Figure 6b to a small 2 × 2 CGRA is already optimal
and displayed in Figure 7c.

(a) (b)

(c)

Figure 7. Example 1 Placement: (a) ad-hoc preplacement on a 4× 4 PE array, (b) optimized placement
on a 4 × 4 PE array, and (c) placement on a 2 × 2 PE array.

4.2.4. Pipeline Balancing

As already mentioned above, the cluster graph mapped to the PE array must be
balanced in order to achieve the optimal throughput, i.e., all paths from a source node
(load from memory) to a target node (store to memory) must have the same number
of delays or pipeline stages. On HiPReP, values are delayed by one cycle when they
are stored in an output register and read by a neighboring PE, i.e., on each hop in the
interconnection network.

In this phase of CMM, each cluster is assigned a balancing level. The algorithm is
similar to ALAP (as late as possible) scheduling in high-level synthesis [21], see [41]. For
every cluster c connected to st_data instructions or to live-out variables, level(c) := 0 is
assigned. For the remaining clusters, the levels are assigned the maximum level of their
successors, incremented by one:

level(c) := max{i|c′ ∈ succ(c) ∧ level(c′) = i}+ 1
where succ(c) = {clust(v) : v /∈ c ∧ ∃v′ ∈ c : (v′, v) ∈ E}
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Note that, in order to minimize the number of intermediate hops required to balance
the pipeline, the level of clusters which have a higher level in ASAP (as soon as possible)
scheduling (i.e., movable clusters), could be adjusted. However, finding the optimal levels
is also an NP-hard problem.

The computed levels are marked in the cluster graphs, see Figure 6. To achieve an
ideal throughput, the number of hops between two clusters must be equal to their level
difference. This requirement is fulfilled as much as possible by the simulated-annealing
optimization presented in the next section. The perfect pipelining could be achieved for
the optimal placements displayed in Figure 7b,c. Therefore, the mappings simulate with
I I = 1 and I I = 3. Note that the pipeline levels are illustrated by the grey values of the PEs
in these illustrations: Light PEs have a higher level and darker PEs a lower level, ending
with C1 with level = 0.

However, some special cases have to be considered for balancing:

• If several instructions are connected to the same ld_data instruction, they must have
the same level if they are connected to the same Load-AGU as the values are broadcast
to all connected PEs (i.e., clusters) at the same time. This cannot be achieved if two
paths from the ld_data instruction have different lengths and are joined. This would
be, e.g., the case in Figure 3 if node move-42 was not inserted between ld_data-11 and
add-12. For this reason, the move nodes were inserted. Hence, they can be clustered
and placed separately as seen in Figures 6 and 7. Only if the nodes are combined in
one cluster as C4 in the small 2 × 2 CGRA, is this irrelevant.

• If a phi-node—which is preloaded with a live-in value—is also connected to a ld_data
instruction, the pipeline level of the phi-node’s cluster must be one higher than the
other clusters connected to the ld_data instruction. This is because the pre-loaded
value is read by a Load-AGU before the first value broadcast to the phi-node’s cluster
and to the other clusters arrive. Hence, the pre-loaded value must be stored in an
additional hop (or MOVE instruction) so that it does not disturb the pipeline. For this
reason, C5 in Figure 6 is assigned level 5 while C7 is assigned level 4. To accommodate
the levels, the optimized placement in Figure 7b has inserted a MOVE instruction
(i.e., an additional hop) between C5 and C4 whereas C7 is directly connected to C4.

4.2.5. PBR Optimization: Place, Balance and Route

The final phase of the CMM program optimizes the ad-hoc cluster placement and performs
the routing. For direct-neighbor connections, the assembler generator (cf. Section 4.3.2) has
to select the correct output and input registers. However, for non-neighbor connections,
MOVE instructions have to be inserted. They may use PEs, which were unused thus
far or add MOVE instructions to the cluster placed on a PE. Since this increases the
cluster’s I I, the routing decisions directly influence the loop’s throughput. Furthermore,
the MOVE instructions are part of the loop’s pipeline and must, therefore, also have the
same pipeline level as the cluster they are added to. Otherwise, pipeline “bubbles” or even
deadlocks occur.

Simulated Annealing Since placement, pipeline balancing and routing (PBR) are
tightly coupled and cannot be separated, we use the well-known, generic Simulated An-
nealing [15,16] algorithm to optimize the cluster mapping, see Figure 8. Starting with the
ad-hoc placement P, the algorithm sequentially performs “moves” in the solution space,
i.e., stepwise changes in the placement of one or two clusters to PEs as explained below.
Thereby, it attempts to find a globally optimal placement while avoiding local optima.

When a move changes a cluster’s position, the reservations of the connected AGUs
(if given) are also changed. Depending on the chosen AGU usage preferences, placement
changes, which allocate additional Load-AGUs for the same ld_data instruction are allowed
or not. For the example programs and evaluations, we allow splitting ld_data instructions
over several Load-AGUs because we assume that the Load-AGUs are connected to L1
caches as discussed in Section 4.2 (item AGU Usage Preference).
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Optimize_PBR(inout P):
scale := (dimX + dimY)/2 // scaling factor adjusting annealing speed to

// CGRA size
bestP := P
cost := Compute_Routing_Cost(P)
bestCost := cost
for temp := 200 downto 0 step 1 do // linear cooling from 200 to 0

maxiter := 200
if temp = 0

maxiter := 600 // greedy "quenching" at lowest temperature
for iter := 1 to maxiter do // maxiter iterations for each temp

if Do_move(P, cost, temp/200 · scale)
if cost < bestcost // save new bestP and bestCost

bestP := P
bestCost := cost

return bestP

Do_move(inout P, inout cost, f actor):
if Random_Probability() < 0.75 // generate random numb. betw. 0 and 1

P′ := Move1(P) // perform allowed move of rand. PE to rand. free PE
else

P′ := Move2(P) // perform allowed swap between two random PEs
newcost := Compute_Routing_Cost(P′)

if newcost < cost ∨ (temp > 0∧ Random_Probability() < e−
newcost−cost

f actor )
cost := newcost
P := P′

return true
else

return f alse

Figure 8. Simulated Annealing algorithm Optimize_PBR.

The algorithm consists of two main for loops: The outer loop decreases the tem-
perature from 200 to zero, and the inner loop attempts 200 placement moves for each
temperature step (and 600 attempts for temperature zero to greedily find the best final
moves). This scheme, the probabilities and factors were determined experimentally. The
function Do_move attempts to randomly apply one of the following moves on placement P:

1. Move 1 (75% probability) removes a cluster from its position and maps it to an un-
used PE.

2. Move 2 (25% probability) swaps the position of two clusters.

The functions Move1() and Move2() apply these moves and return a new placement
P′. To choose between them and to select the changed PEs, the function Random_Probabi-
lity() is used. It returns a random number between 0 and 1. (Note that these simple
functions are not elaborated in Figure 8). Do_move(inout P, inout cost, f actor) accepts a
move if the new cost of P′ is smaller than the old cost, i.e., if P′ is better. For positive
temperatures, even a worse solution P′ is accepted with a small probability, which becomes
smaller with lower temperature and larger increase of the cost function.

The probability is also influenced by the CGRA size through scale and f actor. This
probabilistic behavior of Simulated Annealing distinguishes it from simple greedy search
methods, which would become trapped in a local minimum of the cost function. If the move
is accepted, the input/output parameters P and cost are changed, and true is returned.
Note that the algorithm saves the best placement and cost found thus far in variables bestP
and bestCost.

The cost function is of crucial importance since it steers the Simulated Annealing process.
It reflects the quality of a solution (i.e., a placement) and must be minimized. In our implemen-

Figure 8. Simulated Annealing algorithm Optimize_PBR.

The algorithm consists of two main for loops: The outer loop decreases the tem-
perature from 200 to zero, and the inner loop attempts 200 placement moves for each
temperature step (and 600 attempts for temperature zero to greedily find the best final
moves). This scheme, the probabilities and factors were determined experimentally. The
function Do_move attempts to randomly apply one of the following moves on placement P:

1. Move 1 (75% probability) removes a cluster from its position and maps it to an un-
used PE.

2. Move 2 (25% probability) swaps the position of two clusters.

The functions Move1() and Move2() apply these moves and return a new placement
P′. To choose between them and to select the changed PEs, the function Random_Probabi-
lity() is used. It returns a random number between 0 and 1. (Note that these simple
functions are not elaborated in Figure 8). Do_move(inout P, inout cost, f actor) accepts a
move if the new cost of P′ is smaller than the old cost, i.e., if P′ is better. For positive
temperatures, even a worse solution P′ is accepted with a small probability, which becomes
smaller with lower temperature and larger increase of the cost function.

The probability is also influenced by the CGRA size through scale and f actor. This
probabilistic behavior of Simulated Annealing distinguishes it from simple greedy search
methods, which would become trapped in a local minimum of the cost function. If the move
is accepted, the input/output parameters P and cost are changed, and true is returned.
Note that the algorithm saves the best placement and cost found thus far in variables bestP
and bestCost.

The cost function is of crucial importance since it steers the Simulated Annealing process.
It reflects the quality of a solution (i.e., a placement) and must be minimized. In our implemen-
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tation, the function Compute_Routing_Cost(P) (as explained below, cf. Figure 9) performs
the routing for the placement P and computes and returns the cost function. After some
experimentation, we defined a cost function that combines the values max_ii (the achieved
I Iloop), totalcost (the sum of all routes’ costsum values, which is higher if the throughput
is decreased, as explained below in paragraph Routing) and longcost (the accumulated
length of all long routes with two or more hops).

max_ii is weighted with the large factor f 1 = dimX · dimY · (dimX + dimY), and
totalcost is weighted with the smaller factor f 2 = dimX · dimY. Finally, longcost is added
without a weighting factor since it is the least relevant parameter. Since f 1 is equivalent to
the maximal (diagonal) route length multiplied by the number of PEs, the other parameters
are practically always neglected in the comparison of two solutions if they differ in max_ii.
totalcost is the second most important parameter.

Hence, a placement with higher throughput is preferred over a more compact place-
ment with a shorter overall route length. The cost function takes into account that a route
through an already used PE increases its I I and must be on the same pipeline level if it is
added to a cluster. As explained in Section 3.2, the I I increases because the route is realized
by a MOVE instruction from an input register to an output register in the PE program.

Routing A congestion-based router comparable to Pathfinder [17] and VPR [18] is used
to find the optimal routes. For every placement move, all connections have to be routed to
determine the resulting overall I Iloop. This unfortunately slows the optimization down, but
the annealing time is still below a second for most test cases. Runtime measurements are
presented in the second Table in Section 5. We also experimented with a simple and fast
approximate routing algorithm that chooses the shortest path between source and target
PE of a route. However, since it greatly increases the I I in congested PEs, the resulting
cost cannot be used to accurately assess the quality of a placement. Therefore, Simulated
Annealing could not find good solutions with this fast routing algorithm.

Our router is presented in two parts: The global algorithm in Figure 9 and the router
for one path in Figure 10. The global router first defines pelevel if a cluster is mapped to the
PE, sets pecost to one and peI I_route to zero for all PEs. These attributes are used to assess
how congested a PE is. The inner for loops of Compute_Routing_Cost iterate over all used
PEs in placement P, over all instruction nodes s (source) in that PE and over all nodes t
(target), which depend on s and are placed in another PE.

For each required route s→ t, the single path router Route_Path is called. Note that
we route every path separately. Combining fan-out connections will be treated in future
work. Route_Path returns the actually implemented number of hops, i.e., pipeline levels,
and costsum, a measure for the quality of a route. These values are accumulated in longcost
and totalcost, respectively. After all connections have been routed, max_ii, the maximum I I
value of all PEs, is determined, and pecost is incremented for the routing PEs, which cause
congestion, i.e., which end up with a higher I I than the I Imin value determined by the
graph clustering algorithm. After that, the cost function as explained above is computed.

The routing algorithm uses an outer repeat loop, which repeats the entire process as
long as an improvement occurs. Note that the increased cost for congested PEs lead to
better routing results in the next iteration. Finally, the achieved cost is returned.

The path router Route_Path in Figure 10 is a maze router [19] based on Dijkstra’s
algorithm [20] (Section 25.2) to find the shortest path from a single source node s to all other
nodes in a given graph. We restrict the search to a single path from s to the given target
node t. Instead of edge weights (to compute the shortest path), the attributes pecostsum,
which store the cost of the entire path from s to a given node, are used.
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Notation: (also for Figure 10)
Every PE pe uses the following attributes for routing:
pecost: cost that is gradually increased to avoid routing through congested PEs
pecostsum: cost for current route from source node s to this PE; initialized to ∞
pehops: number of hops in current route from source node s to this PE
pelevel : pipeline balancing level assigned to this PE
pe f inalized: flag indicating that Route_path finalized for this PE; initialized to false
pepred: predecessor in route from s to this PE
peI I_route: number of routing MOVEs through a PE (increases its effective I I)

Compute_Routing_Cost(P):
cost := ∞ // cost for routing entire CGRA
for all PEs pe do

pecost := 1
peI I_route := 0

if cluster assigned to pe
pelevel := pipeline balancing level of pe’s cluster

else
pelevel := unde f // undefined

repeat
max_ii := 0 // maximum II of all PEs
longcost := 0 // penalty for long routes
totalcost := 0 // combined cost of all routes

for all PEs pe used for a cluster in P do
for all nodes s ∈ pe do // source node (instruction)

for all successor nodes t of s placed on another PE pet do // target node
hops := Route_Path(s, t, costsum)

// route s->t and set hops and costsum
totalcost := totalcost + costsum // accumulate costsum
if hops ≥ 2

longcost := longcost + hops− 1 // count long routes
for all PEs pe do

if I I(pe) > max_ii // I I(pe) is init. interval of PE including II_route
max_ii := I I(pe)

if peI I_route > 0∧ I I(pe) > I Imin // I Imin as computed in Cluster, Fig. 5
pecost := pecost+ I I(pe)− I Imin

// increase cost for congested PEs used for routing

f 1 := dimX · dimY · (dimX + dimY)
f 2 := dimX · dimY
cost := max_ii · f 1 + totalcost · f 2 + longcost

while pecost changed for one PE ∨ cost decreased
return cost

Figure 9. Congestion-based routing algorithm Compute_Routing_Cost.

Similar to a breadth-first search, the algorithm operates on a queue Q, which is
initialized with the source node s (more precisely, with its PE pes). Note that all nodes
(i.e., PEs in this context) can only occur once in a path. This is ensured by setting pe f inalized
after it is added to the path. While Q is not empty and the target node t (i.e., its PE pet) is
not yet finalized, the node u (and its PE peu) with the lowest costsum is extracted from
Q and its flag peu f inalized is set. Note that for all PEs peu in Q, a path from pes to peu was
already computed.

Figure 9. Congestion-based routing algorithm Compute_Routing_Cost.

Similar to a breadth-first search, the algorithm operates on a queue Q, which is
initialized with the source node s (more precisely, with its PE pes). Note that all nodes
(i.e., PEs in this context) can only occur once in a path. This is ensured by setting pe f inalized
after it is added to the path. While Q is not empty and the target node t (i.e., its PE pet) is
not yet finalized, the node u (and its PE peu) with the lowest costsum is extracted from
Q and its flag peu f inalized is set. Note that for all PEs peu in Q, a path from pes to peu was
already computed.
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Route_Path(s, t, out costsum):
mismatch_weight := 5
for all PEs pe do

pecostsum := ∞
pe f inalized := f alse
if no cluster place on pe

pelevel := unde f // set as undefined
pes := PE containing s
pet := PE containing t
pescostsum := 0
peshops := 0
if pes and pet are neighbors

pescostsum := 1
return 1

Q := {pes} // initialize queue Q with PE pes
while ¬empty(Q) ∧ ¬pet f inalized do

set peu to PE in Q with lowest peucostsum
remove peu from Q
peu f inalized := true
if peulevel = unde f

peulevel := max(peslevel − peuhops, 0)
// derive peulevel from number of hops

for all neighbor PEs pev of peu do
if ¬pev f inalized do

if pevlevel 6= unde f
v_level := pevlevel // use pev’s own level

else
v_level := peulevel − 1 // or derive it from peu’s level

levelpenalty := |peslevel − v_level − peuhops − 1| ·mismatch_weight
// penalty for level mismatch

level_di f f := peslevel − petlevel
distance_mm := |CB_Dist(pev, pet) + peuhops + 1− level_di f f |

// mismatch between shortest path from pev to pet
// and remaining hops required to get level_di f f hops where
// CB_Dist(x, y) = chessboard (maximum) distance from x to y

newcost := peucostsum + pevcost + pevI I_route + levelpenalty + distance_mm
if pevcostsum > newcost

// set extended route through peu as better option for pev
pevcostsum := newcost
pevhops := peuhops + 1
pevpred := peu
add pev to end of queue Q

iterate over all PEs pe on backward route from pet to pes (using pepred):
peI I_route := peI I_route + 1 // count routes through PEs

costsum := petcostsum // set return value costsum for entire route
return pethops // return number of hops of entire route

Figure 10. Path Router Route_Path (For the notation, refer to Figure 9).

Next, all neighbors pev of peu are examined, i.e., the search frontier is expanded. The
goal is to find an optimal path pes→ ...→ peu→ pev→ ...→ pet, i.e., a complete route.
If pev is not yet finalized and pevcostsum (which is initialized to infinite) is higher than
newcost (the cost of the path to pev via peu), a route from pes over peu to pev is added (by

Figure 10. Path Router Route_Path (For the notation, refer to Figure 9).

Next, all neighbors pev of peu are examined, i.e., the search frontier is expanded. The
goal is to find an optimal path pes→ ...→ peu→ pev→ ...→ pet, i.e., a complete route.
If pev is not yet finalized and pevcostsum (which is initialized to infinite) is higher than
newcost (the cost of the path to pev via peu), a route from pes over peu to pev is added (by
setting pevcostsum, pevhops and pevpred). Of course, if a cheaper path to pev is found later,
this information is overwritten.



Electronics 2021, 10, 2590 21 of 28

To determine newcost, the following values are computed first:

• levelpenalty: The absolute difference between the number of pipeline levels between
pes and pev and the number of hops taken from pes to pev, weighted by the factor
mismatch_weight (set to 5) because this difference is more significant than the other
components summed up in newcost. Note that in an ideal route with levelpenalty = 0,
the number of hops corresponds to the required number of pipeline levels.

• distance_mm: The mismatch between the shortest path from pev to pet and remaining
hops required to achieve the requested number of pipeline levels beteen pes and pet
(level_di f f ).

Then, newcost is computed as the sum of peucostsum (for the route pes→ peu), pevcost
(the congestion penalty), pevI I_route (the II increase due to routing), levelpenalty and
distance_mm and compared with the old pevnewcost value as explained above.

Finally, for all PEs in the optimal route, peI I_route is incremented. Note that the com-
plete path can be traced back from pet to pes by the pepred attributes. After the Simulated An-
nealing algorithm has terminated, the routing decisions made by Compute_Routing_Cost
are finalized by adding the PE coordinates and the MOVE instructions to the clustergraph.

Eventually, CMM outputs the EXP, MMP and clustergraphs including the placement
and routing information. The results of optimizing Example 1 are presented in Figure 7b,c.

4.3. Assembler Generator

The Assembler program generates the PE programs from the DFG and the clustergraph.

4.3.1. Intra-PE Instruction Scheduling, Loop Generation and Register Allocation

First, the instructions are scheduled for all used PEs: The PE programs consist of
at most three phases: (a) the loop prologue (reading live-in variables, setting constant
registers); (b) the loop kernel repeating the instructions in the PE’s cluster; and (c) the loop
epilogue (writing live-out variables). Special care must be taken for the communication
between PEs: If several values use the same nearest-neighbor connection, the values are
time-multiplexed. They have to be sent and received in the correct order to avoid deadlocks
or wrong results. The scheduling ensures that the instructions of all PEs (including the
routing MOVEs) execute without deadlocks.

We use a simple standard register allocation method that allocates registers during
the life-time of a value. For the complex three-operand instructions (FMA, FMS), the
register R31 must be used for the third operand since the instructions can only address
two operands and one target. The select instructions are converted back to conditional
assignments realized by conditional branches.

4.3.2. Assembler Code Generation

Finally, an assembler file is generated for every used PE. The instructions used in the
DFG are replaced by the HiPReP mnemonics. The placement information of the neighbor-
ing PEs (i.e., their direction) is used to select the correct input and output registers for the
external inputs and outputs. PEs only used for routing use the MOVE instructions. Addi-
tionally, control code for the repeated loop kernel is added. It either uses the SET_MAX_PC
instruction or generates an explicit control loop as shown in the following examples.

The assembler code generated for mapping Example 1 to a 4 × 4 CGRA is very
simple since no clustering occurs. As an example, Listing 3 shows the generated file
PE_0_2.asm (cluster C3 in Figure 7b). The instruction SET_MAX_PC ensures that the
ADD_INT instruction in line 1 is repeated infinitely. There is no prologue or epilogue.

Listing 3. Assembler code for PE 0,2 of Example 1 (C3) mapped to 4 × 4 CGRA.

0: SET_MAX_PC 1,1
1: ADD_INT O2,I4,I6
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The result of the clustered mapping to a 2 × 2 PE are more interesting. Listing 4a
shows the file PE_0_0.asm. It is a combination of the instructions phi-0 and add-8 (cluster
C3 in Figure 7c). In the prologue, R1 has to be pre-loaded with an initial value that is first
sent by a Load-AGU. This is the initial value of the phi-0 instruction. Then, the loop kernel
(lines 2–3) performs the add instruction (i.e., input register I4 from below is added to R1
and sent to output register O1 to the right) and loads the next streaming input value from
I0. Line 0 (SET_MAX_PC) states that the loop kernel runs from line 2–3. Note that we
could implement a peephole optimization that optimizes this program because lines 1 and
3 both copy a value from I0 to R1. Hence, they could be removed by using I0 directly in
the ADD_INT instruction.

Listing 4b shows the file PE_1_0.asm. It is a combination of the instructions phi-1,
add-7 and move-41 (cluster C4 in Figure 7c). Here, the loop kernel runs from lines 2–4. Note
that three instructions are required since each value read from I0 is used twice. Therefore,
it has to be stored in R2 first (line 2). Then, it is added to R1 (line 3) and, finally, moved to
R1 (line 4). Although instruction move− 41 seems to be redundant, a third instruction is
required to handle the phi node correctly. This results in I I = 3.

Listing 4. Assembler code for (a) C3: PE 0,0 and (b) C4: PE 1,0 of Example 1 mapped to 2× 2 CGRA.

0: SET_MAX_PC 2,3
1: MOVE R1,I0
2: ADD_INT O1,I4,R1
3: MOVE R1,I0

(a)

0: SET_MAX_PC 2,4
1: MOVE R1,I0
2: MOVE R2,I0
3: ADD_INT 07,R1,R2
4: MOVE R1,R2

(b)

Both examples above do not have live-out variables. That is why the loop kernel can
utilize the SET_MAX_PC instruction and execute as long as there are input values.

Figure 11a shows the quite simple Example 2, an add-reduce C program which
accumulates the values of a vector. It can be mapped to a minimal 1 × 1 CGRA since it uses
only one PE. It does not generate streamed outputs but only a scalar result value. Therefore,
an explicit kernel loop that uses R30 as loop counter is required in each PE. Figure 11b
shows the EXP part of the DDG and (c) the generated assembler code for the only PE in
this example.

#define N 20
int a[N] = { ... };
int main() {
int acc = 5;
#pragma CGRA
for (int i=0; i<N; i++)
acc += a[i];
// output acc
return 0;
}

(a) (b)

0: ADDI_INT R30,R0,20
1: ADDI_INT R1,R0,5
2: ADD_INT R1,R1,I0
3: SUBI_INT R30,R30,1
4: BNEZ 2,R30
5: MOVE O0,R1
6: END

(c)

Figure 11. Example 2: (a) Add-reduce C program, (b) EXP part of DDG and (c) assembler program.

To demonstrate where the prologue sets a constant live-in variable, the C program’s
acc variable is initialized with a non-zero value (5). This results in line 1 in the assem-
bler code. MOVE instructions with immediate sources are realized by immediate add
instructions (ADDI_INT), which use the R0 register as constant zero input. The loop kernel
extends from instructions 2–4. The overhead for the explicit loop leads to I I = 3. After the
loop has terminated, the result is output in the program’s epilogue, which consists of line 5
and the END instruction in line 6.
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Since the current HiPReP implementation does not support division instructions,
integer and floating-point divisions are replaced by assembler macros in the PEs. Since
they contain inner loops themselves, they increase the PE’s I I, which must already be
considered in the clustering heuristic in Section 4.2.2.

4.4. AGU and Memory Image Generator: AGUG

The AGUG program performs the final tasks of the CHiPReP compiler.

4.4.1. Machine Code Generation

First, the assembler files generated as explained above in Section 4.3 are translated to
binary code. A C++ library provided by the HiPReP developer is used for this purpose.
For each instruction, a 32-bit word is generated.

4.4.2. AGU Instruction Generation

Next, the AGU instructions have to be generated. They are extracted from the MMP
graph (cf. Section 4.1.3) by a graph pattern matcher. It analyzes linear accesses to 1D
and 2D arrays and generates instructions with the correct base, count, stride and mask (for
Load-AGUs) values. Nested loops and more complicated accesses, which are not linear
functions of the inner loop index variable currently cannot be processed, e.g., the array read
access in the Example 2 introduced above is executed by the following AGU instruction
(where the base address of array a is 4096):

base = 4096; count = 20; stride = 1; mask = 1.

Note that stride = 1 because the address generators always count words, i.e., in four-
byte units. For the scalar live-in variables, instructions for a single-word AGU read accesses
(count = 1) are also generated. They are issued first. After the loop body has been
processed, single-word AGU write accesses are issued for live-out variables.

4.4.3. Memory Image Generation

Finally, the AGU contexts, the binary assembler instructions for each PE and the
initialization values taken from file datav.dat are combined to the memory image file
mem_image.dat. For the HiPReP stand-alone simulator, the global variables are allocated
to fixed addresses in main memory, which are used in the AGU contexts. The memory
image is then used by the Chisel simulator for programming the HiPReP coprocessor.

5. Results

This section presents the performance results and speedup estimates achieved with
CHiPReP for the standard CGRA sizes 4 × 4 and 8 × 8. Since the HiPReP-host integration
is not yet implemented, the following results neglect the cache load and store times, i.e., we
assume all data is readily available in L1 cache. Currently, only one inner loop execution
can be simulated. Outer loops are executed by the host code.

5.1. Streaming Kernels

Table 1 shows the implementation details of streaming kernels, i.e., for loops directly
operating on data vectors. The kernels compute the inner product of integer and floating-
point vectors, the addition of two FP vectors and the multiplication of a FP vector with a
constant value. All loops perform 100 iterations (column It) on vectors of length 100 and
were mapped to a 4 × 4 HiPReP CGRA (column CGRA). For three kernels, only one PE
was used for computations (column PE), while the remaining PEs are unused or only used
for routing.

Only the integer inner product uses two PEs for a pipelined multiply-accumulate
implementation, as the combined MACC instruction is only available for FP numbers. Since
placement is trivial for these kernels, the time in the Simulated Annealing optimization is
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negligible (between one and 25 ms in these cases). The following columns Cconf and Cexec
show the configuration time (equivalent to the size of the configuration) and the execution
time, both in cycles. (For these simulations, there are no additional pipeline stages in
arithmetical operators ). Note that the configuration time can be amortized over several
executions of outer loops or if no reconfiguration is required between loop executions.

Column II shows the Initiation Interval achieved by CMM. Note that the excessive
cycles (i.e., Cexec − It · I I) are required for loading constants, setting up the loop, filling the
pipeline or writing back scalar results after the loop has terminated. The inner product
loops only achieve I I = 3 because the execution PEs have to implement a local loop with a
conditional branch as explained above for Example 2, cf. Figure 11c. The other two loops
can rely on the SET_MAX_PC instruction and, therefore, achieve I I = 1, cf. Listing 4.

Column Instr of Table 1 shows for each kernel how many LLVM instructions (gen-
erated by the CLANG and OPT passes, cf. Section 4.1) are executed in one loop iteration.
Assuming similar conditions for a comparable scalar processor that executes one instruc-
tion (including load, store and branch instructions) per cycle, the ratio of Instr and II is a
coarse estimate of the speedup achieved by HiPReP.

Note that these simple streaming kernels only require a fraction of the HiPReP PEs
and could be replicated four times on a 4 × 4 CGRA. This results in a fourfold speedup,
provided the memory bandwidth is high enough. These kernels are mainly useful for
analyzing the memory performance of a complete HiPReP system.

Table 1. Streaming kernel results.

Kernel It CGRA PE Cconf Cexec II Instr Speedup

Inner Product 100 4 × 4 2 86 320 3 11 3.7
Inner Product FP 100 4 × 4 1 78 317 3 11 3.7

Vector Addition FP 100 4 × 4 1 51 108 1 11 11.0
Vector Scale FP 100 4 × 4 1 52 110 1 8 8.0

5.2. Filter Kernels

Table 2 presents the same implementation details for one- and two-dimensional con-
volution filter kernels and additionally reports on the Simulated Annealing time (column
tSA). The two-dimensional box and Gaussian filters operate on 2D arrays with 100 columns
and the 1D FIR filters on vectors with 100 elements. Note that the It values are slightly
shorter because some values are preloaded and the loop does not iterate over the entire
index range.

Table 2. Filter kernel results.

Kernel It CGRA PE Cconf Cexec II Instr Sp.up tSA

Box Filter 2 × 2 99 4 × 4 4 91 114 1 23 23.0 0.1
Gauss. Filter 3 × 3 FP 98 4 × 4 8 221 417 4 36 9.0 0.2

98 8 × 8 9 291 319 3 36 12.0 0.8
FIR Filter 8-tap 92 4 × 4 8 147 394 4 30 7.5 0.4

92 8 × 8 14 219 305 3 30 10.0 1.5
FIR Filter 8-tap FP 92 4 × 4 8 201 303 3 31 10.3 0.1

92 8 × 8 8 266 301 3 31 10.3 1.3

The box filter is the Example 1 discussed in detail in Section 4. This achieves the
optimal value I I = 1. The 3 × 3 Gaussian filter operates on FP values and has more
operations. Therefore, implementation results are given for a larger 8 × 8 CGRA as well
as a 4 × 4 CGRA. As MOVEs are combined in one PE, only I I = 3 can be achieved on the
larger CGRA. On the smaller CGRA, more routing connections have to be combined with
computing PEs so that I I is increased to 4.

The two versions of 8-tap FIR filters differ as follows:
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• The integer version multiplies six input values with integer constants and computes
the sum and shifts the result (as a normalizing division) to keep the result in range.
(Two taps use the coefficient 1 and, therefore, do not require a multiplication.)

• The FP version multiplies all eight input values with fractional FP values and, there-
fore, does not need a final normalizing division. However, because two more mul-
tiplications are used, the overall LLVM instruction count is one more than for the
integer version.

The FIR filters were also implemented on 4 × 4 and 8 × 8 CGRAs. Note that the FP
version on the larger CGRA, which does not cluster any operations, uses fewer PEs than
the integer version since it utilizes the combined FMA operation.

Both FIR filters achieved I I = 3 on the larger 8 × 8 CGRA. A smaller I I value is not
possible since an input value from an AGU has to be distributed to two PEs (by first storing
it in an internal register) in these implementations. The three MOVEs in one PE cause
I I = 3. On the smaller 4 × 4 CGRA, I I is increased to 4 for the integer version because
some instructions were clustered.

There are only a few published reports on mapping similar benchmark kernels to
CGRAs: (1) ([27], Table 1) reports on a 2D correlation implemented on ADRES, which is
similar to the 2D convolution filters that we implemented. While MII = 1, they achieved
I I = 2. The reasons are not explained. (2) ([24], Table 2) reports on the implementation of a
FIR filter and a 2D median filter (which has a data access pattern that is also similar to 2D
convolution filters) on PACT XPP. While MII = 1 also holds for these applications, it can
be concluded from the reported loop lengths and computation cycles that FIR achieved
I I ≈ 1.2, and the median filter achieved I I ≈ 2.3.

In these implementations, the value of I I was similar or slightly better than the
values achieved by CHiPReP for HiPReP. The reason can likely be found in the underlying
hardware architectures, as ADRES and PACT XPP both provide possibilities to split data
streams without requiring MOVE instructions. Furthermore, both architectures only
handle integer operations, and there are no comparisons of mapping the same kernel to
smaller and larger CGRAs as we provide them.

The runtime of the CHiPReP compiler itself is dominated by the Simulated Anneal-
ing optimization. The last column of Table 2 reports on this Simulated Annealing time,
measured in seconds. The compiler was generated using g++ -O3, and the execution times
were measured on an AMD Ryzen9 5900X processor running at 3.7 GHz. Clearly, large
arrays with (relatively) few used PEs lead to the longest optimization times since they offer
many ”move” opportunities. The benchmarks presented in Table 2 require an acceptable
optimization time between 0.1 and 1.5 s.

To summarize, the loop kernels investigated with the CHiPReP compiler achieved
estimated speedup factors between 3.7 and 23.0 while using between one and 14 PEs for
computations. The compiler itself runs efficiently in a few seconds on a modern processor,
even for the larger CGRAs.

6. Conclusions and Future Work

This article introduced the CHiPReP compiler for the HiPReP High-Performance
Reconfigurable Processor. The CMM pass with the main contributions—the DDG Splitting
Algorithm, the clustering heuristic and the integrated placement, pipeline balancing and
routing optimization—was presented in detail. The simulation results show that HiPReP
in combination with CHiPReP is a promising accelerator for compute-intensive appli-
cations and also handles floating-point operations efficiently. The Simulated Annealing
optimization algorithm did not lead to unacceptably high compilation times.

In future work, some limitations will be addressed: We will extend the CHiPReP
code generation so that it handles two nested loops by exploiting the AGUs’ span and
skip parameters. Further optimizations, such as peephole optimizations on single PEs’
assembler programs, will be implemented, and an improved router using spanning trees
for routes with high fanouts will be used. SCCs will be distributed over several PEs
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if they contain cycles that can be parallelized. Finally, a combined host and HiPReP
codesign compiler based on CCF’s codesign approach will be implemented. We then plan
to systematically analyze the performance of HiPReP using the PolyBench benchmark [42].

Additionally, extensions to the HiPReP architecture can improve the compilation
results as follows: Conditional branches with auto-decrement could simplify the loops
required when live-out variables exist, i.e., combine instructions 3 and 4 in Figure 11c.
Furthermore, SET_MAX_PC could be extended to a conditional branch instruction, which
decrements and compares a dedicated register, thus, removing the overhead for the count-
ing loops in a PE completely. The mapping results also show that the combination of
arithmetic operations and routing often leads to a lower throughput. Hence, dedicated
routing resources could improve HiPReP’s performance.
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Abbreviations
The following abbreviations are used in this manuscript:

AGU Address-Generator Unit
ALAP As Late As Possible
ALU Arithmetic Logic Unit
ASAP As Soon As Possible
CCF CGRA Compiler Framework
CGRA Coarse-Grained Reconfigurable Array
CHiPReP C Compiler for HiPReP
CMM CHiPReP Module Mapper
DAG Directed Acyclic Graph
DDG Data Dependence Graph
DDGGen Data Dependence Graph Generation
DFG Dataflow Graph
EXP Execution Part
FIR Finite Impulse Response
FMA Fused Multiply-Add
FP Floating-Point
FPGA Field-Programmable Gate Array
FPU Floating-Point Unit
FU Functional Unit
HiPReP High-Performance Reconfigurable Processor
HPC High-Performance Computing
II Initiation Interval
IR Intermediate Representation
LLVM Low-Level Virtual Machine
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MII Minimum Initiation Interval
MMP Memory Movement Part
MRRG Modulo Routing Resource Graph
PE Processing Element
P&R Placement and Routing
SCC Strongly-Connected Component
SSA Static Single Assignment
VLIW Very Long Instruction Word
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