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Abstract: This paper proposes a multiphysics simulation structure for predicting Li-ion batteries’
useful life by consolidating battery cell electrochemical and thermal-aging models into the electrical
domain of PV-battery standalone systems. This model can consider the effect of operating conditions
at the system level, such as charge/discharge patterns and energy management strategies, to evaluate
battery capacity fade at the cell level. The proposed model is validated using experimental observa-
tions with a RRMSE of 1.1%. Results show that the operating conditions of the battery bank affect its
lifetime significantly. A wide range of 2.7 to 12.5 years of battery lifetime is predicted by applying the
model to different case studies. In addition, the model predicts that managing the maximum cell
state of charge level can enhance the battery bank lifetime by 60%. The developed model is a generic
multiscale decision-making framework to investigate the effect of operating conditions on battery
service life.

Keywords: lithium-ion battery; multiphysics modeling; system-to-cell; PV-battery energy system

1. Introduction

Energy generation using renewable energy systems for distant areas is a viable alterna-
tive compared to conventional energy technologies, but the stochastic nature of renewable
energies makes them unreliable [1–3]. A convenient battery storage component is required
to provide a consistent energy output from an intermittent source [4,5]. Lithium (Li)-ion bat-
teries are considered as the most promising energy storage technology with higher energy
density than other battery technologies for hybrid, plug-in hybrid, and electric vehicles
(HEV/PHEV/EV) [6–9]. Their successful applications in portable electronic devices show
significant potential in renewable energy systems considering their continually decreased
cost, as well as their improved safety and cycling life issues [10,11]. The weight and volume
of battery systems are not considered as limitations in renewable energy systems as for
portable or vehicle applications. However, their cost and cycle life are highly focused for
renewable installations [12].

Electrical energy systems constitute a group of components where the interaction
between different length scales, concurrent physical phenomena and domains are of crucial
importance. Multiphysics and multiscale simulation approaches provide a comprehensive
approach to account for the integration of multiple physical models within a larger sys-
tem. However, the development and the implementation of such advanced frameworks
are still challenging, particularly in long-term performance analyses at the system level.
Numerous studies have been carried out on the aging mechanisms and lifetime prediction
of Li-ion batteries to study the feasible solutions for increasing battery lifetime [13–15].
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Dufo-Lopez et al. [16] analyzed different lifetime estimation methods applicable to de-
signing and optimizing autonomous renewable energy systems. They confirmed that
evaluating the actual lifespan of batteries, which is highly affected by operating conditions,
is an important task. Uddin et al. [4] have depicted how considering an aging model of
Li-ion batteries in renewable energy installations affects the project’s economic benefits.
However, besides the necessity of battery life evaluation, quantification of the battery
degradation rate is very sophisticated due to the existence of different influential mech-
anisms [17,18]. Table 1 summarizes the most important studies conducted to investigate
Li-ion battery aging mechanisms in recent years.

Table 1. Literature survey to investigate Li-ion battery aging mechanisms, estimations, and their application.

Author Aging Model Type Model Application Description

Wang and Srinivasan
[19]

Computational battery
dynamics (CBD)

Electric vehicles (EVs) and
hybrid electric vehicles
(HEVs)

Coupling simulation of the thermal and
electrochemical behavior of cells

Barré et al. [20]
Detailed electrochemical
approach to statistical
methods based on data

Automotive applications
Renewing a summary of techniques,
models, and algorithms used for Li-ion
battery aging estimation (SOH, RUL)

Randall et al. [21] Physics-based PDE model Battery management systems
(BMS)

Developing a comprehensive cell
degradation model by deriving a model
of the growth process of the
solid-electrolyte interphase (SEI) layer

Tanim et al. [22]
Nonlinear,
electrolyte-enhanced, single
particle model (NESPM)

Hybrid Electric Vehicle (HEV)

Deriving an electrolyte-enhanced,
single particle model (NESPM) that
includes aging caused by solid
electrolyte interphase layer growth

Prada et al. [23] Simplified electrochemical
and thermal model

Battery management systems
(BMS)

Integrating the main design
parameters of Li-ion and its partial
differential equations mathematical
structure and comprehensive aging
investigations

Ashwin et al. [24]
Pseudo two-dimensional
(P2D) electrochemical
lithium-ion battery model

Hybrid electric vehicles
(HEV), plug-in electric
vehicles (PEV)

Analyzing the capacity fade under
cyclic charge/discharge conditions

Weißhar and Bessler
[25]

Multiscale multiphysics
model of a Li-ion battery

Stationary photovoltaic
battery system

Dynamically coupling a system-level
model consisting of photovoltaic (PV),
inverter, load, grid interaction, and
energy management system, fed with
historic weather data

Redondo-Iglesias
et al. [26]

Battery calendar ageing based
on an Eyring acceleration
model

electric vehicles (EV) and
hybrid electric vehicles (HEV)

Taking into account the SOCdrift
during calendar aging tests

Leng et al. [27] Electrochemical based
electrical (ECBE) model

battery-powered
hybrid/electric
vehicles (HEV/EV)

Developing a Li-ion battery model link
the model parameters to specific aging
mechanisms

Berrueta et al. [28] Physical-based electrical
model of a lithium-ion battery

E-mobility and renewable
energy-based systems

Proposing an equivalent circuit model
to keep a straight correlation between
its parameters and the electrochemical
battery principles

Yang et al. [29] Physics-based Li-ion battery
(LIB) aging model Electric vehicles (EVs)

Accounting for both lithium plating
and solid electrolyte interphase (SEI)
growth

Yi et al. [30] Physical-based model of a
lithium-ion battery Hybrid electric vehicles (HEV)

Reporting a two-dimensional modeling
to predict the aging effect on the
variation of the electrical and thermal
behaviors of a lithium-ion battery
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Table 1. Cont.

Author Aging Model Type Model Application Description

Mu et al. [31] Fractional order impedance
model Electric vehicles (EVs) Improving the state of charge

estimation accuracy

Bottiger et al. [32] Equivalent circuit based
Li-ion battery model General

Simulation model for the static and
dynamic behavior of lithium-ion
battery systems

Ghalkhani et al. [33] Three-dimensional layer
structure of a pouch-type cell Electric vehicles (EVs)

Investigating the distribution of
temperature and current density across
the pouch type lithium-ion battery

Cui et al. [34] Generic equivalent circuit
model (ECM) Electric vehicles (EVs)

Analyzing the reason for the EOL
threshold of a LIB with shallow depth
of discharge

Chu et al. [35] Control-oriented
electrochemical model Electric vehicles (EVs) Proposing a novel, non-destructive

model-based fast charging algorithm

Bahiraei et al. [36]

Electrochemical-thermal
model coupled to
conjugate heat transfer and
fluid dynamics

Hybrid electric and full
electric vehicles (HEV and EV)

Investigating the effects of various
operating and design parameters on
the thermal performance of a battery
module

Table 1 shows that there are lots of models investigating electrochemical-aging pro-
cesses of Li-ion batteries in e-mobility and high charge and discharge rate applications.
However, due to the low applied current in off-grid PV systems (mostly less than C/10), it
is needed to implement some modifications in the battery aging model development for
photovoltaic system applications. While the low C-rate of standalone renewable-powered
systems causes lots of computational benefits, there is no specific model in the literature
to differentiate between aging models of e-mobility applications and standalone renew-
able energy systems. A Li-ion battery aging model has not been developed especially for
standalone photovoltaic applications to the best of authors’ knowledge. Therefore, a com-
prehensive thermo-electrochemical aging model adopted for PV-battery systems, which
can analyze the impacts of intermittence charging/discharge processes on the lifetime of
Li-ion batteries, is proposed in this work.

Furthermore, the vast majority of the previous research studies have been focused
exclusively on the system level or the cell level simulations. Therefore, the system-to-cell
interactions have been generally oversimplified. In other words, the system level-oriented
approaches have not accounted for the physicochemical phenomena occurring within the
cell domain while the real-world operating conditions have been overlooked in the studies
concentrating purely on the cell scale. The current study aims at filling the afore-stated
knowledge gaps by bridging the system level and the cell level simulations. We propose
an advanced multiphysics simulation environment to comprehensively assess the impact
of the transient operating conditions at the system level for the case study of autonomous
PV systems on the Li-ion battery lifespan.

To summarize, the main contributions of this study are listed as follows:

(i) coupling Li-ion battery thermo-electrochemical and aging models;
(ii) improving the state-of-the-art Li-ion aging model particularly developed for PV-

battery system applications;
(iii) performing the Li-ion aging model on a high temporal resolution;
(iv) investigating the possible impacts of system-level induced charge strategies and

discharge stresses on Li-ion battery cell lifetime;
(v) application of the multiphysics model as a decision making framework to assess the

influence of operating conditions of standalone PV systems on battery lifetime.

This proposed multiphysics thermo-electrochemical aging model is fast and accurate
enough to be used for battery lifetime estimation in the case of photovoltaic systems.
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2. System Description

The system investigated in this work is composed of a photovoltaic array to convert
solar irradiation into electrical power. The generated DC power supplies the load via
a DC/AC inverter, and excess power is stored in the battery bank to meet the load in
situations when the PV power is not enough. The electrical power flow from PV array
is controlled by a maximum power point tracker (MPPT) charge controller to identify
whether fulfilling the load or be stored in the battery bank.

In order to investigate the impacts of different charge/discharge protocols on the cell
lifetime, a typical lighting load for a greenhouse case study and the demanded AC load for
a residential house are taken into account in two regions with different solar irradiation
capacities. Figure 1 graphically depicts the problem under consideration.
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3. Materials and Methods
3.1. Electrochemical Model

The voltage of a Li-ion battery can be calculated by using Equations (1) and (2) [22,23,37].

η = φs − φe −U (1)

V(t) = φs(L)− φs(0)−
Rc

A
I(t) = Up −Un + η(L)− η(0) + φe(L)− φe(0)−

Rc

A
I(t) (2)

where V(t) is the battery voltage at time t, U is thermodynamic potentials, and η is over-
potentials when current is implemented to the system (by the assumption of I > 0 for
discharge and I < 0 for charge processes). Substitution of different terms into Equation (2)
based on Prada et al. [23] leads to Equation (3), represented in Table 2, to calculate the cell
voltage as a function of the current and time. Where ζp and ζn are calculated based on
Ref. [23] as a function of the cell design parameters and operating current.

The effective conductivities in Equation (3) depend on the average Li concentration
within the organic electrolyte and porosity. They are calculated based on the well-known
Bruggman correlation for each region, as shown in Equation (4) [38]. Electrolyte conduc-
tivity depends on Li concentration and electrolyte composition. It is assumed that the
electrolyte conductivity is 2.82 mS cm−1 for commercial LFP-based cells, as reported by
Doyle et al. [39].
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As the battery current in standalone PV-battery installations is lower than C/10, the
Li concentration within the organic solution is considered to be constant along with the
cell thickness. Therefore, the electrolyte Li concentration-related term in Equation (3) is
negligible.

Surface concentrations of Li on spherical particles are calculated by the interfacial
balance of lithium around either graphite or Li-metal oxide particles using the diffusion
length theory [19] which is shown in Equation (5). The diffusion length for spherical
particles is ls = Rs

5 [19,40] with the assumption of the uniform reaction current density
jLi = I

Aδ [38]. The average concentration of Li-ions is determined by solving an ODE
equation recommended by Gu et al. [41].

Thermodynamic potential, U, is calculated by Equations (7) and (8) offered by

Safari et al. [42] for a commercial graphite/LiFePO4 cell. Where ys =
Cs

s,p
Cs,p,max

and

xs =
Cs

s,n
Cs,n,max

are dimensionless Li concentrations which are calculated at the surface of the
spherical particles in the positive and negative electrodes, respectively. Similar equations
for other types of commercial Li-ion batteries can be found in the literature.

Table 2. Electrochemical model governing equations.

Explanation Formulation Equation Number Ref.

Electrochemical
voltage

V(t) = Up

( cs
s,p

cs,p,max

)
−Un

(
cs

s,n
cs,n,max

)
+ RT

αF ln
(

ξp+
√

ξp2+1

ξn+
√

ξn2+1

)
+(1− t+) 2RT

F ln ce(L)
ce(0)
− I(t)

2A

(
δn

κ
e f f
n

+ 2 δsep

κ
e f f
sep

+
δp

κ
e f f
p

)
− Rc

A I(t)

(3) [23]

Effective
conductivity κe f f = κε

brugg
e (4) [38]

Surface
concentration on

spherical particles
cs

s(t)− cavg
s (t) = −jLi ls

as FDs

[
1− exp

(
−4
√

Dst
3ls

)]
(5) [19]

The average
concentration of Li

ions

∂(εscavg
s )

∂t =
−jLi

F
(6) [41]

Cathode
thermodynamic

potential

Up = 3.4323− 0.8428exp
(
−80.2493(1− ys)

1.3198
)

−3.2474× 10−6exp
(

20.2645(1− ys)
3.8003

)
+3.2482× 10−6exp

(
20.2645(1− ys)

3.7995
) (7) [42]

Anode
thermodynamic

potential

Un = 0.6379 + 0.5416exp(−305.5309xs)

+0.044 tan h
(
− xs−0.1958

0.1088

)
−0.1978 tan h

(
xs−1.0571

0.0854

)
−0.6875 tan h

(
xs+0.0117

0.0529

)
−0.0175 tan h

(
xs−0.5692

0.0875

)
(8) [42]

3.2. Aging Model

The SEI layer growth is the dominant aging mechanism before the battery undergoes
the nonlinear reduction in its usable capacity [22]. The loss of cyclable lithium ions has
been cited as the main mechanism responsible for cell capacity fade [43].

The solvent reduction reaction is represented by Equation (9) [21,24,43,44].

S + 2e− + 2Li+ → P (9)
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The above-referenced reaction occurs at the surface of the graphite particles, and
it is quantified using the cathodic Tafel equation [21,24,43,44]. By considering these as-
sumptions, the general mathematical formulation of SEI layer growth in the case of Li-ion
batteries is depicted in Table 3.

Table 3. Electrochemical-aging model governing equations.

Explanation Formulation Equation Number Ref.

Total local
volumetric current

density of the anode
jLi(t) = I(t)

Aδn
= jln(t) + jsn(t) (10) [44]

Parasitic reaction’s
current density

jsn(t) = −as,ni0,s(T)exp
(
−F(Un(t)−Ure f ,s)

2RT(t)

)
×exp

(
−sinh−1

(
I(t)
Aδn
−js

n(t)
2as,n i0,n

)) (11) [21]

Capacity loss ∂Qloss
∂t = −

∫ δn
0 jsn Adz (12) [22]

Impedance rise ∂δ f
∂t = − M f

as,nρ f F jsn (13) [22]

Electrochemical-
aging

voltage

V(t) = Up(t)−Un(t) +
RT(t)

αF ln
(

ξp(t)+
√

ξp2(t)+1

ξn(t)+
√

ξn2(t)+1

)
− I(t)

2A

(
δn

κ
e f f
n

+ 2 δsep

κ
e f f
sep

+
δp

κ
e f f
p

)
− Rc

A I(t)

− R f (t)
Aδn as,n

I(t)

(14) This work

State of charge SOCcell(t) =
xn(t)−xn,0%

xn,100%−xn,0%
(15) [23]

The anode applied current per unit volume (jln) is extracted by subtracting the
side reaction current density (js

n) from the total current density (jLi
n ) (see Equation (10)).

Randall et al. [21] introduced Equation (11) to obtain the side reaction current density.
Due to SEI layer growth, capacity loss and impedance rise are calculated based on

Equations (12) and (13), respectively. Therefore, the voltage equation, which was calculated
by Equation (3), is modified to Equation (14) to consider the impacts of capacity loss and
impedance rise caused by SEI layer growth.

Equation (15) correlates the state of charge to the lithium concentration in the an-

ode [23,43]. Where xn(t) =
Cavg

s,n (t)
Cs,n,max

and represents the normalized value for the average
Li concentration. The denominator in Equation (15) accounts for the cell nominal capac-
ity [23]. The modified state of charge considering the cell remaining capacity is computed
by SOC = SOCcell × Qnominal

Qremaining
[45].

By considering Sections 3.1 and 3.2, the integrated multiphysics electrochemical and
aging model for Li-ion cells is developed. By this framework, the cell end of life (EOL) is
found. The EOL is when the cell’s remaining capacity is 80% of the value delivered by a
new cell. In Section 3.3, we describe how the change in temperature influences the cell state
estimation.

3.3. Thermal Model

Srinvasan et al. [46] mentioned that the heat generated inside the cell is dissipated
under battery operation when the rate of charge/discharge process is remarkably low.
Accordingly, it is realistic for PV-battery systems (I < C/10) to consider that the cell operates
isothermally. Therefore, the Arrhenius relation (Equation (16)) is used to correlate the elec-
trochemical transport parameters to the temperature, as also highlighted in Ref. [22]. It is
worth noting that the solid-phase lithium diffusion, the electrolyte-phase conductivity, and
the charge transfer coefficients have been mainly cited as the physico-chemical properties
that follow Arrhenius equation [23,43,47].
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Equation (17) shows how the open-circuit voltage is affected by temperature [48]. Here,
Uref is the open-circuit voltage obtained at reference temperature (see Equations (7) and (8)).

Equation (18) is used to calculate dU/dT, which is a polynomial function of the state
of charge (SOC) [49]. By integrating the impact of temperature, Equation (14) is converted
to Equation (19), which is the cell voltage response to PV-battery systems’ operating current
while being conscious of thermal-aging effects.

4. Multiphysics Solution Procedure

As shown in Figure 2a, the so-called multiphysics solution procedure for assessing
the battery longevity is divided into two basic portions: (i) system-level design and (ii) the
cell-scale battery operation and performance evaluation. PV generator and battery bank
configuration are specified in the design stage based on accumulated energy methodology
described in [50] using meteorological information and the demand side requirements as
inputs. Subsequently, the operational current at each time slot is obtained to be fed as input
to the battery operation and performance assessment part. The cell-scale battery operation
part integrates the electrochemical and thermal-aging aware models (see Tables 2–4) to
account for the effects of operational conditions such as current, temperature, depth of
discharge, and state of charge on the cell service period. Figure 2b visualizes the final
battery lifetime simulation model in detail and provides the interconnection between the
main governing equations of the cell-scale thermo-electrochemical-aging model. The side
reaction current density jsn (see Equation (11)), is the key factor that links the operational
conditions to the cell degradation state. In addition to the operating current and the cell
design parameters, js

n is dependent on the anode potential (Equation (8)). By calculating the

anode lithiation state xn(t) =
Cavg

s,n (t)
Cs,n,max

using Equation (5), the anode potential is extracted.
Subsequently, one can find the cell capacity fade and the SEI layer growth which is respon-
sible for the cell resistance rise via Equations (12) and (13), respectively. Furthermore, the
battery voltage response considering thermal-aging effects is computed using Equation
(19). At each time step, the battery capacity is updated and checked to determine whether
the end-of-life criterion is reached. Otherwise, the updated thickness of the SEI layer and
the Li inventory of the cell are calculated and used as inputs to perform the simulations
at the next time step. This methodology is used to investigate the impacts of different
real-world transient charging protocols and discharge patterns on PV-battery system size
(at the system level) and the cell lifespan (at the cell level). It is worth noting that the
integrated model has been developed in MATLAB R2019b environment for performing
the simulations.

Table 4. Thermo-electrochemical-aging model governing equations.

Explanation Formulation Equation Number Ref.

Arrhenius’s law ψ(T) = ψre f exp
(

Ea(ψ)
R

(
1

Tre f
− 1

T

))
(16) [22]

Temperature effect
on open circuit

voltage
U = Ure f +

(
T − Tre f

)
dU
dT

(17) [48]

dU/dT

dU
dT
(
mV K−1) = 24.137× SOC6 − 66.392× SOC5 + 72.066× SOC4

−39.185× SOC3 + 9.8703× SOC2 + 0.0208× SOC
−0.3076

(18) [49]

Thermo-
electrochemical-

aging
voltage

V(t) = Up(t)−Un(t) +
(

T(t)− Tre f

)
dU
dT

+
RT(t)

αF ln
(

ξp(t)+
√

ξp2(t)+1

ξn(t)+
√

ξn2(t)+1

)
− I(t)

2A

(
δn

κ
e f f
n

+ 2 δsep

κ
e f f
sep

+
δp

κ
e f f
p

)
− Rc

A I(t)− R f (t)
Aδn as,n

I(t)

(19) This work
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5. Results and Discussion

In this section, the proposed model to predict the battery lifetime is validated using
the experimental data for a commercial graphite/LFP cell found in the literature [51].
Afterward, two case studies are considered to analyze the effects of different solar potentials
(charging patterns) on the battery life. In addition, for each case, two different load profiles
are considered to evaluate the influence of discharge patterns on the battery’s useful life.
Finally, to enhance the battery life, the effect of controlling the maximum SOC threshold
is investigated. In the first strategy, the battery SOC swing setpoints are 10% and 95%,
whereas the SOCmax is 70% for the second strategy.

5.1. Model Verification

To validate the performance of the aging aware electrochemical-thermal model, the
cell capacity fade trend is compared with the experimental observations reported by
Safari et al. [51]. The experimental tests were performed under the so-called simple cycling
protocol for a commercially available 2.3 Ah LFP cell at room temperature. The cell
electrochemical properties are extracted from Refs. [22,42,43]. Figure 3 shows that the
simulations capture the experiments excellently and the RRMSE is 1.1%.
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5.2. Case Studies

Two cities with different solar potentials are considered to assess the impact of dif-
ferent transient charging protocols on the battery degradation rate. The first is Mahabad
(36.7684◦ N, 45.7337◦ E) situated in north-west of Iran. The second is Yazd (31.8974◦ N,
54.3569◦ E) located in the center of Iran with 30% higher average solar irradiance
than Mahabad.

5.2.1. Mahabad (Low Solar Potential)

Here, we assume two different load types to analyze the effect of the battery discharg-
ing pattern. The first one is the electricity need for a four-person residential house, while
the second is the demanded lighting load for a greenhouse. The main purpose for selecting
these two loads is that the greenhouse case shows zero loading current during the daytime.
Therefore, the stored electricity in the battery provides artificial lighting during the night.
However, the household load is more unpredictable, and both the electricity storage and
usage occur constantly.

Residential House Electricity Load

The electrochemical and thermal aging model is implemented here to the residential
house under consideration which is located in Mahabad. Table 5 presents the PV-battery
system size for this case.

Table 5. Design parameters for the PV-battery system for the residential house electricity demand
in Mahabad.

Parameter Value

PV panels in parallel 22

PV panels in series 4

PV nominal power (W) 120

Parallel connected battery cells 1352

Serially connected battery cells 16

Cell initial energy (Wh) 6.9

The simulation results are demonstrated in Figure 4. Figure 4a illustrates the battery
SOC/SOH evolution until the cell’s end of life. The predictions show that the battery
lifetime is 7.6 years considering the SOCmin and SOCmax of 10% and 95%, respectively. The
percentage of covered load is 89.6%. Figure 4b depicts the simulation results for the first
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year of the battery life, highlighting that the degradation rate is higher during summer
when the solar irradiation is at its highest level. In other words, the high levels of SOC and
temperature are the main stressors for Li-ion batteries. Figure 4c,d demonstrate a detailed
look at the SOC, PV power, demanded load, and the uncovered load for three consecutive
days in July and December. Figure 4c shows that the battery SOC is higher than 90% due
to the high solar irradiation during 1st–3rd of July. However, it is only between 10% to 40%
during 25th–27th of December, which leads to the observed unmet loads due to lack of
sufficient solar energy.

Figure 4b predicts higher degradation rate when the batteries operate under high
levels of SOC. It seems that decreasing the SOCmax under such conditions can enhance
the battery lifetime. Therefore, corresponding results for the second strategy, when the
SOCmax is set to 70%, are presented in Figure 5. By this control strategy, the battery lifetime
is prolonged to 12.5 years at the expense of decreasing the percentage of the covered load
to 88.8%.
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during 25th–27th of December.
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Figure 5. Simulation results for the PV-battery system for the residential house electricity demand in Mahabad for the second
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Figure 6 compares the yearly capacity loss for the two control strategies under in-
vestigation. It is observed that the capacity fade under the second strategy is 34% lower
compared to the first strategy. Overall, it is worth mentioning that although the percentage
of the covered load is 0.8% lower for the second energy management strategy compared to
the first strategy, it improves the battery lifetime by 64.5%.
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Greenhouse Lighting Load

In this case, the required lighting load for a greenhouse is implemented to investigate
the effect of the discharge pattern on the battery degradation trend. Table 6 presents the
PV-battery system size for this case.

Table 6. Design parameters for PV-battery system for the demanded lighting load for a greenhouse
in Mahabad.

Design Parameter Value

PV panels in parallel 24

PV panels in series 4

PV nominal power (W) 120

Parallel connected battery cells 1354

Serially connected battery cells 16

Cell initial energy (Wh) 6.9

Figure 7 shows the simulation results for this case study while assuming 10% and
95% as the SOCmin and SOCmax criteria, respectively. As Figure 7a indicates, the estimated
battery longevity is 6.5 years and the percentage of the load which the autonomous system
has covered is 84.6%. As observed, the battery life for this case is 14.5% lower than the
corresponding control strategy for the residential house electricity load. This is mainly as
the battery is under idle state for the greenhouse case study at very high levels of SOC
during the daytime. As it can be seen in Figure 7b, the degradation process is accelerated
when the battery is at high levels of SOC for a long time. Detailed representations of
the generated PV power, storage conditions, and the load requirements are depicted in
Figure 7c,d.
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Figure 7. Simulation results for the PV-battery system for the demanded lighting load for a greenhouse in Mahabad
for the first control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the
battery lifetime; (c): Detailed PV-battery system performance during 1st–3rd of July; and (d): Detailed PV-battery system
performance during 25th–27th of December.
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Figure 8 illustrates the long-term battery performance when the second control strat-
egy is applied. This leads to the prolongation of the battery service period to 10.4 years
by sacrificing 0.9% of the met load percentage. A comparison between Figures 7b and 8b
indicates a higher degradation rate for the operation under the first control strategy.
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Figure 8. Simulation results for the PV-battery system for the demanded lighting load for a greenhouse in Mahabad for
the second control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the
battery lifetime; (c): Detailed PV-battery system performance during 1st–3rd of July; and (d): Detailed PV-battery system
performance during 25th–27th of December.

The difference between the capacity loss for the two applied control strategies is
represented in Figure 9. A value of 33.8% confirms the considerable influence of controlling
the SOCmax on the battery capacity fade reduction.
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5.2.2. Yazd (High Solar Potential)

In this section, Yazd city with 31% higher yearly averaged irradiation than Mahabad
is considered to account for the effect of the transient charge pattern on the battery aging
process. The PV-battery design parameters are assumed to be similar as reported previously
in Tables 5 and 6.

Residential House Electricity Load

The simulation results replicating the model predictions for Yazd case study (higher so-
lar irradiation availability) under both control strategies are presented in Figures 10 and 11.
By comparing Figures 4a and 10a, it is understood that the battery operation under high
charging states due to high solar irradiation availability yields 57% reduction in the battery
life. Figure 10b shows that the battery operating SOC is often more than 60% during the
year, resulting in a sharper degradation rate compared to Figure 4b. Figure 10c,d confirm
that battery SOC is maintained at high levels during the summer and winter.

Figure 11 shows the results of applying the second SOC control strategy to the system
located in Yazd city. Although the useful battery life is increased by 59% compared to the
first strategy, it is still 33% shorter than the first strategy applied to the residential house
electricity demand in Mahabad with lower solar potential.

The difference in the capacity loss between the two studied control strategies is
represented in Figure 12. A value of 40% shows that applying the improved control
strategy for the regions with high solar potential has a more significant impact on the
battery capacity fade reduction compared to the cities with low solar potential.
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Figure 10. Simulation results for the PV-battery system for the residential house electricity demand in Yazd for the first
control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the battery lifetime;
(c): Detailed PV-battery system performance during 1st–3rd of July; and (d): Detailed PV-battery system performance
during 25th–27th of December.
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Figure 11. Simulation results for the PV-battery system for the residential house electricity demand in Yazd for the second
control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the battery lifetime;
(c): Detailed PV-battery system performance during 1st–3rd of July; (d): Detailed PV-battery system performance during
25th–27th of December.
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Figure 12. Yearly capacity loss for the two control strategies for the residential house electricity
demand in Yazd.

Greenhouse Lighting Load

Figure 13a,b illustrate that the greenhouse demanded lighting load leads to a shorter
battery lifespan and higher degradation rate than the residential house electricity demand.
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An approximate comparison between Figures 7a and 13a shows different transient charging
patterns on the battery useful life. The battery life in Yazd (high solar potential) is 58%
lower than the corresponding case in Mahabad (low solar potential). Figure 13c,d represent
detailed information about the power generated by the PV array, the storage condition of
the battery bank, and the load profile.

For this case, the second SOC control strategy, compared to the first strategy, results in
59% improvement in battery life, as shown in Figures 13 and 14.

Figure 15 shows a better representation of the capacity fade result from the two
investigated control strategies during the first year of simulation. A 38.9% reduction in the
lost capacity confirms the second SOC management strategy’s suitability on enhancing the
battery lifetime.
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Figure 13. Simulation results for the PV-battery system for the demanded lighting load for a greenhouse in Yazd for the first
control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the battery lifetime; (c):
Detailed PV-battery system performance during 1st–3rd of July; and (d): Detailed PV-battery system performance during
25th–27th of December.
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Figure 14. Simulation results for the PV-battery system for the demanded lighting load for a greenhouse in Yazd for
the second control strategy. (a): Simulation during the whole battery lifetime; (b): Simulation for the first year of the
battery lifetime; (c): Detailed PV-battery system performance during 1st–3rd of July; and (d): Detailed PV-battery system
performance during 25th–27th of December.
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Figure 15. Yearly capacity loss for the two control strategies for the greenhouse demanded lighting
load in Yazd.

The simulation outcomes resulted from applying the developed multiphysics frame-
work on two cities with various solar potentials, two load types, and two SOC-dependent
control strategies are summarized and graphically compared in Figure 16. The impact of
solar potential (charging pattern) shows that, in regions with high solar irradiation (Yazd)
where the batteries usually operate at fully charged states, the battery lifetime is lower
compared to regions with low solar irradiation (Mahabad). The impact of the load require-
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ments (discharging pattern) demonstrates that uninterruptible load consumption during
daytime (household case study) has a lower effect on the battery capacity deterioration
than non-continuous load (greenhouse case study). Furthermore, it is observed that the
second control strategy, by reducing the SOCmax setpoint, improves the battery lifetime in
all charge and discharge patterns.
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6. Concluding Remarks

In this paper, we firstly provided a comprehensive literature review to highlight the
importance and the existing challenges of developing advanced multiphysics frameworks
in future design and long-term performance evaluation of renewable energy systems.
Subsequently, to fill the knowledge gap, a multiphysics system-to-cell methodology to
predict the useful life of Li-ion batteries by integrating the electrochemical-thermal and
aging-conscious models into simulation framework of PV-battery systems was developed.
The model considered the impacts of different operating conditions, including state of
charge, applied current, and temperature on the battery capacity fade estimation. The
proposed model was subsequently implemented into several case studies to investigate
the impact of charge/discharge patterns on battery longevity.

It was concluded that the battery lifetime is highly dependent on operational condi-
tions. By investigating two regions with unsimilar solar potentials, two load types, and two
SOC-based control strategies, battery lifetime varied remarkably from 2.7 to 12.5 years. An-
alyzing different operational modes confirmed that the longer the time the battery stayed
at high levels of SOC, the higher the capacity fade would be. Therefore, the proposed
model is a generic multiphysics decision-making framework to select the most appropriate
battery operating conditions for a wide variety of regions and load demands with different
characteristics.

In our future research, the developed simulation environment in this study will be
integrated into the optimization framework of PV-battery systems to jointly extract the
optimal system configuration and the battery operational condition. Furthermore, we aim
at validating the integrated multiphysics model by performing long-term field tests during
the battery service period.



Electronics 2021, 10, 2582 19 of 22

Author Contributions: Conceptualization, F.G. and M.A.; methodology, F.G. and M.A.; software,
F.G. and M.A.; validation, M.A.; formal analysis, F.G. and M.A.; investigation, M.G.; resources, F.G.
and M.A.; data curation, F.G. and M.A.; writing—original draft preparation, F.G.; writing—review
and editing, M.A.; visualization, F.G. and M.A.; supervision, M.G.; and project administration, M.G.
All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by KTH Royal Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

as Active surface area per electrode unit volume, m2 m−3

A Electrode plate area, m2

c Concentration of Li in a phase, mol m−3

cs Surface concentration of lithium in the solid phase, mol m−3

D Diffusion coefficient, m2 s−1

Ea Activation energy, J mol−1

F Faraday’s constant, 96,487 C mol−1

I Discharge current, A (I > 0 discharge; I < 0 charge)
i0 Exchange current density, A m−2

jl Volumetric intercalation current density, A m−3

jLi Total volumetric current density, A m−3

ls Diffusion length ls = Rs/5 for spherical particles, m
M Molecular weight, kg mol−1

Q Capacity (Ah)
R Universal gas constant, 8.314 J mol−1K−1

Rc Contact resistance, Ωm2

Rf Film resistance, Ωm2

Rs Radius of active material particles, m
SOC State of charge
T Absolute temperature, K
Tref Reference temperature, 298 K
t Time, hours
t+ Transference number
U Open circuit or equilibrium potential, V
V Voltage, V
x Negative electrode solid-phase stoichiometry (anode lithiation state)
y Positive electrode solid-phase stoichiometry (cathode lithiation state)
z Spatial coordinate, m
Greek symbols
α Transfer coefficient for an electrode reaction
δ Thickness, m
∆t Time interval, hours
τ Time, s
ε Volume fraction of a phase
η Overpotential of an electrode reaction, V
κ Conductivity, S m−1

ξ ξ = Rs
6εs i0 Aδ I

ρ Density, kg m−3

φ Phase potential, V
ψ Transport parameters
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Subscript
e Electrolyte phase
f Film
filler Filler
max Maximum value
n Negative electrode
p Positive electrode
r Region (negative electrode (n), separator (sep) or positive electrode (p))
s Solid phase
s/e Solid/electrolyte
SEI Solid electrolyte interphase
sep Separator
0% Corresponds to fully discharged battery
100% Corresponds to fully charged battery
Superscript
avg Average
eff Effective
Li Lithium species
ref Reference condition
s Side reaction
0 Initial value
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