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Abstract: Face recognition is one of the essential applications in computer vision, while current face
recognition technology is mainly based on 2D images without depth information, which are easily
affected by illumination and facial expressions. This paper presents a fast face recognition algorithm
combining 3D point cloud face data with deep learning, focusing on key part of face for recognition
with an attention mechanism, and reducing the coding space by the sparse loss function. First, an
attention mechanism-based convolutional neural network was constructed to extract facial features
to avoid expressions and illumination interference. Second, a Siamese network was trained with
a sparse loss function to minimize the face coding space and enhance the separability of the face
features. With the FRGC face dataset, the experimental results show that the proposed method could
achieve the recognition accuracy of 95.33%.

Keywords: face recognition; attention mechanism; sparse loss; three dimension

1. Introduction

Face recognition (FR) technology has been widely used in various public areas, such
as railway stations, airports, supermarkets, campuses, and medicine [1,2]. Taking the
advantage of noncontact recognition, FR has more applicability and better security with
practical and commercial applications compared to traditional fingerprint, iris, and other
biometric systems [3,4]. Extracting geometric features from faces combined with classifiers
is a rudimentary FR method, including active appearance models (AAM) [5] and locality
preserving projections (LPP) [6]. However, uncertainties of expressions often limit the
recognition accuracy. The Local Binary Pattern (LBP) [7], Histograms of Oriented Gradients
(HOGs) [8], and Gabor Wavelet Representation [9] were then proposed to extract appear-
ance features. These features were used to be classified by a classifier, such as support
vector machine (SVM) [10] or K-nearest Neighbors (KNN) [11]. However, the features
designed manually could not describe exactly the characteristics of face, which limited the
recognition accuracy.

Deep learning reconstructed the landscape of FR systems with the proposal of CNN.
Ding [12] et al. proposed a video face recognition method, in which CNN was used as the
backbone and branches to extract complementary information. Yang et al. [13] proposed a
facial expression recognition method based on RI-LBP and ResNet to extract features using
the extreme learning machine for classification. The experimental results showed that the
proposed method could significantly improve the facial expression recognition accuracy,
but the computational cost should be further reduced. Almabdy et al. [14] investigated the
performance of pretrained CNN with multiclass SVM. These studies showed that CNN
could extract features effectively for face recognition.

However, the current convolution module did not pay much attention to distinguish-
ing parts of faces than other similar parts. It extracted not only useful features but also
some redundant information as its output, so it could be improved by eliminating some
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useless parts for face recognition. The attention mechanism, as an emerging method in
deep learning, could attend to specific parts of an image that are more important and
informative [15]. This mechanism of attention mechanism simulated the attention and
exception of the human visual system which helps our brain filter the observed scene to
focus on its essential parts [16]. Li et al. [17] integrated an improved attention mechanism
with the YOLOv3 and MobileNetv2 framework. Li et al. [18] proposed a novel end-to-end
network with attention mechanism for automatic facial expression recognition. These
studies showed that an attention mechanism was suitable for enhancing standard con-
volutional modules’ facial features extraction ability. Additionally, sparse representation
was an effective way to build robust and small feature subspaces, and published works
showed that sparse representation not only reduced the coding space of the feature but
also improved the classification performance, which means that the sparsely represented
features were more robust [19–21]. However, these research only focused on 2D images
without depth information, which meant that the change in light or poses would affect the
recognition accuracy.

With the development of three-dimensional scan devices [22], it has become a trend
to build FR systems based on 3D data partly due to their illumination-invariant [23]
expression-invariant [24] advantages. Lei et al. [25] presented a computationally efficient 3D
face recognition system based on a novel facial signature called Angular Radial Signature
(ARS) extracted from the semirigid region of the face. Liu et al. [26] proposed a joint
face alignment and 3D face reconstruction method to reconstruct 3D faces to enhance
face recognition accuracy. In order to improve recognition, self-attention [27] or data
processing [28] was added into recognition network for point cloud recognition.

In this research, a 3D face scanning technique coupled with deep learning was used
to solve the FR with a single face scan per person. The proposed algorithm integrated an
improved CNN, which contained attention layers and the sparse loss function to build the
FR model for a single scan per person. Different from the classic CNN architecture, in the
attentive CNN, the output of CNN was transferred to a corresponding attention map on
the picture. Next, the advanced attention feature map from the attentive CNN was used as
the input for a sparse representation network. Instead of using an end-to-end one branch
network, the sparse representation network is constructed by two branches of network,
which formed a Siamese network [29]. A Siamese network is a network with two branches
that share the same network weight. Instead of using the Root Mean Squared Error or
Crossentropy as loss function, the proposed Siamese network used a distance-based sparse
loss function in order to reduce the recoding size.

Specifically, the integrated model was used as the sparse representation transformer of
3D faces. Therefore, the specific objectives of the current research included the following:

• Develop a face recognition model based on 3D scan and deep learning for single 3D
scan training data per person;

• Develop an attention layer to the classic CNN to compose ACNN to extract useful
information based on the features of faces;

• Use a Siamese network structure to train the network with a sparse loss function to
build a distance-based face feature transformer in order to avoid the impact caused by
the small size of samples.

2. Materials and Methods
2.1. Introduction of Face Dataset and Preprocessing

The 3D face data with depth information used in this study were from the FRGC v2.0
Database [30] collected by the University of Notre Dame in the United States, including 4007
frontal face scan images of 466 individuals. The scanned images were collected using a 3D
scanner in the autumn of 2003, spring of 2004, and autumn of 2004, including expressions
such as expressionless, smiling, laughing, frowning, bulging, surprise, and small changes
in attitude. This database was currently one of the most widely used benchmark datasets.
3D scanning data usually contained redundant data, including ears, hair, shoulders, and
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other areas that were not related to the human face. Furthermore, outliers that were spikes
caused by collection equipment and environmental conditions were also included in the
collected scan data, which were interference information for FR. Therefore, the 3D data in
the FRGC v2.0 Database needed to be preprocessed.

First, outliers were eliminated, and the face position was corrected. In the obtained
face data, the 3D information was recorded in the form of scattered points. Each data point
represented the position of the 3D point achieved by the corresponding sensor. The 3D face
data of a single face can be recorded as a point set Pn, each point p represents a measured
point position vector. The position vector contains the measured three-axis information
[x, y, z] of the point. The utilized discrete point elimination method is as follows:

d
(

pi,j
)
= max

δ∈{−1, 0, 1}

∣∣∣∣pi,j − pi+δ,j+δ

∣∣∣∣ (1)

where pi,j represents the point at the ith row and jth column, δ means the index offset from
pi,j, and d(pi,j) represents the maximum distance between pi,j and the adjacent designated
area point. The outlier points would be filtered out by setting the threshold ds for this
distance, and the threshold ds is defined as follows:

ds = µ + cσ (2)

µ =
1
n ∑

pi,j∈P
d(pi,j) (3)

σ =

√√√√ 1
n ∑

pi,j∈P
(d
(

pi,j
)
− µ)

2 (4)

where µ is the average sample distance of each collected face data P, σ is the sample variance
of each face sample data P, c is the threshold hyperparameter for face outlier segmentation,
and ds is the threshold for outlier judgment. In this research, the segmentation threshold
hyperparameter c was set as 0.6 according to the literature [31] to complete the elimination
of outliers.

After eliminating outliers, the Shape Index (S.I.) [32] was used to locate the nose
point for face alignment. Different shape index values corresponded to different curved
surface shapes. The more concave curved surface had a smaller shape index, and the more
prominent curved surface had a larger shape index.

When the shape index was close to 1, the curved surface was closer to the hemi-
spherical hat-shaped surface, and is more similar to the shape of the nose tip in the face.
Therefore, the connected domain composed of points greater than 0.85 was selected to be
the nose tip candidate region R1; then the 3D point cloud was calculated. Taking the center
of mass as the sphere and the spherical area with radius r = 5 mm as the candidate area
R2, the candidate area of the nose point was Rnose = R1 ∩R2, and the nose point used the
point with the largest z value in the candidate area of the nose point, that is, the nose point
pnose = max

z
Rnose. After calculating the confirmed nose tip point by this formula, the nose

tip point could be the center of the circle, and the radius of 90 mm could be used as a ball
to cut the point cloud. The point cloud obtained at this time was the desired face area.

After obtaining the face area data, the cubic interpolation operation [33] was performed
to smooth the face area. Then it was projected onto a two-dimensional plane to form a
grayscale image for subsequent use. The above point cloud data preprocessing steps can
be summarized as follows:

• Step 1: Use Equation (1) to calculate and count the corresponding parameters, elimi-
nate outliers in the points set with Equation (2), and decrease the noise caused by the
out-of-bounds environment.

• Step 2: Use the S.I. to search the nose candidate area in the point cloud data and utilize
the height of the z-axis to confirm the tip of the nose.
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• Step 3: Use the tip of the nose found in step 2 to segment the point cloud data. The
segmentation used the nose tip point as a sphere center and points in the spherical
area with a radius of 90 mm were obtained as the face area.

• Step 4: Perform a bicubic interpolation operation on the obtained face area to achieve
a smooth surface and the smoothed face area obtained is shown in Figure 1a.

• Step 5: Project the smoothed face surface onto a two-dimensional plane with the z-axis
value to form a 2D grayscale image.

Figure 1. The preprocessing progress and example result generated by the 3D face data conversion. (a) The preprocessing
schemes of the obtained 3D point cloud data. The small red sphere marked the nose tip point, and the blue sphere retained
the nose tip point as the center with a radius of 90 mm. The gray surface is the curved face area. (b) The example 2D face
grayscale images.

After completing the above steps, the preprocessed image will be a uniform face depth
map, as shown in Figure 1b.

As shown in Figure 1, through the above conversion, the 3D point cloud data were
transformed into a depth map of the face point cloud that was less affected by the environ-
ment illumination. The pixels’ gray value in the transformed image represented a distance
from each point to the nose tip. The gray value of the area closer to the tip of the nose was
high, and the gray value of the area farther from the tip of the nose was low.

2.2. 3D Face Recognition Based on Deep Learning

The process of the proposed face recognition algorithm is shown in Figure 2, and it
included two main parts: (1) Training phase: the designed ACNN was used to construct a
double branch Siamese network. The network was trained with a sparse loss function to
obtain a sparse representation face coding space. (2) Testing phase: the face of a person
was obtained and preprocessed and then, the trained network transformed it into a sparse
face coding space for face matching.

2.2.1. Face Feature Extracting Module based on Attention Mechanism and Convolutional
Layers

Face detection is based on vision target detection, and it is essential to find the key
points or critical areas of the face as a basis for discrimination. Therefore, the attention
mechanism coupled with the convolutional layers was constructed as the backbone network
to focus on the key information of the preprocessed data in order to reduce the influence of
different facial expressions on recognition accuracy.
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Figure 2. Structural chart of face recognition with attention mechanism and sparse representation.

The convolutional layer is known as a grid-like topological specialized kind of neural
network which has gained tremendous success in practical applications [34,35]. This kind
of neural network layer is able to extract robust features from images and is utilized as a
feature extractor in this study. In order to enhance the ability of the feature extractor to
eliminate the useless parts of the input, the attention mechanism was adopted as well.

The primary function of the attention mechanism is to use the image features as input
to construct an attention map. Here, a spatial attention module was used, so the outputs of
the former convolutional feature extraction module was used as the input of this one. The
attention value is calculated as follows [36]:

ya(i, j) = Softmax
(
tanh

(
Wi,jx(i, j) + bi,j

))
(5)

So f tmax(zm) =
ezm

∑n
k=1 ezk

(6)

where W is the set weight, b is the set offset value, and x(i, j) represents the value of the
(i, j) position in the last layer of the image after the feature extraction network. After the
tanh function and the softmax function, the features selected in the previous step were
processed for data.

Finally, the output yo(i, j) after the attention mechanism and the original image ad-
dition or multiplication operation was obtained by adding the original feature data after
feature extraction and the data obtained by the attention mechanism as follows:

yo(i, j) = yin(i, j) + ya(i, j) (7)

where yin(i, j) represents the value of position (i, j) in the original image feature, and ya(i, j)
represents the output value of the attention mechanism module.

The feature processed by the attention mechanism can better reflect the local features of
the face, which is of help for subsequent face recognition and classification. Figure 3 shows
the structural diagram of the attention mechanism module coupled with the convolutional
module. The input was the depth grayscale image obtained from the face 3D point cloud
data preprocessing described in Section 2.1.
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Figure 3. Structure of the attention module coupled with the convolutional module.

2.2.2. Siamese Network Trained with Sparse Contrastive Loss

The convolutional neural network coupled with the attention mechanism constructed
in the previous section could effectively extract the face features, but as the number of
categories increased the accuracy of the classification would show a downward trend
as shown in Table 3 in the following Section 3.3. This section describes the form of a
Siamese neural network to avoid the impact caused by the small size of samples with a
single face scan per person. The network structure of the proposed method is shown in
Figure 4. The largest difference between the Siamese neural network and the traditional
convolutional neural network lies in two aspects. In terms of neural network structure,
the Siamese neural network constructs two convolutional neural network branches in the
form of weight sharing, and the two branches are used to extract the prediction results of
two sets of data. In terms of the loss function, the Siamese neural network replaces the
crossentropy function commonly used in classification problems through a unique distance
measurement method, which improves the network’s interpretability and provides the
neural network feature extraction training more in line with the difference extracting by
changing the gradient direction.

Figure 4. Structure of attention mechanism and sparse loss Siamese neural network.

The input size of the network was 128× 128× 1(width× height× channel) and the
detailed parameters of the network are shown in Table 1. The ReLU activation function
was adopted in the neural network and was settled behind every convolutional layer.
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Table 1. Architecture parameters of the proposed ACNN.

Layer Type Output Size Branch1 Branch2

Conv 64× 128× 128 3× 3, 64, stride 1 3× 3, 64, stride 1

Conv 64× 64× 64
3× 3, 64, stride 1 3× 3, 64, stride 1

2× 2, Max pooling, stride 2 2× 2, Max pooling, stride 2

Conv 128× 64× 64 3× 3, 64, stride 1 3× 3, 64, stride 1

Conv 128× 32× 32
3× 3, 128, stride 1 3× 3, 128, stride 1

2× 2, Max pooling, stride 2 2× 2, Max pooling, stride 2

Attention 128× 32× 32 3× 3, 128 Tanh, softmax 3× 3, 128 Tanh, softmax

Conv 256× 32× 32 3× 3, 128, stride 1 3× 3, 128, stride 1

Conv 256× 32× 32 3× 3, 256, stride 1 3× 3, 256, stride 1

Conv 256× 16× 16
3× 3, 256, stride 1 3× 3, 256, stride 1

2× 2, Max pooling, stride 2 2× 2, Max pooling, stride 2

Conv 512× 16× 16 3× 3, 256, stride 1 3× 3, 256, stride 1

Conv 512× 16× 16 3× 3, 512, stride 1 3× 3, 512, stride 1

Conv 512× 8× 8
3× 3, 512, stride 1 3× 3, 512, stride 1

2× 2, Max pooling, stride 2 2× 2, Max pooling, stride 2

Conv 512× 8× 8 3× 3, 256, stride 1 3× 3, 256, stride 1

Conv 512× 8× 8 3× 3, 512, stride 1 3× 3, 512, stride 1

Conv 512× 4× 4
3× 3, 512, stride 1 3× 3, 512, stride 1

2× 2, Max pooling, stride 2 2× 2, Max pooling, stride 2

FC1 500× 1 Average pool, 500-d fc Average pool, 500-d fc

FC2 1× 1 Average pool, 1-d fc

Note: Conv, Attention, and FC stand for convolutional layer, attention layer, and fully connected layer, respectively.

In Figure 4, there are two feature extraction branches with shared weights. The w
box represents shared weights, which were used to extract facial features. At the end of
the network, a fully connected layer was used to complete the comprehensive mapping
of features. The loss function is a Sparse Contrastive Loss Function. Compared with
the traditional crossentropy loss function, this function was more inclined to reduce the
differences in the network, so that the training purpose of the network is changed to
minimizing the difference.

When using the Siamese neural network, the purpose was to change the network
mapping from a high-dimensional face image X to a low-dimensional encoding output.
In the Siamese neural network, there are three more important characteristics: first, in the
output code space, the distance in the code space can reflect the similarity of the input data
in the high-dimensional space and the neighbor relationship. Second, this mapping is not
simply limited by the distance of the input face data but can learn the complex features
inside the face data. Finally, this mapping can also be effective for some new sample data
with unknown neighbor relationships.

Therefore, the loss function used should also have the corresponding characteristics,
that is, it should keep a certain distance between different types of face samples at a
maximum, and the distance between the same faces in the output space should be as small
as possible. Let X1, X2 ∈ I be a pair of input vectors in the input of the Siamese network.
Then, the distance in the output space generated by the network Gw can be defined as Dw
and expressed as:

Dw(X1, X2) = ||Gw(X1)− Gw(X2)||2 (8)

where Dw(X1, X2) represents the Euclidean distance of the two output feature vectors
in the output space after mapping, and Gw represents the Siamese neural network. For
simplicity, the distance between the two outputs can be denoted as Dw. Introducing the
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ground truth label to it, let Y be a binary label corresponding to the input vector. Then
when X1 and X2 are taken from the same human face, Y = 0, and when X1 and X2 are
different faces, Y = 1. Then the loss function can be expressed as:

L(W) =
p

∑
i=1

L
(

W, (Y, X1, X2)
i
)

(9)

L(W) = (1−Y)Ls

(
Di

w

)
+ YLD

(
Di

w

)
(10)

(Y, X1, X2)
i is the ith sample, Ls is the loss function of similar face input data, LD is

the loss function of different face input data, and P is the number of sample pairs.
When designing Ls and LD, the Dw for the same face should be small, while the

Dw calculated for different face sample pairs is large, and finally the smallest L value is
obtained. The proposed loss function can be expressed as:

L
(

W, (Y, X1, X2)
i
)

= (1− Y)
1
2
(DW)2 + (Y)

1
2
{max(0, m− DW)}2 + ||Gw(X1)||22 + ||Gw(X2)||22 (11)

where, Dw represents the Euclidean distance of the two sample features X1 and X2, Y is
the label of whether the two samples match, Y = 1 means that the input face samples do
not match, Y = 0 means the two input face samples match, m is the interval threshold
between different categories, and N is the number of samples.

The role of this loss function can be divided into three parts. The first part is to generate
attractiveness for similar face samples. The second part is to generate repulsion between
different types of face samples. The final part is to encourage the network output space to
be sparser. When two samples are samples of the same type, Y = 0, then Equation (11) can
be simplified to the following form:

L
(

W, (Y, X1, X2)
i
)

=
1
2
(DW)2 + ||Gw(X1)||22 + ||Gw(X2)||22 (12)

In Equation (12), the loss function simply starts from the distance between samples
of the same category. When the distance between samples within a class increases, the
penalty of the loss function increases accordingly. In addition, when the distance between
samples within a class decreases, the penalty number of the loss function will be reduced
accordingly. In this case, the gradient of the corresponding loss function is:

∂LS
∂W

= DW
∂DW
∂W

(13)

∂LS
∂W (the gradient of LS) gives an attractive force for the output point. The distance

between the two samples in the output space can be thought of as analogous to the
deformation of a spring. Even a small deformation will cause the function to give a penalty
so that the weight adjustment direction of the function moves toward the 0 direction.

On the other hand, when the two input samples are from different faces, that is, when
Y = 1, Equation (11) can be simplified as:

L
(

W, (Y, X1, X2)
i
)

=
1
2
{max(0, m− DW)}2 (14)

where m represents the category boundary, and DW represents the output data distance
under the weight W. When DW > m, the loss function is 0, and at the same time ∂LS

∂W ≡ 0.
Therefore, when the distance between different face categories exceeds the distance bound-
ary m, the above loss function Equation (14) will no longer provide the gradient drive W to
change. When DW < m, there is a gradient:

L
(

W, (Y, X1, X2)
i
)

=
1
2
{max(0, m− DW)}2 (15)
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In Equation (13), there is a repulsive force between different types of sample data
due to the gradient, and the magnitude of this repulsive force changes with the mapping
distance DW of the sample data in the high-dimensional space. When the distance DW
between different types of samples is smaller, the gradient of this repulsive force will
be larger, and it will reach the maximum when the distance is DW ; otherwise, it will be
smaller, until it reaches the distance boundary m, and the repulsive force of this gradient
will disappear accordingly. The characteristics of the two parts of this comparison loss
function are reflected in Figure 5.

Figure 5. Characteristics of the loss function.

In Figure 5, the blue curve represents the value distribution of the loss function when
the input is the same face, and the orange curve represents the distribution of the loss
function when the input is a different face. When drawing, the boundary value of the loss
function is 3. When inputting different faces, the value of the loss function will continue to
decrease as the distance between samples increases. When DW > m, the value of the loss
function of different faces will decrease to 0. When the same face is input, as the distance
increases, the value of the loss function will gradually increase.

As shown in Figure 6, the blue point represents the center point of the output data
of a certain category or a person, while the black point represents the data of a different
category or another person from the blue point, and the white point represents the data of
the same category as the blue point. The green dashed line represents the inward gradient
contraction, while the red part represents the outward gradient expansion. When the
gradient expands beyond the set amount boundary range m, no outward gradient will be
provided.

When the input data of the entire network are trained in combination with the gradient
descent algorithm, the intraclass spacing between the same categories is continuously
reduced according to Equation (13), while the distance increases continuously between
different categories according to Equation (14) until it increases beyond the set boundary
value m.
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Figure 6. Loss function output space map.

3. Results

In this experiment, the hardware conditions used were: CPU Intel(R) Core(TM) i7-8700
3.2GHz, with 32015MB memory, an Nvidia GTX 2080Ti graphics card, with 11016MB video
memory. The software platform was Ubuntu 18.04, and the software environment was
Python 3.6, PyTorch 1.4.0, CUDA 9.2.

3.1. Performance of Attention Mechanism-Based Convolutional Feature Extractor

In order to evaluate the performance of the proposed attention-based convolutional
feature extractor, the feature layers were extracted from the network for feature visual-
ization. In this experiment, a randomly chosen face scan was used as the input for the
network. The featured image of the face was output through the convolutional neural
network, and Figure 7 shows the face feature visualization from the forth convolutional
layer in the network, which was settled before the attention layer.

Figure 7. Face feature visualization from the forth convolutional layer.

As shown in Figure 7, after the convolutional feature extraction network, 60 channels
were selected for visualization in the output feature. It can be seen from the image that
there were some features that could reflect the edge contour features of the face, such as
the second in the first row. A feature map could reflect the size of the edge of the face;
some could reflect the key parts of the face. For example, the seventh feature map in the
first row clearly reflected the characteristics of the human nose, and the sixth in the third
row feature map reflected the characteristics of a person’s mouth and chin. The extracted
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features were attended to by the subsequent attention layer. Figure 8 shows the feature
change map after the attention superimposition.

Figure 8. Face feature visualization before and after the attention module.

It can be seen from Figure 8 that after superimposing the attention mechanism, most
of the useful face areas became more obvious compared to those in Figure 7. This is because
the attention mechanism used softmax as the activation function, so most areas gave a
relatively low value, it had a feature suppression effect, which improved the effectiveness
of the information transmitted in the network, and further reduced the noise part that was
not conducive to face recognition. It retained the effective area for distinguishing the face
and inhibited the part that was invalid for face classification.

3.2. Performance of the Sparse Siamese Neural Network Evaluated

In this section, a group of experiments are described that were carried out by com-
bining different modules in order to evaluate the effectiveness of the attention module
and the sparse representation on the network model with the training error and accuracy.
Four network models were selected and are discussed: two neural networks contained the
attention layer, and the other two did not; their loss functions were the traditional contrast
loss function and the sparse loss function, respectively. The details of these four models are
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listed in Table 1. Here, the margin of the contrast loss function was set as Margin = 2.0,
and the boundary hyperparameter of the sparse loss function was set as m = 2.

In this study, a total of 199 people in the FRGC v2.0 Database were randomly selected
to construct 370 pairs of samples, and each experiment used 70% data for training, 15%
for validation in the training progress, and 15% for testing. The model which achieved the
best accuracy on the validation dataset was used to obtain the test result of the model in
the test set. The experiments were conducted five times to obtain the average accuracy and
the results are presented in Table 2.

Table 2. Accuracy of different network models on the testing set.

Models Accuracy

Pure CNN with Contrastive Loss 81.00%
Attention CNN with Contrastive Loss 89.55%
Pure Siamese with Contrastive Loss 94.52%

Pure Siamese with Sparse Loss 94.85%
Attention Siamese with Contrastive Loss 95.24%

Attention Siamese with Sparse Loss 95.33%

In Table 2, the model with the attention module had a higher accuracy compared to
the results of the first two models. The model with an attention module focused more on
useful features and contained more trainable parameters, which improved generalization
ability. The results proved the effectiveness of the attention module. Comparing the results
of the first four network models, Siamese network structure achieved recognition accuracy
of 94%, which had a significant improvement over the single branch network structure.
The attention mechanism or the sparse loss function added into a Siamese network could
also increase the accuracy, but the improvement was very small (less than 1%) compared to
that of Siamese network structure.

3.3. Sample Size Comparison and Discussion

A large number of people with only few face scans from each person for training
is common when building a face recognition system. However, a small sample size
will restrict the training sample size of the traditional end to end deep learning method,
which reduces the accuracy of the whole network. The Siamese network with two branch
structure was adopted in this paper to resolve this problem, and we conducted experiments
to compare with the traditional deep learning method. The ResNet50 was a typical STOA
for classification tasks and was used as the example end-to-end model for comparison.
In order to simulate the partial situation, we evaluated the recognition rate with a small
size for training. A total of 190 people with five face scans for each person were used
as the dataset. The training set face scan number from each person was controlled to be
different among experiments and the rest of the face scans were used as the test set. These
experiments were repeated five times to obtain the average accuracy in different situations.

The result is presented in Table 3, and shows that the recognition accuracy of the
traditional end-to-end method dropped with the increase in the number of people. The
recognition rate was high when the sample number was small, and the end-to-end method
reached the highest recognition rate on the face dataset with a training set size of 80.
However, the end-to-end model dropped quickly and the recognition accuracy decreased
to 0.765 when the number of people increased to 180. The accuracy of the end-to-end model
decreased when the training set number decreased as well. In comparison, the proposed
method showed a good performance to scale with a larger number of people and a smaller
size of training set than the traditional end-to-end method. It proved that the proposed
method can perform well in a small sized situation.
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Table 3. Accuracy of face recognition under different sample situations.

Number of People
in Training Set

End-to-End Model Ours

4 3 2 4 3 2

20 0.810 0.700 0.640 0.890 0.840 0.810
40 0.865 0.755 0.675 0.905 0.865 0.842
60 0.876 0.774 0.717 0.924 0.901 0.853
80 0.895 0.840 0.808 0.935 0.910 0.855

100 0.820 0.758 0.726 0.936 0.918 0.860
120 0.774 0.703 0.628 0.942 0.922 0.886
140 0.813 0.708 0.661 0.957 0.930 0.878
160 0.801 0.743 0.683 0.943 0.914 0.885
180 0.765 0.731 0.658 0.953 0.920 0.891

4. Conclusions

This study has developed a new face recognition algorithm based on 3D face scan
data with the attention mechanism and sparse representation. The weight of the network
is shared by constructing a Siamese network optimized with a sparse loss function. The
established model can ensure not only better face recognition performance but also a smaller
encoding size. The results showed that the proposed ACNN can extract features from the
preprocessed 3D-scanned faces and eliminate the redundant areas at the same time. The
attention mechanism gave the network an improvement in recognition accuracy of about
8% in the single branch network model. The sparse representation in the proposed method
enabled it to be trained with minimal scan data to obtain a face coding for matching. The
Siamese network structure had a significant improvement over the single branch network
structure. The proposed method has potential to achieve high-accuracy face recognition.

However, although the sparse representation is utilized in this study to reduce the
coding space, the redundant output neurons were not removed from the structure of the
network which would cause extra computational cost and limit its use. In our future
work, the combination of neural network pruning and sparse representation can be applied
to improve the recognition efficiency and reduce complexity of the network, so that the
proposed method could be applied in industries and in medical treatment by integrating
the hardware such as Nvidia Jetson Nano.
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