
electronics

Article

Asset Administration Shell Design Methodology Using
Embedded OPC Unified Architecture Server

Rudolf Pribiš *, Lukáš Beňo and Peter Drahoš

����������
�������

Citation: Pribiš, R.; Beňo, L.; Drahoš,

P. Asset Administration Shell Design

Methodology Using Embedded OPC

Unified Architecture Server.

Electronics 2021, 10, 2520. https://

doi.org/10.3390/electronics10202520

Academic Editor: Pal Varga

Received: 6 September 2021

Accepted: 11 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
812 19 Bratislava, Slovakia; lukas.beno@stuba.sk (L.B.); peter.drahos@stuba.sk (P.D.)
* Correspondence: rudolf.pribis@stuba.sk

Abstract: This article captures the current trends in the development of communication interoper-
ability and common data modelling for the integration of devices into Industry 4.0 networks. The
use of open standards such as the Open Platform Communications Unified Architecture (OPC UA)
or the Asset Administration Shell (AAS) concept is the only way to achieve global communication
and semantic interoperability. This article presents an original methodology of AAS implementation
into an embedded system, dramatically reducing system requirements. The proposed workflow of
the I4.0 component creation includes a procedure for the implementation of the AAS in the OPC UA
information model. This methodology was verified by creating an intelligent sensor as a specific
I4.0 cyber-physical system based on the 32 bit Arm Cortex Microcontroller. The outcome is the AAS
as an “Embedded Industry 4.0 Component” hosted by a minimalist hardware; this is the very first
design and implementation of a device with such parameters. Compared to recent studies (which
implement certain types of AAS devices), the system requirements of the proposed embedded AAS
are in the order of hundreds lower. The presented novel methodology enables developers and
industrial manufacturers to implement relatively simple devices (e.g., smart sensors or actuators) as
I4.0 Components.

Keywords: Asset Administration Shell; OPC UA; semantic interoperability; cyber-physical system;
Industry 4.0 Component; embedded system

1. Introduction

The spread of the Internet into devices brought a huge number of devices capable
of communicating over the internet to the market. These Internet of Things (IoT) devices
could utilize communication protocols compliant with Industry 4.0 (MQTT, REST, AMQP,
etc. [1–3]); however, without their interoperability, an effort to integrate all of them with
various data structures is significant and their potential is not fully exploited [4].

Two key industry consortia (the “German Platform Industrie 4.0” and the global
not-for-profit partnership of industry—Industrial Internet Consortium (IIC)) built their
reference architecture models for Industry 4.0, respectively, for industrial internet. Though
their reference models differ from each other, they are interoperable [5]. A common goal
of both reference models and a cooperation between the “Platform Industrie 4.0” and IIC
represents an important step in global industrial digitalization process [6].

One important difference which needs to be highlighted is that the “Platform Industrie
4.0” defines the Industry 4.0 (I4.0) Component (Figure 1). This component is a kind of
standardized refined IoT or industrial IoT (IIoT) device which fulfils Industry 4.0 require-
ments [7]. This could significantly reduce the effort to integrate such a device into I4.0
infrastructure. More about architecture alignment and interoperability between these two
concepts can be find in [6].

Electronics 2021, 10, 2520. https://doi.org/10.3390/electronics10202520 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0407-865X
https://orcid.org/0000-0003-2244-6559
https://doi.org/10.3390/electronics10202520
https://doi.org/10.3390/electronics10202520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202520
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202520?type=check_update&version=1

Electronics 2021, 10, 2520 2 of 17

1

Figure 1. Differences between the “Platform Industrie 4.0” RAMI 4.0 and ICC IIRA reference models [6].

All of this is not meant to neglect the other initiatives worldwide: the “Nouvelle
France Industrielle” in France, the Connected Industry 4.0 in Spain, China Manufacturing
2025 in China, the Smart Manufacturing Leadership Coalition in the US, and the Japanese
Robot Revolution Initiative. All of these initiatives have agreed to cooperate in the field
of IoT/Industry 4.0 with the German initiative [8]. This fact, as well as the definition of
the I4.0 Component, were the reasons why the “German Industrie 4.0” was chosen as a
reference course for holistic approaches in the world of Industry 4.0.

This article understands the Industry 4.0 Component as defined by the “Platform
Industrie 4.0” [5] as a reference for building I4.0 cyber-physical systems. By encapsulating
the asset in an administrative shell, the asset becomes an Industry 4.0 Component. The AAS
concept is based on the need for information exchange in the value chain among partners
(suppliers, engineering partners, system integrators, operators and service partners) [9,10].

The main contribution of this study is the identification of the gap in the design and
the implementation of embedded I4.0 Components. They are then filled by a procedure
that has turned into an innovative methodology. This methodology allows developers and
industrial manufacturers to implement assets (e.g., intelligent sensors, actuators, etc.) as
embedded I4.0 Components, which can be easily integrated into a I4.0 network and current
communication infrastructures.

2. Asset Administration Shell as Industry 4.0 Component

The text “An administration shell turns an object into an Industrie 4.0 component”
comes from the document Implementation Strategy Industrie 4.0. This document deeply
explains the Industry 4.0 Component concept in the perspective of the “Industrie 4.0”
strategy and presents it as a specific case of a cyber-physical system [11]. Figure 2 depicts
how criteria for “Industrie 4.0” are mapped over the RAMI 4.0 into the Asset Administration
Shell [7].

Electronics 2021, 10, 2520 3 of 17

Figure 2. Mapping criteria of “Industrie 4.0” over the RAMI 4.0 into the Asset Administration Shell [7].

The design of the administration shell is in compliance with general principles of the
Digital Factory framework in accordance with IEC 62832-1 standard. Additionally, it could
act as a digital twin at smart factories and deliver such advanced techniques as plug and
produce [12,13].

A detailed overview about technology called digital twin (DT) is found in [12], where
the lack of reference model for DT is recognized as one of the biggest challenges in DT
research. This lack could be eliminated by AAS, since the AAS can implement a digital
twin [14]. Another study [15] takes advantage of the AAS standardized abstract model to
create a DT used in predictive maintenance. The very relevant research [13] discusses the
utilization of AAS in combination with AutomationML and OPC UA to achieve the plug
and produce functionality.

The main intention of this paper is to introduce the methodology for creating an
embedded (or stand-alone) asset administration shell where the asset carries the adminis-
tration shell and provides its information via communication that is compliant with I4.0.
The main difference from the previously mentioned research is the direct usage of the OPC
UA information model for modelling AAS and embedding the whole implementation of
the OPC UA server, the core of the AAS, directly into the device, which operates with the
real time operating system (RTOS). The embedded OPC UA server which carries the AAS
could be for instance a 32 bit Arm Cortex M microcontroller. This enables creation of the
“Embedded Industry 4.0 Component” for smaller and simpler devices. Obviously, this
approach does not fit all applications [16], but generally it could simplify and accelerate
the digitization process.

2.1. A Survey of Asset Administration Shell Tools Based on Practical Experiments

The specification in [9] refers to several tools for creation of an Asset Administration
Shell. The most relevant opensource solutions for implementing an AAS are as follows:

• AASX server [17]
• Eclipse BaSyx [18]
• SAP i40 aas [19]
• NOVAAS [20]

By considering aspects (such as system requirements, interoperability and applicabil-
ity) identified by authors as key factors, an evaluation was performed, the results of which
are summarized in Table 1.

Electronics 2021, 10, 2520 4 of 17

Table 1. Evaluated aspects of the AAS opensource solutions.

Aspect:
Solution: AASX Server Eclipse Basyx SAP I4.0 AAS NOVAAS

Host platform Platform neutral, DOCKER
image available [21]

Platform neutral,
DOCKER image

available [22]

Platform neutral,
DOCKER image

available

Platform Neutral,
DOCKER image

available [23]

Implementation
technology .Net Framework, .Net Core JAVA, .Net Core, C++ JavaScript,

TypeScript, Go Node RED

Test hosting environment MS Windows Ubuntu 18.04 Ubuntu 18.04 Ubuntu 18.04

AASX package type XML XML/JSON not available JSON

Natively supported API REST 1, MQTT 2, OPC UA
3

REST 1, MQTT 2,
OPC UA REST 1, HTTP REST 1, MQTT 2

Compatible with AASX
Package Explorer yes yes not available partially

Has Web interface yes no no yes

Database for storing AAS no yes yes no

Infrastructure no yes yes no
1 REST get and set requests are not compatible between solutions or return different set of data. 2 MQTT slightly differs for individual solutions.
3 update of a variable over the OPC UA is not reflected in the variable value obtained by REST get request.

2.2. System Requirements

Owing to the .NET Core Framework and dockerizing, all solutions are platform
neutral and are limited only by system requirements for the hosting device. The minimal
system requirements are: 2 CPU Cores and 4 GB RAM for .NET Core, or 8 GB RAM for
docker engine. Docker images size are between 200 and 700 MB, depending on the solution.

The testing aspect “Test hosting environment” provides information about the runtime
environment where the AAS solution was deployed. The MS Windows environment was
hosting AASX Server as the .Net Core application. Meanwhile, for the Ubuntu 18.04, the
docker technology was used.

2.3. Interoperability

Interoperability is currently one of the crucial demands on communication and, in an
asset administration shell, it is ensured by the AAS concept. The AAS model can be shared
over the network via the Asset Administration Shell Package File Format (AASX) file or
by application programming interface (API) [9,24]. The AASX file could be used for an
initialization of the AAS server or for a static data exchange (as the AAS template, recipe,
etc.); on the other hand, API can be used for creating an AAS on runtime or for updating
variables’ values. Not having a possibility of using directly the AASX file is considered to
be a disadvantage that decreases the overall interoperability. The AASX can be internally
encoded in XML or JSON formats. The data encoded in XML or JSON and API are defined
according to the specification in [9,24]. The communication interoperability is an aspect
considered in “Natively supported API” (Table 1).

The NOVAAS solution offers publishing over MQTT, but to allow it, its own specific
JSON encoding in AASX file is required. Thus, it cannot be considered as fully interoperable
in MQTT.

The AASX Server offers MQTT as well. However, the .Net Core application does not
start publishing over the MQTT automatically; from the available documentation, it is not
clear if there is any application command to start publishing at the application runtime.
The MQTT publishing was tested using AASX Package Explorer and it was discovered
that whole submodels are published as one bulk JSON string. Moreover, topics are not
generated to allow for submodel elements to be addressed individually, which seems to be
a significant disadvantage in MQTT communication. The AASX Server also offers OPC UA

Electronics 2021, 10, 2520 5 of 17

communication, which extends its interoperability capabilities. However, if the value of an
element is changed over OPC UA and the same element is observed via REST interface, the
value change is not recognized by the REST API. Thus, it seems that the AASX Server has
two servers’ instances: one for REST and one for OPC UA, and they are not interconnected
for data exchange.

The MQTT publishing inside the Basyx solution seems not to publish the model
automatically. Therefore, it was not possible to evaluate this communication. From the
user point of view, the SAP I4.0 AAS solution complexity is high, and its documentation is
not rich enough to explain how to use it. Thus, its communication was not tested.

The next evaluated aspect for the interoperability is the “Compatible with AASX
Package Explorer” Table 1. The ASX Package Explorer contains a graphic user interface for
designing AAS models which is a great benefit for the user who needs to create a model
from the scratch. The NOVAAS solution is considered partially compatible because its
MQTT publisher needs a specific internal JSON format of the AASX file. For the SAP I4.0
AAS solution, this evaluation is not applicable because it does not offer the possibility to
load the AASX file. The other two solutions are compliant with the AASX file generated by
AASX Package Explorer.

The last aspect from this group is “Has Web interface”. From the human point of view,
it is nice to have this feature, but for machine communication it does not play a significant
role.

2.4. Applicability

Another crucial aspect of the evaluation is unquestionably the solutions’ real-life
applicability or in industrial production. The note “DOCKER image available” means that
a compiler for creating a docker image is available directly in the AAS solution repository,
which makes the solution deployment to a platform very handy.

Basyx and SAP I4.0 AAS have made great strides in this field because their solutions
can be deployed as a platform, which includes components (or application adapters) to
cover whole infrastructure [18,19]. Both solutions incorporate a database to store AAS
models. In this manner, an asset administration shell can be available during its whole life
cycle. The database also offers wide possibilities to digitize non-intelligent assets (electrical
components, screws, etc.). The common grey field for all the above listed solutions is the
Integration layer in RAMI 4.0 Architecture layers (Figure 2). A realization of data exchange
between the real world or the field devices and the AAS is left on system integrators.
However, OPC UA is strongly recommend.

2.5. Accessing Operational Values

All solutions offer the REST API to access AAS elements for reading and writing.
However, the specification [24] defines standards for the API, the realization of which
could require an additional application layer that could route semantic id of an API to its
function call. Consequently, each solution has its own REST API routing, which requires
additional integration effort if two AAS’s from different solutions need to communicate
directly. Table 2 surveys the current state of the compatibility between the REST API calls.

Table 2. REST GET requests and results.

Solution REST GET Request Result

NOVAAS
/aasServer/shells/{aasId}/aas/

submodels/{submodelID}/submodel/
submodelElements/{elementID}/

The lowest level is a submodel element—a property in this solution. From
the property’s JSON string, a value must be parsed out.

Basyx
/aasServer/shells/{aasId}/aas/

submodels/{submodelId}/submodel/
submodelElements/{seId}/value

The request can address the value directly.

AASX Server aas/{aasId}/submodels/{submodelId}/
elements/{seId}/value

The request can address the value directly. The {aasId} supports only the
shortId. This is a drawback, because normally a shortId should be used

only in the scope of AAS and not globally.

Electronics 2021, 10, 2520 6 of 17

If a third-party application needs to request data from AAS servers based on different
solutions (NOVAAS, Basyx, AASX Server, etc.), then that application has to know what the
destination server is based on and build the request accordingly.

2.6. Summary

All of the above solutions offer functional communication over REST API, which can
be understood as a IoT or IIoT compliant communication. According to Table 2 there are
differences in the REST GET requests’ syntax and in the request results. In terms of I4.0
interoperability, the solutions cannot be considered compatible. Based on overall results,
the Basyx solution seems to be the most suitable candidate for a real application and is
well documented. However, all solutions are portable as a docker image (similar to .NET
Core); system requirements for its operation are counted in orders of gigabytes for RAM
and disk space and in orders of gigahertz for the CPU. These system requirements could
be considered as unreasonable or infeasible for low-cost automation intelligent sensors or
actuators. To address this challenge, an innovative approach was proposed, which resulted
into an original Asset Administration Shell design methodology.

3. Asset Administration Shell Design Methodology

The proposed original AAS design methodology uses the asset administration shell
package file and is mainly concerned with intelligent assets (i.e., assets with a connection
to a network (e.g., intelligent sensors and actuators)). Before discussing challenges and
limitations of available AAS opensource solutions, let us first describe the simplified
workflow for AAS creation and deployment (Figure 3).

Figure 3. Workflow for AAS creation and deployment.

The challenge is to minimize the cost (which is the sum of the effort and the required
computing power (Table 3)).

Electronics 2021, 10, 2520 7 of 17

Table 3. Workflow description for AAS creation and deployment.

Requirement/Limitation Description

Cost:

Effort

1

Computing Power

1

Requirement R1

Creation of the AASX package file (e.g., using the AASX
Package Explorer [25]).

This file will represent the asset, and in a broader context,
could also be considered a digital twin.

1

Requirement R2 Recompilation of the docker image or the solution source
code in order to encapsulate the AASX file.

1

Limitation L1

The asset sufficient computing power to host the AAS
solution requires 2 CPU cores and 4 GB RAM for .NET

Core, or 8 GB RAM for docker engine, and sufficient disk
space ≈ 10 1 GB.

Requirement alternative R3A

Hosting AAS solution directly at the asset requires L1
fulfilment.

This is an advantage because I/O signals do not need to
be transferred and can be processed directly at the asset.

1

Requirement alternative R3B

If the AAS solution needs to be hosted by an external
server, then I/O signals need to be transferred over the

network. This requires additional integration effort on the
physical asset side and at the AAS side as well.

1

1

By introducing an embedded Industry 4.0 Component, it is possible to meet R3A
(Table 3) and thus reduce the overall effort. Moreover, the use case discussed in this
text reflects a demand for the Industry 4.0 Component, which is modular, small and
affordable. These requirements run into the L1 limitation (Table 3). The use case describes
the environmental sensor which provides three process values (ambient temperature,
atmospheric pressure and relative humidity). The system requirements are 2 CPU cores,
8 GB RAM and tens of GB hard disk capacities, all of which are at least slightly exaggerated
to provide just three values for the network. Certainly, with AAS manifest there are
more data than three values. However, this cannot be an excuse for such invasive system
requirements. To meet these requirements, we can benefit from the fact that administration
shell is an abstract concept that can be described by UML, JSON, XML, AutomationML or
a OPC UA information model [9,17,26,27,33].

3.1. OPC Unified Architecture as Asset Administrative Shell Realization Platform

The flexibility of the OPC UA address space concept [32] allows for the implementation
of the AAS as an OPC UA information model [27–29,33]. The most advanced opensource
development toolkits for OPC UA are UA-.NETStandard from OPC Foundation [34] and
open62541 SDK [35]. While the former one relies on .NET technology (which requires
Windows or Linux based operating system and adequate system resources), the latter one
offers pure C language implementation (which requires only standard C libraries, TCP/IP
and threading functions layers). Naturally, the open62541 SDK is a preferable choice if one
of the implementation objectives is the minimization of system requirements.

The open62541 SDK declares that an OPC UA server with a minimized configuration
can require less than 100kB of RAM and ROM [35], although the OPC UA server’s address
space (which can cover the complexity of the AAS information model) requires much more.
The OPC UA address space is composed of nodes and their relations [32]. Node relations
provide a semantic description of the node and have the biggest memory footprint. For
demonstration, the full namespace zero (which contains definitions from all OPC UA
specifications [36]) requires around 4 MB of RAM. The open62541 SDK offers reduced

Electronics 2021, 10, 2520 8 of 17

namespace zero (which requires around 170 kB of RAM), but this namespace does not
include definitions required by AAS. Therefore, a design of an on-chip embedded OPC UA
server that serves a more complex AAS with some additional resource files (pictures or
documentations, for instance) will eventually hit the limits of the space required for the
memory on the silicon area of the chip. Therefore, it makes perfect sense to utilize external
memories for storing program and runtime data.

3.2. Interoperability Provided by AAS Implemented in OPC UA Server

The virtual representation of an asset provided by administration shell contains the
manifest, which can be regarded as a directory of the individual data contents. It therefore
contains what is known as meta-information [11]. These meta-information data can serve
as semantic meaning for data provided by AAS.

For operation values (ambient temperature, atmospheric pressure and relative hu-
midity), concept descriptions [9] were defined to describe and identify them in AAS. The
concept description can be extended with IEC61360 data specification content which allows
for standardized semantic description of an AAS element. AAS offers several types of
identifiers [9] which can be used for the unambiguous addressing of an element in the
scope of administration shell, network or worldwide, depending on the purpose.

A notable identifier is the semantic id. For different AAS elements it has a slightly
different function. In the case of a submodel, it points to semantic definitions (or concept
description). A semantic definition can also be defined externally and can be referable by a
global well-known semantic id. A good example is ECLASS, which contains a database
of globally unique identifiers known as the International Registration Data Identifier
(IRDI) [37].

4. Realization of the Embedded Asset Administration Shell

This section deals with the implementation of the embedded system as a component
of I4.0 by utilizing AAS in combination with minimalist STM32 hardware, which is the first
design and implementation of a device with such parameters. To achieve this objective, the
above-mentioned methodology (where AAS is realized in OPC UA information model)
has been applied.

According to the previous section, the hardware for the embedded AAS requires
external memories to hold the program, runtime data and environmental sensors to gather
data about ambient temperature, atmospheric pressure and relative humidity. The basic
characteristics of hardware components are listed in Table 4.

Table 4. Embedded Asset Administration Shell materials.

Material

STM32F769I-DISC1 STM32 discovery board X-NUCLEO-IKS01A3 expansion board for STM32

Features:
32 bit Arm Cortex-M7 MCU STM32F769NI

2 MB of Flash memory
512 KB of RAM

Ethernet connection
ARDUINO Uno connector

512-Mbit Quad-SPI Flash memory (on board embedded)
128-Mbit SDRAM (on board embedded)

Features:
HTS221 humidity and temperature sensor

LPS22HH pressure sensor
STTS751 temperature sensor
ARDUINO Uno connector

The designed AAS describes the asset composed of the discovery board, which has
the expansion board mounted on ARDUINO Uno connector.

4.1. Memory Organization of the Embedded OPC UA Server

The open62541 reduced namespace zero was chosen as the base information model
for the OPC UA server. This information model was extended to cover definitions required

Electronics 2021, 10, 2520 9 of 17

by the AAS information model. The extended information model with the actual OPC UA
server implementation is amalgamated into a single C language source code. The AAS
information model needs to be compiled into the C language source file as well. All C
language source files are compiled using GNU compiler collection (GCC). GCC compiles
C language source code to a binary file–program data, which are stored in the FLASH
memory. During the program runtime, the program responsible for the address space
creation runs and creates the OPC UA server address space in the heap memory stored in
the RAM. Memory regions defined in GCC linker file are depicted in Figure 4.

Figure 4. The embedded OPC UA Server memory organization.

The idea here is to store the OPC UA server and the AAS information model program
data in external QSPI flash memory and create the OPC UA server address space in the
heap memory, which is allocated in external SDRAM memory. The external SDRAM
is slower, as the on-chip RAM it is used for storing the address space (which is not so
dynamic as other processes). The overall OPC UA server address space, including the
AAS information model takes around 640 kB only. The usage of RAM and SDRAM in the
Figure 4 reflects only allocated addresses for heap memories.

4.2. The Program Assembly Workflow

This section describes the program assembly workflow where Figure 5 depicts the
actual workflow scheme and Table 5 explains the workflow steps.

Table 5. Program assembly workflow description.

Program Assembly Workflow Description (Figure 5)

01 Create AAS model

The AASX Package Explorer is likely the most advanced opensource AASX editor with a graphic user interface.
The AAS model was created in accordance with online guidance [38], as no official guidance exists.

02 Export to OPC UA nodeset XML

The AASX Package Explorer offers the functionality to export AAS to OPC UA nodeset XML [39]. Currently, the
export functionality has issues with exporting some types of AAS elements and their relations (ranges, entities,

etc.) to OPC UA nodeset XML. Before compiling the nodeset into a C source code, some manual interventions are
required. Adding missing AAS elements is beyond the scope of this work.

03 open62541 nodeset compiler

The open62541 SDK contains a tool to compile the OPC UA XML nodeset to a C source file which contains a code
to create AAS objects in the OPC UA address space [32].

04 open62541 build amalgamated

The open62541 SDK can amalgamate all functions and definitions required by the OPC UA server into a single
source file which is ideal for embedded systems. The OPC UA server needs its nodeset to create the OPC UA

server address space. The modified reduced namespace zero was used for this purpose.

Electronics 2021, 10, 2520 10 of 17

Table 5. Cont.

Program Assembly Workflow Description (Figure 5)

05 MCU GCC Compiler

It is important to use the GCC compiler containing all definitions required by the MCU. For this purpose, the
STM32 Cube IDE was used. The STM32 Cube IDE includes the GCC toolchain suitable for this task. The MCU

GCC Compiler compiles source files into the binary code.

06 MCU GCC Linker

The Linker links object modules in the binary code into an executable program. It also loads the executable
program into the memory in according to the Linker script file. Program parts residing in MCU memories are

loaded by an internal memory loader.

07 External Memory Loader

The part of the program which contains the OPC UA server and the AAS nodeset needs to be loaded to the
external memory. For this purpose, the external memory loader is required. In this case, it is a separate program

that communicates with the external memory over a quad serial peripheral interface (QSPI) bus [40].

Figure 5. Program assembly workflow.

Electronics 2021, 10, 2520 11 of 17

4.3. Thre Realization Workflow

The freeRTOS layer (Figure 6) is a middleware that implements the real time operating
system in STM32 and enables multitasking. The Task OPC UA runs the OPC UA server.
Program data are stored in the external Flash memory and are accessible over QSPI bus.
The program creates the OPC UA address space in SDRAM, which is accessible over a
flexible memory controller (FMC).

Figure 6. The realization workflow.

The Task Sensor + NTP (Figure 6) is dedicated to handling events raised by Timer
Sensor and Timer NTP. When the Timer NTP is set, the task synchronizes the time of the
OPC UA server with the network time protocol (NTP) server [41]. When the Timer Sensor
is set then the task reads values from sensors and updates values of appropriate nodes in
the address space. The communication between MCU and the environmental sensor is
carried out over inter-integrated circuit (I2C) protocol.

The lightweight IP (lwIP) middleware (Figure 6) implements TCP/IP stack in STM32
and enables the communication over the network required for the OPC UA server and for
the communication with the NTP server.

4.4. Summary

The presented methodology significantly reduces the integration effort and computing
power requirements. The embedded device offers an advantage in that the data exchange
between sensors or actuators can be performed directly at the device. By implementing the
OPC UA server at the embedded device, the grey layer integration in Figure 2 is cleared
up because the OPC UA is recognized as a communication device for Industry 4.0 and its
address space can realize the administration shell.

5. Experimental Verification

The objective of this experiment is to prove that the embedded Industry 4.0 Component
is built according to the proposed methodology works as designed, fulfilling the following
points:

• offering a communication compliant with I4.0.
• providing data in AAS data structures, including measurements.
• providing AAS unambiguous identifier.
• using minimalistic hardware.

Electronics 2021, 10, 2520 12 of 17

• operating reliably.

For these purposes, the testing environment based on the local network was estab-
lished as depicted at the left-hand side of the Figure 7. Two OPC UA clients–the UaEx-
pert [42], and the simple OPC UA Client based on open62541 SDK [35]—are connected
with the Embedded AAS described in the previous section. The simple OPC UA Client la-
belled as “to CSV” writes operation data (temperature, relative humidity and atmospheric
pressure) from embedded AAS into a comma separated values (CSV) file every 5 min.

Figure 7. Experimental environment layout.

Figure 8 shows the UaExpert view demonstrating that operational data have a stan-
dardized format and are fully transparent for any OPC UA client. Each value can be
identified by its semantic id. The AAS does not contain all submodels as listed in [38];
for our experimental purposes, the Documentation, Identification, modelBreakDown and
OperationalData submodels are sufficient. The Documentation submodel carries docu-
mentation data, the Identification submodel contains data that identify the device in the
I4.0 network (e.g., manufacturer, product code and serial number of the asset), the Op-
erationData submodel provides runtime data and their identification (value and keys in
Figure 8) and the modelBreakDown submodel represents the bill of materials. Finally, the
value of Id (Figure 8) provides the unambiguous AAS identifier.

Figure 9 visualizes data acquired using the OPC UA Client (to CSV) according to
Figure 7. Data acquisition had been continuously running in laboratory environment for
more than 2 weeks (temperature peaks correspond to switching on/off the air conditioning
in the laboratory).

Electronics 2021, 10, 2520 13 of 17

Figure 8. Embedded AAS OPC UA address space viewed by UA Expert OPC UA Client.

Figure 9. Ambient temperature, relative humidity and atmospheric pressure gathered by embedded AAS.

Electronics 2021, 10, 2520 14 of 17

The experimental verification proved that the proposed methodology guarantees a
minimization of system requirements by implementing the AAS into the embedded device
while maintaining interoperability and applicability.

6. Discussion

The presented methodology offers a possibility to implement the embedded AAS (or
embedded I4.0 components). Compared with recent studies [13,28,29] (which implement a
certain type of embedded AAS device), the system requirements of the embedded AAS
proposed in this work are in the order of hundreds lower. This was achieved by utilizing
freeRTOS in combination with ARM Cortex M7 MCU and the customized open62541
SDK memory management. This allows for the creation of a unique type of intelligent
sensor that bears its AAS implementation. This is unlike the mentioned AAS realizations
studies where the AAS is hosted by an external system or on embedded hardware that is
significantly more powerful. Table 6 summarizes the highlighted properties of existing
studies and solutions obtained from publicly available sources.

Table 6. Studies and tools comparison.

System
Requirements
(or Hardware)

AAS
Embedded at

Device

Available Com-
munication SOA 1

Determ.
Real

Time 2
OS

Eclipse Basyx
[18]

Raspberry Pi or
equivalent yes REST, MQTT,

OPC UA yes no Independent

SAP I4.0 AAS
[19]

Raspberry Pi or
equivalent yes REST, HTTP no no Independent

NOVAAS [20] Raspberry Pi or
equivalent yes REST, MQTT no no Independent

AASX server
[17]

Raspberry Pi or
equivalent yes REST, MQTT,

OPC UA yes no Independent

Xun Ye [13] n/a no OPC UA n/a yes Linux

Arm Jakub [28] Raspberry Pi or
equivalent yes OPC UA yes no n/a

Cavalieri
Salvatore [29]

Raspberry Pi or
equivalent no OPC UA, REST yes no n/a

Jahanzaib
Imtiaz [30]

TPS-1,
<64 KB RAM no OPC UA n/a no embOS

Embedded
AAS (this

paper)

32 bit Arm
Cortex M,

<16 MB RAM,
<4 MB disk

yes OPC UA yes no freeRTOS

Hilscher [43] netX 90
scalable ready 3 OPC UA yes no n/a

1 Service oriented architecture (SOA). 2 Deterministic real time communication. 3 The solution provides different hardware including
external resources which are capable to carry on also AAS.

The aim of this summarization is to emphasize that the embedded AAS built according
to proposed methodology differs from present implementations. For instance, to achieve
comparable parameters in terms of providing AAS, solutions in [16–19,28,29] require
incomparably more powerful hardware or the actual AAS being implemented outside of
the asset.

On the other hand, the study [13] is aimed at the deterministic communication
achieved by the time sensitive networking (TSN), which is not the objective of semantic
communication. In [30], the “Nano Embedded Device 2017 Server Profile” [31] is im-
plemented even closer to bare metal in terms of hardware, but the system resources are

Electronics 2021, 10, 2520 15 of 17

not sufficient for AAS implementation in OPC UA server. For the moment, no AAS has
been implemented at the commercial solution from Hilscher [43], but from the hardware
perspective (and considering the fact that it uses the same SDK [35] as the methodology
presented in this paper), it seems to be a promising candidate for an evaluation platform or
AAS implementation in a production.

Limitations of proposed solution:

• Limited number of connected clients: The designed embedded AAS device is still
limited by its performance which could be a drawback for its utilization (e.g., limited
number of clients to connect).

• PubSub communications at the expense of losing service oriented architecture: OPC
UA offers the PubSub communication model [44], which can solve the issue with a
limited number of clients at the expense of losing service-oriented architecture.

Both previously mentioned limitations can be eliminated by introducing an OPC UA
aggregating server as outlined in Figure 7.

The next objective of our research is to extend our study [41] to cover the situation
wherein an aggregating OPC UA server aggregates OPC UA servers in a network. The
challenge here is to provide a feature to enable querying a value by the semantic id. This
could allow to query the value of OPC UA Aggregation Server Figure 7 by a semantic id
without the necessity to know which AAS provides this value. In a broader sense, the value
will be provided by a network rather than by the AAS. Practically, we are speaking about
achieving plug-and-produce enabling in order to exchange a device for another without
disturbing the upstream system.

7. Conclusions

The paper compares available opensource tools for AAS creation based on practical re-
search and presents an original methodology for design and implementation of embedded
AAS with an emphasis on minimizing computing power and effort.

In accordance with this methodology, the embedded AAS (which can be considered
as an embedded I4.0 Component) was created using a OPC UA Micro Embedded Device
2017 Server profile [31] with the address space realizing the administration shell.

The developed method combined with the hardware (32 bit Arm Cortex M microcon-
troller) and OS (freeRTOS) make this device pioneering and the first embedded AAS with
comparable parameters to our knowledge.

Thanks to the OPC UA architecture and the AAS concept in terms of communication
and semantics, the presented methodology allows to create an embedded device that is
interoperable in the network with I 4.0 components and meets I 4.0 requirements for data
exchange. The realization of the embedded AAS described in this work can be valuable for
manufacturers in designing intelligent sensors as embedded Industry 4.0 components; in
this way, it can contribute to further accelerating the overall digitization of the industry.

Author Contributions: Conceptualization, R.P. and P.D.; methodology, R.P.; software, R.P.; validation,
R.P. and L.B.; writing—original draft preparation, R.P.; writing—review and editing R.P., L.B. and
P.D.; funding acquisition, P.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Slovak Research And Development Agency, grant No.
APVV-17-0190 and the Slovak Cultural Educational Grant Agency, grant No. 039STU-4/2021.

Data Availability Statement: Not applicable.

Acknowledgments: The paper was partially supported by the Slovak Research and Development
Agency, grant No. APVV-17-0190 and the Slovak Cultural Educational Grant Agency, grant No.
039STU-4/2021. We would like to thank the phi-ware s.r.o. (which provided resources for virtual
servers required for development and testing environments) and STM32 hardware.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 2520 16 of 17

References
1. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet 2019,

11, 66. [CrossRef]
2. Cunha, M.J.; Almeira, M.B.; Júnior, R.F.F.; Carrijo, R.S. Proposal for an IoT architecture in industrial processes. In Proceedings of

the 2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba, PR, Brazil, 20–23 November 2016.
3. Rocha, M.S.; Sestito, G.S.; Dias, A.L.; Turcato, A.C.; Brandão, D.; Ferrari, P. On the performance of OPC UA and MQTT for data

exchange between industrial plants and cloud servers. ACTA IMEKO 2019, 8, 80–87. [CrossRef]
4. Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519. [CrossRef]
5. Pedone, G.; Mezgár, I. Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Comput.

Ind. 2018, 100, 278–286. [CrossRef]
6. Lin, S.; Murphy, B.; Clauer, E.; Loewen, U.; Neubert, R.; Bachmann, G.; Pai, M.; Hankel, M.; Mellor, S. An Industrial Internet Con-

sortium and Plattform Industrie 4.0 Joint Whitepaper Architecture Alignment and Interoperability 2017. Available online: https://
www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/whitepaper-iic-pi40.pdf?__blob=publicationFile&v=7 (ac-
cessed on 22 July 2021).

7. Federal Ministry for Economic Affairs and Energy (BMWi). Which Criteria do Industrie 4.0 Products Need to Fulfil? 2019.
Available online: https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_
2020.html (accessed on 23 July 2021).

8. González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J.M.C. A Literature Survey on Open Platform Communications (OPC) Applied
to Advanced Industrial Environments. Electronics 2019, 8, 510. [CrossRef]

9. Platform Industrie 4.0. Details of the Asset Administration Shell—Part 1. 2020. Available online: https://www.zvei.org/en/
press-media/publications/details-of-the-asset-administration-shell/ (accessed on 23 July 2021).

10. Mendhurwar, S.; Mishra, R. ‘Un’-blocking the industry 4.0 value chain with cyber-physical social thinking. Enterp. Inf. Syst. 2021,
1–48. [CrossRef]

11. Bitkom; VDMA; ZVEI. Implementation Strategy Industrie 4.0: Report on the Results of the Industrie 4.0 Platform; Bitkom: Berlin,
Germany; VDMA: Berlin, Germany; ZVEI: Berlin, Germany, 2016; pp. 1–104. Available online: https://www.bitkom.org/Bitkom/
Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html (accessed on 23
July 2021).

12. Lu, Y.; Liu, C.; Wang, K.I.K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model,
applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [CrossRef]

13. Ye, X.; Jiang, J.; Lee, C.; Kim, N.; Yu, M.; Hong, S.H. Toward the Plug-and-Produce Capability for Industry 4.0: An Asset
Administration Shell Approach. IEEE Ind. Electron. Mag. 2020, 14, 146–157. [CrossRef]

14. Details of the Asset Administration Shell: From Idea to Implementation. Plattform Industrie 4.0, Ed. Available online: https:
//www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/vws-in-detail-presentation.html (accessed on 22 July
2021).

15. Cavalieri, S.; Salafia, M.G. A Model for Predictive Maintenance Based on Asset Administration Shell. Sensors 2020, 20, 6028.
[CrossRef] [PubMed]

16. Jacoby, M.; Jovicic, B.; Stojanovic, L.; Stojanović, N. An Approach for Realizing Hybrid Digital Twins Using Asset Administration
Shells and Apache StreamPipes. Information 2021, 12, 217. [CrossRef]

17. Admin-Shell-io/Aasx-Server. Available online: https://github.com/admin-shell-io/aasx-server (accessed on 23 July 2021).
18. Eclipse BaSyx. Available online: https://www.eclipse.org/basyx/ (accessed on 23 July 2021).
19. SAP/i40-aas. Available online: https://github.com/SAP/i40-aas (accessed on 23 July 2021).
20. NOVA Asset Administration Shell. Available online: https://gitlab.com/novaas/catalog/nova-school-of-science-and-

technology/novaas (accessed on 23 July 2021).
21. Docker hub Stubafeirupr/Aasxserver-stm32. Available online: https://hub.docker.com/r/stubafeirupr/aasxserver-stm32

(accessed on 23 July 2021).
22. Docker Hub Stubafeirupr/Basyx-stm32. Available online: https://hub.docker.com/r/stubafeirupr/basyx-stm32 (accessed on 23

July 2021).
23. Docker Hub Stubafeirupr/Novaas-stm32. Available online: https://hub.docker.com/r/stubafeirupr/novaas-stm32 (accessed on

23 July 2021).
24. Platform Industrie 4.0. Details of the Asset Administration Shell—Part 2. 2020. Available online: https://www.plattform-i40.de/

PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html (accessed on 23 July
2021).

25. Admin-Shell-io/Aasx-Package-Explorer. Available online: https://github.com/admin-shell-io/aasx-package-explorer (accessed
on 23 July 2021).

26. Pribiš, R.; Beňo, L.; Drahoš, P. An Industrial Communication Platform for Industry 4.0—case study. In Proceedings of the 2020
Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, 29 January–1 February 2020; p. 19472801.

27. Cavalieri, S.; Salafia, M.G. Insights into Mapping Solutions Based on OPC UA Information Model Applied to the Industry 4.0
Asset Administration Shell. Computers 2020, 9, 28. [CrossRef]

http://doi.org/10.3390/fi11030066
http://doi.org/10.21014/acta_imeko.v8i2.648
http://doi.org/10.3390/app10186519
http://doi.org/10.1016/j.compind.2018.05.003
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/whitepaper-iic-pi40.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/whitepaper-iic-pi40.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html
http://doi.org/10.3390/electronics8050510
https://www.zvei.org/en/press-media/publications/details-of-the-asset-administration-shell/
https://www.zvei.org/en/press-media/publications/details-of-the-asset-administration-shell/
http://doi.org/10.1080/17517575.2021.1930189
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
https://www.bitkom.org/Bitkom/Publikationen/Implementation-Strategy-Industrie-40-Report-on-the-results-of-the-Industrie-40-Platform.html
http://doi.org/10.1016/j.rcim.2019.101837
http://doi.org/10.1109/MIE.2020.3010492
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/vws-in-detail-presentation.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/vws-in-detail-presentation.html
http://doi.org/10.3390/s20216028
http://www.ncbi.nlm.nih.gov/pubmed/33114055
http://doi.org/10.3390/info12060217
https://github.com/admin-shell-io/aasx-server
https://www.eclipse.org/basyx/
https://github.com/SAP/i40-aas
https://gitlab.com/novaas/catalog/nova-school-of-science-and-technology/novaas
https://gitlab.com/novaas/catalog/nova-school-of-science-and-technology/novaas
https://hub.docker.com/r/stubafeirupr/aasxserver-stm32
https://hub.docker.com/r/stubafeirupr/basyx-stm32
https://hub.docker.com/r/stubafeirupr/novaas-stm32
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://github.com/admin-shell-io/aasx-package-explorer
http://doi.org/10.3390/computers9020028

Electronics 2021, 10, 2520 17 of 17

28. Arm, J.; Benesl, T.; Marcon, P.; Bradac, Z.; Schröder, T.; Belyaev, A.; Werner, T.; Braun, V.; Kamensky, P.; Zezulka, F.; et al.
Automated Design and Integration of Asset Administration Shells in Components of Industry 4.0. Sensors 2021, 21, 2004.
[CrossRef] [PubMed]

29. Cavalieri, S.; Giuseppe, M.G. Asset administration shell for PLC representation based on IEC 61131-3. IEEE Access 2020, 8,
142606–142621. [CrossRef]

30. Imtiaz, J.; Jasperneite, J. Scalability of OPC-UA Down to the Chip Level Enables “Internet of Things”. In Proceedings of the
2013 11th IEEE International Conference on Industrial Informatics (INDIN), Bochum, Germany, 29–31 July 2013; pp. 500–505.
[CrossRef]

31. OPC Foundation. OPC UA Profiles. Available online: https://profiles.opcfoundation.org/v104/reporting/ (accessed on 28 July
2021).

32. OPC Foundation. OPC Unified Architecture Part 3: Address Space Model. Available online: https://opcfoundation.org/
developer-tools/specifications-unified-architecture/part-3-address-space-model/ (accessed on 23 July 2021).

33. Fuchs, J.; Schmidt, J.; Franke, J.; Rehman, K.; Sauer, M.; Karnouskos, S. I4.0-compliant integration of assets utilizing the Asset
Administration Shell. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1243–1247.

34. OPCFoundation/UA-. NETStandard. Available online: https://github.com/OPCFoundation/UA-.NETStandard (accessed on 26
July 2021).

35. open62541. Available online: https://open62541.org/ (accessed on 26 July 2021).
36. OPC Unified Architecture Specification. Available online: https://opcfoundation.org/developer-tools/specifications-unified-

architecture (accessed on 26 July 2021).
37. ECLASS. Available online: https://www.eclass.eu/en/standard/introduction.html (accessed on 27 July 2021).
38. Admin-Shell-io/Questions-and-Answers. Available online: https://github.com/admin-shell-io/questions-and-answers (ac-

cessed on 26 July 2021).
39. OPC Foundation. OPC Unified Architecture Part 6: Mappings. Available online: https://opcfoundation.org/developer-tools/

specifications-unified-architecture/part-6-mappings/ (accessed on 23 July 2021).
40. STMicroelectronics. Quad-SPI Interface on STM32 Microcontrollers and Microprocessors AN4760 Application Note. Available

online: https://www.st.com/content/ccc/resource/technical/document/application_note/group0/b0/7e/46/a8/5e/c1/48/
01/DM00227538/files/DM00227538.pdf/jcr:content/translations/en.DM00227538.pdf (accessed on 23 July 2021).

41. Pribiš, R.; Beňo, L.; Drahoš, P. Implementation of Micro embedded OPC Unified Architecture server-client. IFAC-PapersOnLine
2019, 52, 114–120.

42. Unified Automation. UaExpert. Available online: https://www.unified-automation.com/products/development-tools/
uaexpert.html (accessed on 30 July 2021).

43. Hilscher NETX 90. Available online: https://www.hilscher.com/products/product-groups/network-controller/asics/netx-90/
(accessed on 5 August 2021).

44. OPC Foundation. OPC Unified Architecture Part 14: PubSub. Available online: https://opcfoundation.org/developer-tools/
specifications-unified-architecture/part-14-pubsub/ (accessed on 28 July 2021).

http://doi.org/10.3390/s21062004
http://www.ncbi.nlm.nih.gov/pubmed/33809049
http://doi.org/10.1109/ACCESS.2020.3013890
http://doi.org/10.1109/INDIN.2013.6622935
https://profiles.opcfoundation.org/v104/reporting/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model/
https://github.com/OPCFoundation/UA-.NETStandard
https://open62541.org/
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://www.eclass.eu/en/standard/introduction.html
https://github.com/admin-shell-io/questions-and-answers
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-6-mappings/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-6-mappings/
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/b0/7e/46/a8/5e/c1/48/01/DM00227538/files/DM00227538.pdf/jcr:content/translations/en.DM00227538.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/b0/7e/46/a8/5e/c1/48/01/DM00227538/files/DM00227538.pdf/jcr:content/translations/en.DM00227538.pdf
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.hilscher.com/products/product-groups/network-controller/asics/netx-90/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub/

	Introduction
	Asset Administration Shell as Industry 4.0 Component
	A Survey of Asset Administration Shell Tools Based on Practical Experiments
	System Requirements
	Interoperability
	Applicability
	Accessing Operational Values
	Summary

	Asset Administration Shell Design Methodology
	OPC Unified Architecture as Asset Administrative Shell Realization Platform
	Interoperability Provided by AAS Implemented in OPC UA Server

	Realization of the Embedded Asset Administration Shell
	Memory Organization of the Embedded OPC UA Server
	The Program Assembly Workflow
	Thre Realization Workflow
	Summary

	Experimental Verification
	Discussion
	Conclusions
	References

