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Abstract: Malware and ransomware are often encrypted to protect their own code, making it
challenging to apply reverse engineering to analyze them. Recently, various studies have been
underway to identify cryptography algorithms in malware or ransomware that use anti-reversing
technology via deep-learning technology. In particular, CNNs (convolution neural networks) are
deep-learning algorithms with superior performance, as compared to existing machine-learning
algorithms in image classification. In the cases of malicious files to which anti-debugging techniques
or anti-DBI (dynamic binary instrumentation) techniques are applied, if the traces are extracted using
various debuggers or DBI, the traces are cut off due to these techniques. The IPT (Intel processor
trace) has the advantage of extracting an accurate trace of a program by bypassing the anti-debugging
or anti-DBI technique. This paper presents a novel method by which to identify the symmetric-key
algorithms by applying a CNN to the traces extracted from the IPT. The IPT minimally interrupts
software execution. First, the trace encrypted by the symmetric-key algorithms is extracted using
the IPT. Then it is converted into an image to be an input into the CNN. The experiments were
carried out with two different datasets. The first dataset contained traces extracted by different types
of symmetric-key algorithms, and the training results were classified into nine classes with 100%
accuracy. The second dataset contained traces that included the various bit sizes of the security
keys and the block-cipher modes for each type of symmetric-key algorithm. Training results were
classified into 36 classes with an accuracy of 70.55%. While previous studies have identified the types
of encryption algorithms, this study employed a CNN to identify the number of key bits and the
block-cipher modes as well.

Keywords: malware; ransomware; symmetric-key algorithm; Intel processor trace; convolution
neural network

1. Introduction

Currently, the number of attacks and the amount of damage caused by malware and
ransomware is increasing at a tremendous rate as digital transformation is accelerating
globally [1,2]. For example, recently popular ransomware encrypts files on personal PCs
and corporate PCs using a cryptography algorithm. It then requires money in exchange
for a decryption key. This behavior is recognized as a major threat to individuals and
countries [3]. Ransomware can infect a device via emails, web pages, or P2P sites, especially
in the case of an encrypted malware or ransomware, which makes it difficult for antivirus
programs to detect [4,5]. Since 2016, ransomware has seen a rapid increase in the number
of undetected types of software, one of the most dangerous cyberattacks, especially the
financial damage caused by it [6].

Encryption prevents the information transmitted from being read or understood by
anyone other than the intended party. Therefore, it is often used to hide critical information.
However, recently, malicious code makers have often used encryption to hide malicious
code [7,8]. According to the application delivery networking company F5 Inc., malware
makers encrypt their own malware so that it is not detected by most malware detectors [9].
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Furthermore, 71% of malware uses encryption when receiving an attack command or
communicating with the control center [10]. Due to this encryption, the incident response
team is burdened with identifying the malicious code [10]. To prepare for such an attack, a
new strategy is needed to quickly identify and classify samples of malware or ransomware
and analyze their behavior. Existing cryptography algorithm detection methods have
disadvantages. For example, it is difficult to detect when a new variant of malicious code
is released. It is necessary to update the pattern or the signature of the newly created
ransomware [11]. Recently, new techniques have been studied to predict and detect
cryptography algorithms by learning modified encryption routines using AI (artificial
intelligence) technologies.

A recent study concerning the detection of cryptography algorithms using AI is
MLCrypto [12]. The study used machine learning to detect TDEA, AES-256, SHA-256, and
HMAC-SHA-256. MLCrypto used the naive Bayes classifier, which is efficient in computing,
simple to implement, and does not require an adjustment of learning parameters. The
experimental results showed a convergence performance of about 50%. CRED [13] used
a process- and data-driven approach to detect cryptography algorithms. CRED built an
early detection model using both data- and process-driven approaches based on the LSTM
algorithm. This allowed the ransomware to be identified before it started an encryption
attack. As a result, the model proposed in [13] effectively protected personal and business
data. RWguard [14] studied ransomware detection and experimented on samples from
14 widely known ransomware families. The above study monitored all changes (creation,
deletion, and writing) in the file and checked for abnormal changes. If CryptoAPI was called
during the monitoring, it checked whether the request was normal and then determined if
the request was benign or malicious. Additionally, the CPU was used from 0.85% to 1.02%.

Recent studies on deep-learning-based malicious code analysis are in progress, and
research results are being produced that classify malicious codes with higher accuracy
than existing machine-learning algorithms [15,16]. This research studied the classification
of a new symmetric-key algorithm applied with deep learning, paying attention to the
fact that the evolving characteristics of malicious codes and ransomware are similar to
deep-learning methods that evolve through self-learning. The IPT was used to capture
the execution information of all instructions executed by the CPU in a Windows operating
system to solve this problem. The CNN deep-learning algorithm was used to identify
which kind of symmetric-key algorithm was being applied. Commercial packers such as
Themida [17] and Enigma [18] provided anti-reversing techniques and encryption when
packing software [19]. The advantage of IPT is that it can bypass various anti-reversing
techniques. Moreover, while capturing the execution information of the program, no
interruption is applied to the execution information or flow of the program. Existing
research on the detection of cryptography algorithms can identify the type of cryptography
algorithm being executed. However, sometimes it is impossible to clearly identify the
number of key bits and the block-cipher mode used. Even if the cryptography algorithm
can be detected, additional time is required to identify the number of key bits and the
block-cipher mode.

In [20], they used an Intel processor trace to detect symmetric-key algorithms. They
found key generation patterns and routine encryption patterns based on heuristics by
extracting a trace using a symmetric-key algorithm. However, the experimental result did
not detect the key generation and encryption routine patterns of SEED, IDEA, and SM4
among the symmetric-key algorithms.

In this study, a new approach applying CNN was presented to classify a symmetric-
key algorithm with two data sets composed of IPT traces to solve this problem. The first
data set was imaged by extracting traces for each type of symmetric-key algorithm (e.g.,
AES, DES, IDEA, etc.). The second data set was an image of a trace that included the
types of symmetric-key algorithms, the numbers of key bits, and the block-cipher modes
(AES-128-CBC, AES-192-ECB, and AES-256-CBC). The first data set showed a classification
accuracy of 100%, and the second set showed a classification accuracy of 70.55%. The
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contribution of this study is as follows. First, it was a new study to detect a symmetric-key
algorithm by applying the CNN with an IPT. Second, when analyzing a program in which
ransomware or malicious code was inserted, the time and effort required for analysis could
be reduced by providing information on the type of symmetric-key algorithm as well as
the number of key bits and the block-cipher mode.

The composition of this paper is as follows. Section 2 describes studies related to
cryptography algorithm detection. Section 3 describes the proposed technique for detecting
symmetric-key algorithms and background knowledge required. Section 4 describes the
experiments in this study. Section 5 evaluates the experimental results and performance,
and finally, Section 6 presents conclusions and future plans.

2. Related Work
2.1. Detection of Cryptography Algorithms that Do Not Utilize AI

In [21], the study examined how to detect cryptography algorithms using the fact that
the parameters of the cryptography algorithm must exist in memory during the execution.
It confirmed the existence of a cryptography algorithm by assuming that input and output
parameters that match a specific pattern existed in memory and checking whether they
could be extracted. A data pattern was defined as a mathematical relationship between the
input data and the output data. It consisted of a front-end (Foch) and a back-end (Loch).
The front-end extracted a trace of the program using a digital forensic analyzer called Fochs.
The back-end determined the cryptography algorithm by extracting useful data based on
the traces extracted from the front-end. As a result of the experiment, the known algorithms
were successfully discovered, and the parameters of various cryptography algorithms were
extracted. Aligot [22] was a study to detect cryptography algorithms in packed programs
due to obfuscation or packers using Intel pins. The cryptography algorithm was detected
based on the loop data flow of the target program. It detected the algorithm by extracting
input and output parameters based on the loop data flow and comparing the parameters of
known cryptography algorithms. However, because it used Intel pins, a dynamic analysis
tool, it could only identify code that was executed at runtime. In addition, Aligot [22] had
the limitation that it could not detect the cryptography algorithms created randomly by
malicious code creators.

2.2. Cryptography Algorithm Detection Techniques Using AI

The author of [23] evaluated the performance of the algorithm to classify the DES,
IDEA, AES, and RC2 block cryptography algorithms that encrypt in ECB mode. The
evaluation algorithm used naive Bayesian, support vector machine, MLP, IBL, AdaBoost
M1 with bagging, rotation forest, and decision tree. As a result, the algorithm that used
pattern recognition proved to be useful for identifying cryptography algorithms. The study
in [24] identified the cryptography algorithm by tracking the number of times a specific
instruction was executed using an Intel pin. In this study, SVM, kernel, naive Bayesian, and
decision tree were used for evaluation. Among the above algorithms, decision tree showed
the best performance overall, but in the case of many classes, the performance was very
poor. It did not specify exactly how bad the performance was. In [25], the study focused on
detecting ransomware based on the Windows API that was called during encryption. If
there was an API that performed encryption among the Windows APIs that were being
called, the algorithm stopped the execution and checked if there was a signature in the SR
(signature repository). If the signature existed, it was classified as ransomware; otherwise,
it was registered as a new signature in the repository. As a result, AUC 0.9930 FPR showed a
result of 0.0156. The author of [26] extracted and learned the features of each cryptography
algorithm by extracting the binary basic block and loop, the instruction, and the entropy
using the dynamic instrumentation through the Intel pin API. The samples used were
compiled binary executables. In addition, features were extracted from the trace using a
dynamic convolution neural network. Experiments were carried out using the algorithms
AES, RC4, Blowfish, MD5, and RSA, and the result was 96%.
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Recently, research on detecting malicious codes using CNNs in various classification
problems has been actively conducted. Hwang et al. [11] analyzed strings from platform-
independent binary data to classify malware on Windows or Linux systems. They extracted
strings from binary data, represented them as vectors, and extracted features. Then, they
were trained using a DNN and classifications. Based on this result, the endpoint entry
was allowed only when the binary was judged to be positive. The experiment showed
an accuracy for this method of about 94%. The model can be improved by establishing
a security policy through continuous manual analysis and monitoring. Ashik et al. [27]
collected various malicious code samples and extracted features such as mnemonics,
command opcodes, API calls, and 4-gram mnemonics using dynamic analysis. In addition,
these features were learned and evaluated using various machine learning and deep
learning. As a result, the accuracy of the CNN in this study was 97.9%. Yan et al. [28]
extracted opcode sequences from malicious code files using the IDA decompile tool and
generated grayscale images. Then, using a CNN and an LSTM network, the grayscale
images and opcode sequences were learned as input, respectively. To optimize detection
performance, the output, and metadata functions of the two networks were integrated
using a stack ensemble, and the final prediction results were evaluated. The experimental
results showed an accuracy of 99.36%.

3. Proposed Scheme
3.1. Intel Processor Trace

The IPT is an Intel architecture that captures execution information of running soft-
ware. The IPT has information such as timing and program flow information (e.g., branch
target and branch use) collected in data packets [29]. There are two main categories of
data packets extracted by an Intel processor trace. One contains five types of packets
(PSB (packet stream boundary), PIP (paging information packet), TSC (time-stamp count),
CBR (core bus ratio), and OVF (overflow packet)). The other category has four types:
(TNT (taken-not-taken), TIP (target IP), FUP (flow update packet), and MODE (MODE
packet)) that have control flow information. Research using these packets is actively being
conducted [30–32]. The role of each packet is as follows. The PSB packet is generated at
regular intervals and serves as a packet boundary and is the first packet that the decoder
finds when starting trace decoding. The PIP packet records modifications to the CR3
register, which sets the physical address of the page directory and the functions related
to the page cache. The TSC packet is similar to the CPU’s time stamp counter, but it is
a time stamp counter for software. The CBR packet stores the bus clock rate. The OVF
packet is transmitted when the processor’s internal buffer overflows and the packet is
deleted. This packet informs the decoder of the loss and allows the decoder to respond to
this situation. The TNT packet has direct conditional branch information. The TIP packet
records the point of instruction for indirect branches, exceptions, interrupts, and other
branches or events. The FUP packet provides source instruction point information when
source addresses cannot be determined from binaries or asynchronous events, such as
interruptions and exceptions. The MODE packets have detailed information on execution
modes such as 16-bit, 32-bit, and 64-bit [29].

“Reversing” is the analysis of software to understand its design or structure. When
reversing, various debuggers or DBI (dynamic binary instrumentation) are used. Since the
IPT also captures program execution information, it can be used as a reversing tool. “Anti-
reversing” refers to a technique that prevents the analysis of software using a reversing
tool. In order to protect their own code, malicious code creators apply the anti-reversing
technique. One of the characteristics of the IPT is that it can bypass various anti-reversing
techniques. It also does not impose any interruptions on the execution information or the
flow of the program while capturing the execution information of the program. Figure 1a,b
are the results of executing a program to which a simple anti-debugging technique is
applied. If you press the “TEST DEBUGGER” button in the center, a message indicates
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that the debugger has been detected. Figure 1b shows the execution through IPT. Since IPT
bypasses the anti-reversing techniques, the program does not recognize it as a debugger.

Figure 1. Example of debugger detection. (a) Execution of program with anti-debugging applied.
(b) Execution through IPT.

Figure 2 shows the assembly code that detects the debugger and accesses the PEB
structure by executing the instruction “mov eax, dword ptr fs: [30h]”. Furthermore,
through “movzx eax, byte ptr ds: [eax + 2]”, the value of “BeingDebugged”, the second
member of the PEB structure, is stored in “eax”. BeingDebugged has a value of 1 when
being debugged and a value of 0 when not being debugged. Moreover, this value is stored
in “eax”. Thus, if debugging is performed, the “nop” instruction will be executed after
executing the “je label1” instruction. If debugging is not in progress, the “nop” instruction
will not be executed after the “je label1” instruction is executed.

Figure 2. Assembly code to detect the debugger.

Figure 3 shows the trace extracted through the debugger and Windows Intel PT [33].
The trace extracted through Windows Intel PT [33] is on the left, and the trace extracted
through the debugger is on the right. As described above, the “eax” value is checked using
the “cmp eax 0” instructions and the “jz short loc_401010” instruction is executed. Since IPT
bypasses the anti-debugging technique, the “nop” instruction is not executed. However, in
the case of the right figure, the “nop” instruction is executed because it is executed through
the debugger.
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Figure 3. Trace extracted via IPT and debugger.

3.2. CNN (Convolutional Neural Network)

The convolution neural network is a feedforward neural network inspired by the
experiments on the feline visual cortex by David H. Hubel and Torsten Wiesel, as shown in
Figure 4. They found that neurons respond only to visual stimuli within a partial range of
the field of view and that the receptive fields of these neurons overlap each other to form
the entire field of view.

Figure 4. Convolution neural network.

The CNN was first introduced in [34] to process images more effectively using filtering
techniques, and then the CNN of the form currently used in deep learning was proposed
in [35]. For example, when creating a CNN that recognizes a cat’s face, as shown in Figure 4,
a convolutional layer is first created by extracting simple features using a filter. Then, a
new layer is added that extracts more complexity from these features. This is the principle
of extracting high-dimensional features by connecting several convolutional layers and,
finally, learning using an error backpropagation neural network as before. Previously,
in the field of image recognition, people made these filters themselves, but the biggest
advantage of CNNs is that they create filters through learning. The CNN is the most
popular algorithm among deep-learning algorithms because each element of the filter is
trained appropriately for data processing and has excellent performance in classification.

The CNNs perform very well, especially in image processing problems. For this
reason, this work solves the problem of identifying symmetric-key algorithms in traces ex-
tracted from IPTs by applying CNNs. Each symmetric-key algorithm classification problem
was converted into an image classification problem and classified by the symmetric-key
algorithm by learning using a CNN. Table 1 in Appendix A shows the parameters of the
CNN in our experiments.

3.3. System Overview

Figure 5 shows an overview of the systems proposed in this study. First, we extracted
the encryption routine trace using the Windows Intel PT [33] from computer A in a Win-
dows environment. This study extracted 550 traces from 500 training sets and 50 test
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sets for each symmetric-key algorithm. We moved the extracted traces to computer B in
a Windows environment. Using the Windows Intel PT [33], the .bin file and the .txt file
appeared, and the Python code that converts binary to an image was operated on computer
B and trained the image using the CNN.

Figure 5. Overview of the proposed scheme.

3.3.1. Extracting Encryption Trace

We downloaded the OpenSSL library to computer A and extracted the encryption
routine trace using the Windows Intel PT [33]. Computer B converted all traces to images
in order to learn using the CNN. The way to extract traces from computer A was to use the
Windows Intel PT [33], which was downloaded from GitHub, Inc.

3.3.2. Symmetric-Key Algorithm Trace Imagination

The types of symmetric-key algorithms are AES, BF, CAST, DES, DES3, IDEA, RC2,
RC4, and SEED, comprising nine types altogether. Although there are various types of
ransomware, they generally have one thing in common: they perform encryption. Even
when a new ransomware is created, the ransomware has the common feature of encryption,
so in this study, the most widely used open-source library OpenSSL was downloaded, and
the encryption trace was extracted and imaged. Figure 6 is a depiction of the encryption
trace as a grayscale image. If the trace was extracted using a Windows Intel PT [33], the
.bin file was output. This .bin file is shown in Figure 6 and is imaged using the Python
code that images this type of .bin file. The size of the image depends on the size of the .bin
file. Figure 7 is a Python pseudocode that images a .bin file. This code reads the .bin file by
8-bits and adds it as a unicode value to the “binaryValue” variable. We repeat this process
until the end of the .bin file to add the value of “binaryValue” and save the size. We set the
width value according to the size, and when the width value was determined, the height
value was also calculated and saved. Finally, when the width and height values were set,
an L option (gray-scale mode) line was given and created a gray-scale image.
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Figure 6. The process of converting .bin file to image.

Figure 7. Pseudocode that converts binary to image.

4. Experiment

According to a recent survey, 83% of PCs worldwide operate in the Windows environ-
ment, and malware research is carried out mainly on Windows operating systems. We used
the IPT in a Windows environment, but it can also be used in the Linux environment [36].
Because this study detects the cryptography algorithm by learning the encryption routine
in a Windows operating system, it makes a great contribution to the practical application
of identifying ransomware.

4.1. Experiment Environment

In this study, we used two computers, one (computer A) to extract the trace, and the
other (computer B) to learn using the CNN. We used two computers instead of one for
the following reason. The GPU we used had a GTX 1660 Super graphics card, but the
driver to support this graphics card was not compatible with the Windows version that
uses Windows Intel PT [33]. Windows Intel PT [33] runs on Windows version 1607, build
number 14393.0, and, therefore, must be equipped with an Intel Skylake CPU. However,
among the drivers for the GTX 1660 Super, none supported Windows version 1607, so
we used two computers. The experimental environment of this study is shown in Table 1.
Computer A had Windows 10 version 1607 with an Intel CPU i5-6600. Computer A
extracted the encryption-routine trace of the OpenSSL symmetric-key algorithm. The
number of samples used was 550 by combining 500 training sets and 50 test sets for each
symmetric-key algorithm. Furthermore, the environment of computer B training the above
samples was the Windows 10 20H2 version with the GTX 1660 Super graphics card, Intel
i7-8700 CPU, and 32GB RAM. Table 1 in Appendix A showed the parameters of the CNN
in our experiments.
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Table 1. Experiment environment.

Computer Name CPU RAM GPU

A Intel i5-6600 8 GB none
B Intel i7-8700 32 GB gtx 1660 super

4.2. Data Set

In this study, traces extracted from the Windows Intel PT [33] were used with two
data sets. The composition of the data set for each symmetric-key algorithm was shown
in Table 2. It indicated the number of training data sets and the number of test data sets
used for each symmetric-key algorithm. The first data set consisted of nine symmetric-key
algorithms, 500 training data sets per algorithm, and 50 test data sets. The second data set
consisted of 36 symmetric-key algorithms with the same the number of training and test
sets as first data set. Figure 8 is an image of nine symmetric-key algorithms that make up
the first data set. Figure 9 is an image of 36 symmetric-key algorithms that make up the
second data set. For each set, the CNN training was performed.

Table 2. Data Set.

Data Set No. Symmetric-Key Algorithm Number of Data per Algorithm

1 AES, BF, CAST, DES, DES3, IDEA, RC2, RC4, SEED
Training Set 500

Test Set 50
Total 4950

2

AES-128-CBC, AES-128-ECB, AES-192-CBC, AES-192-ECB, AES-256-CBC, AES-256-ECB,
BF-CBC, BF-CFB, BF-ECB, BF-OFB, CAST-CBC, CAST5-CFB, CAST5-ECB, CAST5-OFB,

DES-CBC, DES-CFB, DES-ECB, DES-EDE-CBC, DES-EDE-CFB, DES-EDE-OFB, DES-OFB,
IDEA-CBC, IDEA-CFB, IDEA-ECB, IDEA-OFB, RC2-40-CBC, RC2-64-CBC, RC2-CBC,

RC2-CFB, RC2-ECB, RC2-OFB, RC4-40, SEED-CBC, SEED-CFB, SEED-ECB, SEED-OFB

Training Set
500

Test Set
50

Total
19,800

Figure 8. Image of symmetric-key algorithm in the first data set.

Figure 9. Image of symmetric-key algorithm in the second data set.

5. Evaluation

This study verified the possibility of detecting symmetric-key algorithms by com-
bining the IPT and a CNN. The performance showed 100% accuracy in identifying the
types of symmetric-key algorithms, and the identification accuracy of the key sizes and
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the block-cipher modes showed 70.55% accuracy. The performance of recent (first data
set) studies [23,26] on the symmetric-key algorithm was 92–96%, but our study showed
100% accuracy, which meant there was almost no misidentification. Furthermore, while
previous studies [24,26] identified only the type of symmetric-key algorithm used, this
study showed the results of identifying the number of key bits and the block-cipher modes
with 70.55% accuracy.

Figure 10a shows the loss per epoch while the model was training on the first data
set. A total of 200 epochs were performed; the x-axis represents the epoch, and the y-axis
represents the loss. As the epoch progresses, the loss converges to 0. Figure 10b is a graph
showing the accuracy of each epoch while the first data set model was training. Again, the
x-axis represents the number of epochs, and the first epoch learning showed about 70.55%
accuracy, but as the epochs progressed, the accuracy finally showed 100% performance.

Figure 10. Performance of first data set. (a) loss (%), (b) accuracy (%).

Figure 11 is a graph showing the accuracy per test sample during the test of the first
data set. The x-axis represents the number of test samples, and the y-axis represents the
accuracy. It can be converged to 100%, which is similar to the accuracy in the training
process. This showed that symmetric-key algorithms can be classified correctly.

Figure 11. Accuracy of test of the first data set.

Figure 12a is a graph showing the loss per epoch during the training of the second
data set. The x-axis represents the number of epochs, and the y-axis represents the loss.
A total of 200 epochs were performed, and there was more loss than in the first data set.
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This was assumed because the number of samples was larger than that of the first data
set. However, the error rate of the loss gradually decreased as it converged to zero as the
epochs progressed. Figure 12b is a graph showing the accuracy measured while training
the second data set. The x-axis represents the number of epochs, and the y-axis represents
the accuracy. Since the number of samples to be trained was large, the convergence to 100%
occurred after 150 epochs, as compared to the first data set.

Figure 12. Performance of the second data set. (a) loss (%), (b) accuracy (%).

Figure 13 is a graph that represents the accuracy of the second data set. The x-axis
represents the test sample, and the y-axis represents the accuracy. In the training process,
the accuracy converged to 100%, but the test process showed an accuracy of about 71%.
This was presumed to show lower accuracy than the first data set as the number of bits for
each type of symmetric-key algorithm and the sample including the block-cipher modes
were trained and tested. In [23], the accuracy of their scheme can be lowered by 30–50%
when they used various key sizes, encryption modes, and numbers of keys. From this,
we deduced that the accuracy of previous works for various key lengths and encryption
modes that were similar to the second data set was not very high.

Figure 13. Accuracy of second test data set.

To improve this, we planned to solve the problem by increasing the number of training
data sets so that the CNN could determine the number of bits by the type of symmetric-key
algorithm and the block-cipher mode involved, or by making the layer deeper so that the
difference could be accurately learned.
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6. Discussion and Conclusions

Deep learning is an artificial intelligence technology that is used to solve classification
problems in various fields. In particular, the CNN is in the spotlight as an algorithm with
the best classification power out of many deep-learning algorithms. This study presented
a new approach to classify symmetric-key algorithms by applying the CNN to traces
extracted by the IPT. This study was based on the fact that the characteristics of newly
evolving malware are similar to deep-learning approaches that have evolved through the
training of learning data. Existing research could only identify what kind of cryptography
algorithm was present when analyzing ransomware or malicious code. However, in this
study, identifying and learning the traces extracted through the IPT not only defines what
kind of algorithm it is, but also provides information on the number of key bits and the
block-cipher mode of the symmetric-key algorithm. Using the IPT, our scheme minimally
interrupts software execution.

Experiments were conducted on two different data sets. The CNN training results
for the first data set were identified by nine types of symmetric-key algorithms with 100%
accuracy. Cryptoknight [26] showed 96% accuracy in determining the type of cryptography
algorithm. On the other hand, this study showed a 3% improvement in performance. This
can reduce the time and effort required for analysis. In the second data set, 36 types of
symmetric-key algorithms were identified with 70.55% accuracy by learning traces that
included not only the types of symmetric-key encryption algorithms, but also the number
of key bits and block-cipher modes for each type of symmetric-key algorithm. In the
future, we will conduct research that can show a higher accuracy by considering how to
reconstruct the trace or adjust the convolutional layer of the CNN.
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Appendix A

Table 1 shows the parameters of CNN in our experiments.

Table 1. CNN parameter (Number of Classes: 9 or 36).

Layer Input Channel Filter Output Channel
or Output Size Stride Activation

Function
Parameter
Number

Convolution Layer 1 3 (3, 3) 16 1 Leaky ReLU 432
Max Pooling Layer 1 X (2, 2) X 2 X 0
Convolution Layer 2 16 (3, 3) 32 1 Leaky ReLU 4608
Max Pooling Layer 2 X (2, 2) X 2 X 0
Convolution Layer 3 32 (3, 3) 64 1 Leaky ReLU 18,432
Max Pooling Layer 3 X (2, 2) X 2 X 0
Convolution Layer 4 64 (3, 3) 128 1 Leaky ReLU 73,728
Max Pooling Layer 4 X (2, 2) X 2 X 0
Convolution Layer 5 128 (3, 3) 256 1 Leaky ReLU 294,912
Max Pooling Layer 5 X (2, 2) X 2 X 0

Convolution Layer 6 256 (3, 3) Number of
Classes 1 Leaky ReLU (2304) · (Number

of Classes)

Batch Normalization Number of
Classes X X X X 0

Global Average
Pooling Layer X X (1, 1)

(: output size) X X 0
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