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Abstract: Satellite communications are a well-established research area in which the main innova-
tion of last decade has been the use of multi-carrier modulations and more robust channel coding
techniques. However, in recent years, novel advanced signal processing has started being developed
for these communications due to the increase in the signal processing capacity of transmitters and
receivers. Although signal processing capabilities are increasing, they are still constrained by large
limitations because these techniques need to be implemented in real hardware, thus making com-
plexity a matter of critical importance. Therefore, this paper presents the design and implementation
of a transmitter with adaptable coding and modulation on a field-programmable-gate-array (FPGA).
The main motivation came from the standard CCSDS 131.2-B-1 which recommends that such a novel
transmitter which has to date not been implemented in a real system The system was modeled
by MATLAB with the purpose of being programmed in VHDL following the AXI-stream protocol
between components. Behavioral simulation results were obtained in VIVADO and compared with
MATLAB for verification purposes. The transmitter logical circuit was synthesized in a FPGA Zynq
Ultrascale RFSoC ZU28DR, showing low resource consumption and correct functioning, leading
us to conclude that the deployment of new communication systems in state-of-the-art hardware in
satellite communications is justified.

Keywords: FPGA; RTL; VHDL; DSP; SCCC turbo code; constellation diagram; puncturing;
interleaver; pseudo-randomizer

1. Introduction

In the last decade, the amount of data acquired by Earth observation satellites has been
steadily increasing due to improvements in the resolution of on-board instruments, which
translates into a greater capacity request in downlink data from a wireless communication
link [1]. As the number of instruments on board have been increasing, maximization over
downlink data rate and the application of bandwidth-efficient modulation schemes stand
out as active research lines in satellite communications. In 2012, the Consultative Com-
mittee for Space Data Systems (CCSDS) published a recommendation of standard CCSDS
131.2-B-1 [2], which describes a spectrally efficient and high data-rate telemetry transmis-
sion scheme based on Serial Concatenated Convolution Codes (SCCC) [3]. Specifically,
CCSDS 131.2-B-1 presents a variable and adaptive coding and modulation (VCM/ACM)
plan composed of 27 transmission schemes with the goal of adapting communications
according to the downlink channel [4]. Until today, CCSDS 131.2-B-1 has been regarded
as a relatively new standard, generating little research attention. However, it is strongly
endorsed by the European Space Agency (ESA) for next-generation applications in space
communications [5].

On the other hand, new space technologies are pushing for a more efficient and
faster methodology to design and develop novel communication systems embedded on
satellites. An interesting proposal is the implementation of the whole system on chip (SoC).
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This strategy is quite risky due to the hazardous space environment that can impair the
reliability-sensitive communication systems. The Soc paradigm imposes that part of the
system (or the whole one) is implemented in software on a micro-processor, while the other
part (or even the full system) is described in hardware on a field-programmable gate array
(FPGA) [6]. In the case of satellite systems, this is a delicate task because the hostile space
environment leaves the embedded software unreliable. In order to create a flexible system
which is at the same time reprogrammable, compact and low weight, as well as high-speed,
the project Madrid Flight on Chip [7] proposes the implementation of such a system on
FPGA hardware.

Adaptive communication methods have been studied for low-Earth-orbit satellites in
the literature [8,9]. In [4], an adaptive coding and modulation (ACM) scheme was shown
with 27 modes, and later standardized by the Consultative Committee for Space Data
Systems (CCSDS) in [2].

This paper proposes the synthesis and verification of the traditional 27 modes system
specified in [2] where interconnection takes place using the AXI-stream protocol [10]. To the
best of the authors’ knowledge, this is the first demonstration of an adaptive transmitter in
the literature based on the CCDS standard. Modern adaptive communication systems usu-
ally require high computation power to meet speed requirements and enhance throughput.
FPGAs are the most popular platforms for systems that require great performance and
flexibility [11,12].

This paper is structured in the following way: firstly, the transmitter structure is de-
tailed. Secondly, the algorithms are written and verified by MATLAB simulations. Once the
MATLAB code was developed, the VHDL code was written to achieve a hardware design.
Lastly, some behavioral simulations in VIVADO verify the correct RTL implementation of
the transmitter.

The main contributions of this paper are:

• A flexible FPGA design and implementation for an adaptive transmitter for high-
speed satellite telemetry following standard CCSDS 131.2-B.1;

• The optimization of the system design;
• Validation of the design with a reference model.

The remaining parts of this paper are organized as follows. Section 2 presents the
transmitter structure with ACM. Section 3 discusses the flexible and adaptive embedded
prototype of the transmitter structure. Section 4 shows the simulation results from VIVADO.
Finally, Section 5 states the conclusions drawn from the research.

2. High Data Rate Modulator Design Description

The developed ACM transmitter structure is divided into four parts: mode adaptation;
serial concatenated convolutional codes; physical layer framing; and baseband filtering.
The detailed block diagram is shown in Figure 1. An ACM Command input to a given
block will reconfigure its parameters and functionality according to one of the 27 available
operational modes [2]. The different modes have a different configuration for the param-
eters and include different options and blocks in Figure 1. The different modes are used
depending on the needs, the channel conditions and the status of the transmitter.

The parameters that can be changed according to the selected ACM format are given
in Figure A1 located in the appendix:

• ACM_format denotes the operational mode for the current frame;
• m denotes the modulation order of constellation symbols;
• Ssur denotes the number of surviving bits after CC2 puncturing in each input 300-bit

segment of systematic bits;
• K is the slicer output block length;
• I is the interleaver block length;
• S is the total number of transmitted systematic bits;
• P is the total number of transmitted parity-check bits;
• N is the row/column interleaver total block size;
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• ∆ is the number of deleted parity bits in CC2 puncturing.

Figure 1. Functional block diagram.

2.1. ACM Mode Adaptation

The ACM mode adaptation represents an interface for the incoming stream named
“transfer frames”. The input interface maps an electrical signal to bits. The purpose of ACM
is to provide the SCCC encoding unit with information blocks of varying length K with an
embedded synchronization pattern that will aid the receiver to recover the binary data.

In order for the receiver to work properly, it requires that the incoming signal has
sufficient bit transition density and allows the proper synchronization of the decoder.
It is important to highlight that this standard is designed for high-speed data telemetry
transmission, so usually large amounts of data will be transmitted. The pseudo-randomizer
block diagram is shown in Figure 2. All the registers are initialized to all-ones state, then at
each clock cycle, we generate a random sequence that repeats itself every 255 bits. Incoming
transfer frames are randomized by XOR-ing each incoming bit with each output bit of
the pseudo-randomizer. Once the transfer frame was processed, all registers must be
re-initialized to the all-ones state.

Figure 2. Pseudo-randomizer architecture.

A synchronization method is necessary to simplify the receiver structure and obtain
sufficient performance. It is necessary that the receiver correlates the decoded binary
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stream with a pattern in order to find the starting index of each embedded randomized
data block. Thus, a 32-bit asynchronous synchronization marker (ASM) 0x1ACFFC1D is
attached at the end of each transfer frame to create a channel-data-access-unit (CADU).

Then, a stream of CADUs is fed into the slicer, whose main function is to split its con-
tinuous input into a sequence of well-defined information blocks of length K in accordance
with the selected ACM format. Again, this is specified by the standard in order to simplify
the implementation.

Although the ASM block seems to be simple, an efficient implementation as the one
proposed in this paper is very important for the main goal of high-speed data transmission.
If it is not properly designed, it will introduce several delays that can even generate
problems in synchronization.

2.2. SCCC Encoding

There is a need to protect the system with a flexible coding and modulation scheme
in order to adapt to different channel conditions. This capability is provided by an SCCC
encoder illustrated in Figure 3. The SCCC encoder is designed as a serial turbo code that
generates at its output a constant number of 8100 modulation symbols regardless of the
information block size K and current ACM format. The reason for this is to allow the
efficient implementation of the encoding process and thus reduce its complexity.

Figure 3. Serial turbo code architecture.

As in most systems, the encoder has a fixed rate and the different code rates are
obtained by puncturing. CC1 is a rate 1/2 recursive, systematic convolutional code whose
structure is shown in Figure 4. In this diagram, the subsequent variables appear:

• u[n] denotes the n-th uncoded input bit;
• C1[n] denotes the n-th coded systematic output bit;
• C2[n] denotes the n-th coded parity output bit.

Notation follows that square brackets in u[n] denote the n-th vector position or equiv-
alently the n-th clock cycle at which the operation takes place in the logical circuit. Thus,
in the first clock rising edge, the input u[1] yields two output bits: the systematic bit C1[1]
and a parity bit C2[1], etc.

In summary, the convolutional encoder processes the information block of length K;
when processing finishes, the switch moves into the upper position to terminate the trellis
during an extra 2-bit period. Trellis termination is necessary to reset all registers to a known
state, which is all-zeros by default.

To transform the CC1 1/2 rate into 2/3 rate, a fixed-puncturing scheme is used. A
CC1 puncturing scheme is only fed with parity output bits from CC1 to be decimated by
a factor of 1/2. Meanwhile, all systematic output bits are transmitted bits. This is better
illustrated in Figure 5.
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Figure 4. Convolutional code block diagram for CC1 and CC2.

Figure 5. CC1 parity decimation puncturing scheme.

As in all the turbo codes, the interleaver is a fundamental block to construct a random
code in order to spread out burst errors created by temporal fluctuations in the channel.
In this standard, the interleaver implements an ad hoc permutation that could be visualized
as a memory block with its size denoted by interleaver length, I. In particular, the memory
block is split in such a way that it always keeps 120 rows and a variable width, such as
I = 120 ×W. Remember that W denotes a variable number of columns in the interleaver
memory. The 120 ×W memory must be written row by row, from left to right. Once the
interleaver memory is filled, its content must be scrambled. For this purpose, a column bit
vector with dimensions of 120× 1 is extracted from a general column denoted by variable c.
Thus, each column in the memory will be cyclically shifted by a different parameter denoted
by the function β(c). Now, on a second step, each column c is consistently displaced to
a new column position within the memory block—a position which is different for each
column and specified by the function α(c). When the mixing process finishes, the memory
is read row by row, from left to right. The reader may notice that there are only 19 distinct
values of I, implying that only 19 unique possible permutation laws exist.

The interleaver parameters change according to the ACM format: these are W (total
number of columns); α(c) (new column position for each column c); β(c) (cyclical shift
for each column c). Their values are provided in tables located in [2] ANNEX B. In our
implementation, several registers and shifts have been used to obtain an efficient yet
reduced block. It is worth noting that this block will be made redundant in order to
guarantee proper decoding, so any effort to reduce its complexity will be very useful in
the future.

CC2 systematic/parity output lines are fed to two different puncturing algorithms
with the aim of enabling a set of variable coding rates. The systematic puncturing algorithm
uses the number of survival systematic bits, i.e., Ssur, to specify a puncturing pattern on
each 300-bit sequence. The variable S represents the number of systematic bits that are
divided into 300-bit sequences to puncture each sequence accordingly. After puncturing,
each 300-bit sequence will contain exactly Ssur surviving bits. The parity puncturing



Electronics 2021, 10, 2476 6 of 17

algorithms defines a rate-matching algorithm which deletes a total number of ∆ parity bits
from the total stream of P parity bits. Further details of both algorithms are specified in [2].

The row/column interleaver is a block memory of size N = 8100 × m. The number of
rows—8100—is the number of symbols generated from one code block; and the number of
columns—m—is the modulation order which varies according to the current ACM format,
as explained earlier (see the table in Figure A1). The write/read procedure is illustrated
in Figure 6. When reading the row/column interleaver, each row contains m bits that
modulate a symbol from the constellation mapping block.

Figure 6. Bit-interleaving scheme.

2.3. PL Framing

The input to the PL framing processing is encoded blocks of size N. The modula-
tion order m selects one of the possible constellations with its respective bit-mapping, as
displayed in Figures 7–11.

Figure 7. QPSK.
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Figure 8. 8-PSK.

Figure 9. 16-APSK.

Figure 10. 32-APSK.
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Figure 11. 64-APSK.

In order for the receiver to work properly, it will have to be synchronized to the
RF-signal as well as perform channel and frequency offset estimation to compensate for
impairments. Thus, a distributed pilot pattern is used for carrier and phase synchronization
purposes. Concretely, a total of 240 pilot symbols are distributed within each block of
8100 data symbols, as represented in Figure 12. A codeword section is divided into
15 subsections, where each is composed of a 540 data symbols block and 16 pilot symbols
with equal in-phase and quadrature components: I = Q = 1√

2
.

Thus, PL signaling insertion creates a 320-symbol header which is divided into
256 frame marker symbols and 64 frame descriptor symbols, as shown in Figure 12. The
frame marker is generated by a gold sequence which is used for the start of frame de-
tection and synchronization. The frame descriptor is coded by a linear block code and
contains information about the ACM format and pilot presence within the transmitted
frame. Algorithm details for generating the frame marker and frame descriptor are defined
in [2].

Figure 12. Physical layer frame structure.

Physical layer pseudo-randomizer aids the telemetry link to facilitate the receiver
acquisition, bit synchronization, and code synchronization. The pseudo-randomization
process is applied to both data symbols and pilot symbols in the frame to prevent send-
ing symbols in a predictive way due to pilot insertion. Frame header symbols are not
randomized. The details of the randomization process are described in ANNEX C of [2].

3. Flexible and Adaptive Embedded Prototype

Space applications, such as satellite communications, are critical and often need to be
very robust to provide radiation tolerance and high reliability. To this end, the redundancy
of the main blocks is carried out. In addition, since the real-time-operating-system (RTOS)
is embedded in the FPGA software, this only leave us with the FPGA fabric (logical
hardware) to implement the whole data link system. Moreover, the data link is critical and
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highly resource demanding. As a consequence, an FPGA with enough RF-chains must be
considered for this application. The Xilinx company sells a family of FPGA models called
Zynq Ultrascale +RFSoC [6] whose main direct-RF chain features are shown in Figure 13.

Figure 13. RFSoC features’ comparison table.

Our choice is the model ZUDR28 since it includes soft-decision forward-error-correction
(SD-FEC), which may be valuable to implement the SCCC-decoder at the receiver side.

In order to illustrate the design, several RTL schematics obtained from Vivado soft-
ware are shown in Figures 14–19. In these schematics, the reader may notice the use of
AXI-stream signals [13] to interconnect the different components pairing a component’s
master/output port with the slave/input port of the downstream component. Figure 15
reveals a new FIFO component in the structure. The reason is to store the output from the
pseudo-randomizer while the ASM module is not ready due to the transmission of the
32-bit ASM pattern. As explained before, this is a key detail to ensure efficient implementa-
tion and prevent troublesome delays in the whole chain.

The structure of the SCCC encoding module in Figure 16 suffered slight modifications
in order to accelerate the design and make it more efficient. When the inner convolutional
code (CC2) outputs its systematic and parity bits in a 2-bit wide bus, this is directly fed to the
SYS_PAR_PUNC unit. This is performed in order to be conservative with the AXI-stream
protocol and prevent serial-parallel and parallel-serial conversions. The SYS_PAR_PUNC
unit uses a finite state machine (FSM) to apply different puncturing patterns accordingly.
In addition, it also provides a flag to indicate whether the output contains a systematic
or parity bit, which is helpful for the row/column interleaver. Finally, an extra serial-
to-parallel module is needed to transform the 1-bit stream output from the row/column
interleaver into to a bus of wide m (modulation) order. It is worth nothing that the pipeline
implementation allows us to optimize the data stream and obtain the maximum data rate.

The physical layer frame generation structure is a plot in Figures 17–19. Considering
the fact that tdata buses in this region must contain complex numbers, a fixed-point numeric
format was employed for the real and imaginary parts, which are concatenated in the tdata
buses. For example, if ACM format = 1, the word length is 7 bits in fixed-point data, and
as a result, tdata buses are 14 bits wide, the first 7 bits corresponding to the real part and
the following 7 bits corresponding to the imaginary part. Additionally, one must take
into account that the frame header generation only needs knowledge of the current ACM
format, since it does not have a slave AXI-stream port and generates the header when the
reset is released. This implies that the header symbols must be saved in an FIFO until
the processing propagation delay has passed, so data symbols for the PL frame start to
generate. Finally, additional logic includes a counter that helps read the PL frame in the
correct order, starting first with the header and later with the codeword sections, composed
of data + pilot symbols. This final structure is responsible for the final maximum data rate.
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Figure 14. Transmitter RTL block diagram.
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Figure 15. ACM mode adaptation RTL block diagram.
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Figure 16. SCCC encoder block diagram. The S2P block is serial to the parallel block.

Figure 17. Part I—physical layer frame RTL block diagram.

Figure 18. PART II—physical layer frame RTL block diagram.
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Figure 19. PART III—physical layer frame RTL block diagram.

4. Results

In this section, simulation results from the FPGA design are discussed.
A stimulus is necessary to test the hardware inferred in VHDL code. Using MATLAB,

a contiguous random sequence of bits was stored in an input text file. Then, a testbench
was coded in VHDL to read the input generated by MATLAB, apply the stimulus to the
logical design, and save the output in another TXT file named “TX_out.txt”. It is important
to mention that the VHDL testbench feeds the input to the transmitter using a slave AXI-
stream interface and fetches the output with the help of a master AXI-stream [10]. To verify
whether results are correct, one needs to have an available software-output reference stored
within another TXT file named “SW_out.txt”. This is obtained by modeling the system
in MATLAB. Therefore, the two TXT output files containing the software and hardware
outputs are compared in Figure 20. Here, each 14-bit pattern encodes a complex symbol
from the physical layer frame in fixed-point format. Since both outputs are identical, this
justifies that the system is working as expected.

To further illustrate the system behavior, a snapshot of 8 usec from a timing diagram
is presented in Figure 21. A timing diagram shows the transitions of all digital signals in
the hardware at any time; nevertheless, in Figure 21, we only include the input/output
signals of interest to the whole design. These signals are explained below.

• tb_aclk (IN) 2 MHz input clock;
• tb_aresetn (IN) synchronous active-low reset;
• s_axis.tdata (IN) contains input data to feed into the device.
• s_axis.tvalid (IN) if ’1’ then the s_axis.tdata signal is considered valid;
• s_axis.tready (OUT) is set to ’1’ when the device is ready to process the data.
• s_axis.enable (IN) = s_axis.tvalid and s_axis.tready, signals a valid transfer of data to

the device;
• t_rline timer to count the number of lines read from the input file;
• reading_done set to ’1’ when the input file has been read;
• m_axis.tdata (OUT) contains output data generated by the device;
• m_axis.tvalid (OUT) is set to ’1’ when the input data m_axis.tdata signal is considered

valid;
• m_axis.tready (IN) if ’1’, then the next device paired to the master interface is waiting

to receive data;
• m_axis.enable (OUT) = m_axis.tvalid and m_axis.tready, indicates correct data transfer

through the master interface;
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• t_wline timer to count the number of lines written in output file;
• writing_done set to ’1’ when all output data have been captured in output TXT file.

Figure 20. MATLAB output for the first 41 symbols of a PL frame.

One might notice how input data in s_axis.tdata are always valid since the transmitter
is ready on every clock cycle. The signal m_axis.tready is randomly generated within the
testbench with the unique purpose of making the behavioral simulation more random to
identify any possible bug. As stated in the AXI4-stream protocol, whenever there is a valid
output datum in the master interface, i.e., m_axis.tvalid =′ 1′, the control logic must not
change the signal m_axis.tvalid until the downstream component samples m_axis.tdata.
This behavior is crucial for data transfer to properly work, otherwise data could be overwrit-
ten and lost forever. This is the reason why the signal m_axis.tdata in Figure 21 stretches
over many clock cycles just until m_axis.enable transitions back to ’1’. In a similar way,
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the counter t_rline increases whenever s_axis.enable =′ 1′ and t_wline increases when
m_axis.enable =′ 1′.

Figure 21. Timing diagram for the first 8 output bits after initialization.

Finally, a resource utilization chart obtained by synthesis simulation is presented in
Figure 22. An FPGA uses a series of building blocks to create any digital electronic circuit
within itself by using configuration logic blocks. These logic blocks are the elemental
building blocks of any digital system within an FGPA. Each block may contain some of the
next components: look-up table (LUT), flip-flop (FF), block RAM (BRAM ), input/output
pins (IO) and buffers (BUFG). Regarding Figure 22, the current transmitter design requires
21 IO lines which account for the physical layer frame output encoded by a fixed-point
format employing 14 for the word length and also several control signals from the AXI-
stream interfaces. Apart from this, the total use of digital components is below 1% of the
total number of available components. Thus, it is safe to state that the current design is
resource efficient, which is desirable since additional resources are available to allocate
extra applications within the system on chip. Lastly but no less significantly, the design
allows system redundancy which is crucial since backup systems are needed to fulfill the
requirements of modern space communications systems in case of failure.

Figure 22. Resources used in the implementation.

5. Conclusions

Throughout this paper, it was shown that an adaptive transmitter structure which
meets high-performance requirements could be effectively implemented on real hardware.
The possibility to use advanced re-programmable hardware was justified by the low impact
on allocated hardware resources synthesized in VIVADO. It is important to mention that the
standard does not specify any interconnection between the described functional modules.
Then, we decided to implement AXI-stream interfaces in our model in order to optimize
the serial data flow. This decision simplifies the model because the number of FIFO buffers
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needed is lower. Finally, the agreement between software simulations carried out by
MATLAB and hardware simulations obtained from VIVADO verify the correct coding and
design of the whole adaptable transmitter.

Further research can be carried out from this project. For example, timing simulations
and power consumption were not analyzed. In the current study the transmitter block
was synthesized, and a future study will be based on the implementation and real in-
laboratory testing of the whole module. Another likely research line is the development
of the receiver in the same FPGA technology, which is mandatory to enable this adaptive
communication system.
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