
electronics

Article

Using Graphics Processing Units and Compute Shaders in Real
Time Multimodel Adaptive Robust Control

Cosmin-Constantin Mihai * and Ciprian Lupu

����������
�������

Citation: Mihai, C.-C.; Lupu, C.

Using Graphics Processing Units and

Compute Shaders in Real Time

Multimodel Adaptive Robust Control.

Electronics 2021, 10, 2462. https://

doi.org/10.3390/electronics10202462

Academic Editor: Ahmed Abu-Siada

Received: 21 September 2021

Accepted: 6 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Automatic Control and Systems Engineering, University POLITEHNICA of Bucharest,
Splaiul Independent,ei 313, 060042 Bucharest, Romania; ciprian.lupu@upb.ro
* Correspondence: mihaicosmin2007@outlook.com

Abstract: Graphics processing units and video cards have seen a surge of usage in domains other
than graphics computers, due to advances in hardware and software technologies; however, little
uptake has been in the domain of systems engineering and real time control. This research article
will demonstrate the use of video cards in multimodel adaptive robust control, using openGL and
compute shaders. A software simulation will show the behavior of the adaptive robust multimodel
control scheme as the target process is exposed to both parametric and structural disturbances and
will show the viability of using graphics processing units in real time systems control.

Keywords: real time; adaptive; robust; multimodel; compute; shader; graphics processing unit;
openGL

1. Introduction

Adaptive-robust control [1–3] is a strategy used to control processes with nonlinear
dynamics, as it guarantees reference tracking and rejection of disruption by reidentifying
the process model and controller each time performance degradation is detected. It requires
little a priori knowledge of the process and is best suited for situations where information
about system dynamics is difficult to obtain or processes are subject to various types of
disruptions. However, process identification and controller tuning in close loops can be
difficult to implement correctly, and the mathematical complexities may lead the control
system to miss the real-time sampling deadline for fast processes. In case of processes
that are exposed to a many different types of disturbances repeatedly, a combination
of multimodel [1,4] and adaptive robust control can be used to avoid reidentification
of nominal models and tuning of robust controllers. Similar to adaptive and robust
philosophies, multimodel control is an approach to dealing with perturbations and changes
in the operating circumstances.

Instead of trying to tune algorithms or reidentify nominal models, multimodel control
stores precalculated nominal models and controllers that match various working regimes.
When perturbations occur, the change in the working regime is detected through switching
algorithms. The correct controller and model to use for a specific working regime is
determined through the computation of a switching criterion [5–7].

This control scheme works very well with systems that have many working regimes
yet repetitive behavior. These are encountered in vehicles. One possible example is a
vehicle’s suspension system, for a particular wheel. Depending on the speed, angle of
movement, type of road pavement, temperature, car weight, and its weight distribution,
the system behaves differently, with a different model for each working regime. Most cars
tend to follow the same routes throughout their lifetime, so the repetitive nature of the
perturbations is also met, as shown in Figure 1. Another example are the components of
the steering system in a plane or shuttle, such as the ailerons on wings. As the plane flies
through changing atmospheric conditions and executes maneuvers, the working regime of
an aileron changes, accounting for multiple possible models during a single flight trip.

Electronics 2021, 10, 2462. https://doi.org/10.3390/electronics10202462 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1008-1217
https://doi.org/10.3390/electronics10202462
https://doi.org/10.3390/electronics10202462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202462
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202462?type=check_update&version=2

Electronics 2021, 10, 2462 2 of 16

Figure 1. Example of working regimes a plane may encounter during its trip. Depending on weather
conditions and drive path, several different controllers might be needed for its direction system.

The detailed working model of the multimodel control scheme is shown in Figure 2.
When the process is exposed to perturbations, either parametric or structural, the output
value y changes. This output value y is then fed into the model selector block, along with
the command value u. For each model in the model selector block, an output value yn
is computed using the commands and the output errors of the real process. Finally, yn,
u, y, and un are used to compute a switching criterion. Based on the switching criterion,
a model that best matches the real process is chosen. The switching criterion is usually
based on the delta between the real process output value y and the output value yn of
the nominal model [5]. With the model determined, the appropriate control algorithm is
chosen from the algorithm selector block, which is then finally used to issue commands to
the real process.

Figure 2. Overview of multimodel control scheme. The blue blocks on the left represents the
algorithm selector block; the yellow and green blocks on the top right represents the model selection
block. A model is chosen using inputs from the real process. Based on the chosen model, a control
algorithm is chosen to issue new commands to the process.

The multimodel part consists of a knowledge base containing previously identified
nominal models and their robust controllers, matching various working regimes that are
subject to different types of perturbations. Switching between the current nominal model
and robust controller to one in the cache is decided by calculating a switching criterion [5],
and only occurs when performance degradation is detected, a difference from the classical
multimodel control philosophy, where the model switch can occur at every sampling time.
If the knowledge base grows, it becomes difficult for the classical iterative approaches to
compute the switching criterion for each cached nominal model and still hit the real time
sampling deadline, especially when dealing with fast systems.

This article presents a novel approach to fixing the large knowledge base problem, by
employing a graphics processing unit (GPU) to perform the calculation of the switching
criterion in highly parallelized manner [8]. As part of this new approach, the mathematical
algorithms that simulate the evolution of processes (calculation of transfer function outputs

Electronics 2021, 10, 2462 3 of 16

in discrete form and controller command computation) have been adapted to make full
use of the particularities of the GPU hardware. A software simulation was developed to
showcase the results. The software can be easily modified to work with real systems.

Other approaches so far have avoided the large knowledge base issue by limiting
the number of “fixed” models and initializing an adaptive model from the initial fixed
model and performing continuous tuning [9,10]. This approach is accurate but slow and is
therefore unsuitable for fast processes. The proposed approach is coarse but very fast and
will be better suited for fast and slow processes alike.

The paper will first present the mathematical basis of the simulation, followed by a
brief explanation on how GPUs were used in the application, and finally some simulation
results. The simulation results will show that the algorithms work correctly. Although the
point of the research is to deal with large numbers of models, the simulation will only show
four models, to better explain how it works.

2. Materials and Methods
2.1. GPU Hardware Overview

GPUs are designed to perform many mathematical operations in parallel due to the
multithreaded nature of the hardware platforms, which help efficiently generate display
output images, by executing a series of operations on the input data in a process called
a graphics pipeline. The graphics pipeline has several stages [11] (not all mandatory—it
depends on the expected results) in which various operations can be done in the outputs
from of the previous stage (which become inputs for the current stage). At each stage,
scripts called shaders are used to perform programmatic manipulation of input data.
Among these, pixel shaders (which apply per pixel operations over a rasterized image)
were typically used to perform various general purpose mathematical operations (with
some limitations). In recent times, GPU hardware and driver support have evolved to
expose a new kind of shader—called compute shader [12]—which can be used to perform
general purpose mathematics on large data sets in a natural fashion, very similar to
how things would normally operate with a classical algorithm that runs on the central
processing unit (CPU) of the computer. These shaders also fully expose the parallel, heavily
multithreaded nature of the GPU hardware. Compute shaders run on virtual work groups
(the shader declaration defines the size of the group), composed of small execution units
called cores. Each core has floating point and an integer arithmetic unit, and each core
inside a virtual group has access to the same data buffers and will perform the same
instructions in the same order. Virtual groups may or may not have a 1 to 1 mapping with
hardware groups. In case the mapping is not exact (i.e., the size of the virtual group is
not an integer multiplier of hardware group size), then the graphics hardware is not fully
used, it is up to the driver and the execution scheduler in each hardware implementation
to decide what happens with the unused cores in the group. Figure 3 shows an overview
of nVidia Turing GPU work group (named streaming multiprocessor by Nvidia) [13].

Each core in the work group will run a thread in the compute cluster. The compute
cluster represents the total number of threads assigned by the application when invoking
the compute shader. When invocation occurs, the programmer can decide how many work
groups will be executed as part of the compute cluster. The total number of threads will be
the product of the group size, defined by the shader declaration in source code, and the
total number of groups passed to the invocation call. The maximum number of threads
in a compute cluster depends on the framework being used to access the GPU hardware
and the hardware specifications of each GPU. Both the size of the virtual compute group
and the total number of groups dispatched can be represented in 3D vector numbers, with
X, Y, and Z sizes. This helps process data that are naturally 3D, but in this research, Y
and Z are always 1, as the data are naturally a 1D array, so both the group size and the
number of groups are effectively 1D vectors. Attempting to map it to 3D does not offer any
advantages, so a design choice was made to keep Y and Z always 1 [12].

Electronics 2021, 10, 2462 4 of 16

Figure 3. Detailed view of a work group of an nVidia Turing GPU. The group consists of arithmetic
cores split into two subgroups and several support units that perform advanced mathematical
operations (such as trigonometric operations) [13].

Even though compute shaders can provide support in computing various mathe-
matical operations needed as part of the usual graphics generating pipeline, they can be
used outside of the graphics pipeline to act as powerful mathematical co-processors for
the applications. This feature, however, depends on the framework being used to access
the hardware. DirectX allows calling compute shaders [14,15] without an actual game
window; openGL currently does not. This is not a problem in itself when it comes to
industrial applications. In most cases, a process computer will have some sort of user
interface that is used to show the status and evolution of the process, so the requirement of
an active openGL context is already met. The calling of compute shaders will be strictly
tied to the refresh rate of the graphics context. This refresh rate can be coordinated with
the system sampling time, to ensure real time responsiveness, when using openGL [11]. In
case of DirectX, conditions are much simpler because programmers can directly access the
hardware pointers and create contexts whenever it is necessary [14–16].

In the case of the multimodel adaptive control philosophy presented here, each core
will execute the logic needed to compute the value of a switching criterion, which is then
used to execute a nominal model and controller switch in the real plant. Since a GPU boosts
hundreds of cores, it is quite easy to maintain a large knowledge base of nominal models
and their optimal controllers and compute the switching criterion in parallel, while still
adhering to the strict sampling time requirements imposed by real time control. This is not
trivially possible when using just a CPU, because it lacks the number of cores that a GPU
has, and it is more likely to perform these calculations in parallel [8,17].

The simulation software used in this research was developed in C#, using Visual
Studio 2019, and targets the net framework 4.7.2. The application uses openTk nuget
package to interop with openGL, and allow calling openGL functions from C#. Finally,
openGL itself is packaged through the freeglut, glew32, glut, and glut32 dlls. These
are bundled with the source code and will automatically copy themselves to the output
directory so they will be loaded by the runtime correctly.

Additionally, the application makes use of MATLAB software for PID tune algorithms.
The application code did have its own algorithm for computing an optimal PID for first

Electronics 2021, 10, 2462 5 of 16

degree processes, but this will not work for second degree processes. Since the purpose of
the research work is not to implement PID tune algorithms but rather to demonstrate the
use of GPUs in real time system control, it was decided to use as many external software
packages as needed to deal with dependencies. Another reason why MATLAB is used to
compute the optimal PIDs instead of using other inputs is because it makes it easier to just
plug in various types of models in the simulation and see how it evolves, without the need
to deal with the PID tune [18]. MATLAB was also used to print the plots throughout this
paper. Any version of MATLAB that supports the COM server can be used [19]. It may be
necessary to replace the COM reference to MLApp in the C# project if versions other than
2020 are used.

To compile the source code, Visual Studio 2019 with the Desktop Development Pack-
age must be used. It is likely that this will work with older versions as well, but it was never
attempted. Visual Studio Community edition is free to use and install for open-source
developers and small companies [20].

2.2. Computations of System Outputs

In the adaptive-robust control philosophy [2], the supervisor uses an approximation
model of the real plant, called a nominal model, to determine when performance degrada-
tion occurs due to changes in the real plant. Equation (1) describes the relationship between
the real plant, the nominal model, and the robustness margin [1,3,17,21].∣∣∣∣(CP

1−CP

)
−

(
CM

1−CM

)∣∣∣∣ < δ (1)

where CP is the closed loop transfer function of the real plant, and CM is the closed loop
transfer function of the nominal process; δ is the robustness margin.

To simulate the outputs of a transfer function, necessary for determining the value
of CM, it is necessary to perform a discrete transform over its continuous form. There are
several transformations provides in literature; in this research, the Tustin or Trapezoidal
transform will be used. For a first order transfer function, such as the one described in
Equation (2),

HI =
y
u

=
Kf

Tf ∗ s + 1
(2)

The Tustin transform will involve replacing s as shown in Equation (3), where T is the
sampling period, and z−1 is the delay operator, y is the output, and u is the input.

s =
2
T
∗ 1− z−1

1 + z−1 (3)

By replacing (3) in (2), it can be easily demonstrated that

yk =
b[0]u[0]+b[1]u[1]−a[1]y[0]

a[0]
(4)

where
b[0] = TKf (5)

b[1] = Kf (6)

a[0] = 2Tf + T (7)

a[1] = T− 2KF (8)

Furthermore, (4) can be rewritten in the regressive form, as shown in (5)

ykI = c[0]u[0]+c[1]u[1]+c[2]y[2] (9)

Electronics 2021, 10, 2462 6 of 16

For a second order system, the transfer function can be written as in (6)

HII =
y
u

=
ω2

s2+2ζωs +ω2 =
W

Ls2+Ks + W
(10)

where L =1 (usually), K = 2ζω, W =ω2. Applying the same Tustin transformation shown
in (3), the discrete form of the second order transfer function is determined as

ykII =
b[2]u[2] + b[1]u[1] + b[0]u[0]− a[2]y[1]− a[1]y[0]

a[0]
(11)

where
a[0] = 4L + 2KT + WT2 (12)

a[1] = −8L + 2WT2 (13)

a[2] = 4L− 2KT + WT2 (14)

b[0] = WT2 (15)

b[1] = 2WT2 (16)

b[2] = WT2 (17)

In the regressive form, Equation (11) can be rewritten as

ykII = c[4]u[2]+c[3]u[1]+c[2]u[0]+c[1]y[1]+c[0]y[0] (18)

Similarities can be observed between Equation (11), which describes the regressive
form of a second order process, and Equation (9), which describes the regressive form of
a first order process. If in (11), c[1] = 0 and c[4] = 0, then (11) becomes equivalent to
(9). This shows that the set of transfer functions of second order systems is a superset of
the transfer functions of first order systems, and that any first order transfer function can
be rewritten as a second order transfer function. This is important, as the mathematics
show that a single algorithm can be used to compute the output of both first order and
second order transfer functions. The value of u is computed the by the controller, using
the reference r and the output error e = r− yk. In the case of a PID controller, with the
general form

C(s) =
u
e
= Kp +

Ki

S
+Kds (19)

The output value of uk can be written as

uk = u[0] + K1e[0] + K2e[1] + K3e[2] (20)

where K1 = Kp+Ki+Kd, K2 = −Kp−2Kd, K3 = Kd. The values of u can now be plugged
in to Equations (9) and (18) to compute the final output of each nominal system. The number
of historical values for both y and u depends on the order of the process. First order transfer
functions require fewer historical values compared to second order transfer functions.

With those formulae, it is now possible to compute the values of CM and CP in (1).
The compute shader will execute compute the values of each CM in the knowledge base,
as will be explained in the next section.

2.3. Using the Compute Shader

The compute shader represents the code that will be executed by the graphics hard-
ware work groups to calculate the values described in (1). The openGL framework was
used for accessing the graphics hardware, the programming language used was GLSL,
a language similar to C in syntax [12]. As described in the introduction of this article,
shaders get executed by threads in parallel, using hardware groups called work groups.
The size of a work group is declared by the GLSL code itself, whereas the application

Electronics 2021, 10, 2462 7 of 16

consuming the shader through the invocation only gets to decide the number of groups to
run. Both the size declaration in the shader code and the number of groups dispatched by
the invoking application are described as 3D vectors. In GLSL, the shader describes the
size of the group by using the layout directive: layout (local_size_x = X, local_size_y = Y,
local_size_z = Z) in [12]. This declares the local size, also known as the size of the compute
shader invocation group.

When invoking, or running a compute shader, the application will call the Dispatch
method. The method signature, void glDispatchCompute (GLuint num_groups_x, GLuint
num_groups_y, GLuint num_groups_z), exposes three parameters, which match the X, Y,
and Z dimensions of the 3D vector used to define the number of work groups that will be
used by the application. The total number of threads will be the product between the three
parameters of the glDispatchCompute function [12], and the three parameters of the layout
directive. Figure 4 shows the 3D virtual layout of the compute dispatch.

Figure 4. Overview of a compute shader dispatch. The top figure shows the layout of working groups
with a glDispachCompute(4, 3, 2) invocation. There are 24 total work groups. The bottom figure
shows the zoomed in layout of a work group, with local_size_x = 3, local_size_y = 2, local_size_z = 2.
Each work group therefore contains 12 threads. The glDispatchCompute invocation resulted in a
total of 288 threads running in parallel.

To determine the location of a thread in the 3D space of the compute shader invocation,
openGL provides several built-in indices that allow for quick identification [12]:

• gl_NumWorkGroups, contains the number of work groups requested by the dis-
patch call.

• gl_WorkGroupID represents the current work group.
• gl_LocalInvocationID represents the thread index inside the current work group.
• gl_GlobalInvocationID uniquely identifies the current thread among all threads in all

work groups.
• gl_LocalInvocationIndex is the 1D normalization of the position of the thread within

the work group.

To invoke a compute shader, applications must follow a series of steps [12,22].

Electronics 2021, 10, 2462 8 of 16

1. Create an openGL Program. Programs are objects that are used to apply shaders in
the graphics pipeline.

2. Create a pointer to the compute shader.
3. Set the source of the shader. The shader can be precompiled before the application is

run or it can be compiled at runtime. In this case, it was chosen to compile the shader
at runtime.

4. Compile the shader (not necessary if it was precompiled).
5. Attach the shader to the Program object.
6. Link the Program object.
7. Install the Program in the graphics pipeline.
8. Generate the buffers that will be used for passing data to and from the GPU, with the

appropriate target type (like ShadderStorageBuffer) and usage mask (e.g., the write
bit and invalidate buffer bit). For efficiency, the same input buffer can also be used
for output.

9. Fill the buffers with the appropriate input data.
10. Call the glDispatchCompute method with the desire parameters.
11. Read the results from the output buffers.

The procedure may look complicated, but steps 1–7 must be performed only once per
compute shader. Afterwards, it just becomes a matter of filling in the buffers and calling
glDispatchCompute and reading the results.

Shaders are highly dependent on the hardware being used and their binary repre-
sentation is highly dependent on the hardware drivers [22]. Usually, shaders must be
compiled on each hardware platform they run on and each time the hardware driver
changes. Applications typically choose to compile the shaders whenever needed, most
often at startup. The simulation software used to generate the results presented in this
article will compile the shader every time it runs [22].

Data buffers can be either structured (with strongly typed language symbols) or
unstructured (raw byte arrays). In this simulation, structured buffers were used, as it
makes maintenance extremely easy. The data structure contains information about the
current state of the real process, such as the current output errors of the system, the system
reference, the regression coefficients of the real process and of the simulated nominal
process, the P, I, and D values of the nominal process optimal controller, and various other
intermediary values that are needed to compute the outputs of the system and the value
of the switching criterion. The input buffer also contains the needed memory to hold the
output values. The shader essentially decorates the data structures representing the state
of the nominal models with the output values. The local group size used will be (1024,
1, 1); the virtual layout is shown in Figure 5. Each box represents an instance of the data
structure that is used to pass data to and from the GPU, associated with a nominal model
in the knowledge base.

Figure 5. Overview of the work group layout of the compute shader used to calculate the switching
criterion, with local_size_x = 1024, local_size_y = local_size_z = 1. Each box represents an instance of
the data structure associated with a nominal model used to pass information to and from the GPU.

3. Results

To test the efficiency of the control scheme, a small knowledge base was used, and no
dynamic filling added (as would be required for adaptive control integration). This will
keep the knowledge base size constant, with three models, and the real plant would switch

Electronics 2021, 10, 2462 9 of 16

between them, to simulate its exposure to various types of perturbances. The switching
criterion used to select the proper model is defined in (21) [5,23].

SC = α ∗ ∆Y + β ∗ (DY[1] + DY[2] + DY[3]) (21)

where DY is the difference between the output of the nominal model and the output of
the real plant. DY[1] , DY[2], DY[3] represent the previous values of DY, and α and β are
constants chosen by the designer of the system, depending on the particularities of the
models. The transfer function of the real plant, which is also the initial nominal model
used in the simulation is shown in (21)

HP =
2

1.2s + 1
(22)

The knowledge base is prefilled with the models described in Equations (23)–(25)

M1 =
1.2

2s + 1
(23)

M2 =
5

26s + 1
(24)

M3 =
1

10s + 1
(25)

The system reference will be set to 10. It is expected that when the switch occurs from
one model to another, after a brief hysteresis period, the proper nominal model, which best
matches the real plant from Equations (23)–(25), will have its output stabilized around the
reference value of 10. Figure 6 shows the initial evolution of the real plant and nominal
models. Real plant tracks the reference value of 10 without any errors.

Figure 6. Initial evolution of the real process and the nominal models in the knowledge base.

The real plan is then exposed to parametric perturbations, switching the real plant
model to something like the model described in (24). For example, if our real plant would
be the suspension system in a car, a sudden perturbation would be caused by degrading
weather conditions. The supervisor will detect the degradation in performance and will
proceed to look for a model in the knowledge base that will offer better performance. The
evolution is shown in Figure 7.

Electronics 2021, 10, 2462 10 of 16

Figure 7. Evolution of the real plant and the nominal models after exposing the real plant to perturbations.

Figure 7 shows that the switching logic is working as expected and allows the system
to maintain the required performance. It can also be seen that the shock of the perturbation
is forwarded to the nominal models in the cache, as the output errors of the real system
are passed as parameters to the GPU shader. As expected, cached model 3, which matches
the transfer function (25), stabilizes at the reference value, along with the real plant. At
this point, the optimal controller of (25) is also applied to the real plant, to achieve best
possible performance. This is felt in the evolution of the other two cached models, which
change their output values to 12 and 50. Figure 8 shows another switch in the perturbation,
this time to something like the nominal model (24). The behavior is very much the same.
Cached model 2, which matches model (24), stabilizes to the reference value of 10, along
with the real plant.

Figure 8. Evolution of the real plant and the nominal models after exposing the real plant to
perturbations, switching from model 3 to model 2.

Cached model 3, no longer offering best performance, degrades along with cached
model 1 to output value 2. Similar behavior will be observed with a switch to model (24).
If the output value measurement is polluted by a white noise, it can be removed through
filtering. In the following examples, a moving average filter with window size 4 was
applied to even out the measurement noise. This means the values of CM and CP from
(1) will be applied on mean of the last four output values read. Figure 9 shows the effect

Electronics 2021, 10, 2462 11 of 16

of perturbations applied to the real plant by altering its model to match (25). This is the
same case as shown in Figure 7, but with white noise affecting the measurement of the
system output.

Figure 9. Evolution of the real plant and the nominal models after exposing the real plant to perturbations, with output
measurement noise.

As expected, nominal model 3 from the cache will now have its value gravitating
around the reference value, but not quite matching it, due to the white noise polluting the
output measurements of the real plant (but at a much lower intensity). The analogue of
Figure 8 with measurement noise is shown in Figure 10.

Figure 10. Evolution of the real plant and the nominal models after exposing the real plant to
perturbations, switching from model 3 to model 2, with measurement noise.

Simulating structural perturbances is achieved by having some second order systems
in the nominal model knowledge base. To keep the same low number of models, the second
model, cached model 2, will be replaced with various second order transfer functions.

M2 =
1

s2+2s + 1
(26)

Similar tests have been conducted to demonstrate the behavior of the control system.
Figure 11 shows the switch from the initial nominal model to cached model 1 (a parametric
disturbance) to cached model 2 (a structural disturbance). The control scheme behaves

Electronics 2021, 10, 2462 12 of 16

as expected. First, nominal model 1 tracks the reference value, then when the structural
perturbation occurs, the appropriate cached model 2 tracks the reference, signaling which
model and controller was chosen by the control structure. In this case, the second order
system behaves similarly to a first order system, because its poles lay on the real axis and
have no imaginary components.

Figure 11. Switching from the initial model to cached model 1 and then to cached model 2.

However, the closer the poles get to the imaginary axis, the more unstable the system
becomes when doing the switch. For the following nominal model, shown in (27)

M2 =
5

s2 + 0.1s + 5
(27)

The system will show oscillations when switching, as shown in Figure 12. This
occurs because the poles of (27), −0.1 ± 2i

√
5, are close to the imaginary axis, and this

is known to make the system unstable, on top of the systemic shock caused by switching
and disturbances. This leads to strong oscillations the moment the perturbation occurs
and eventually oscillations around the reference value. Unlike oscillations caused by noisy
measurements, these cannot be trivially removed using simple filters.

Figure 12. Switching from the initial model to cached model 1 and then to cached model 2, a poorly
dumped second order transfer function.

Electronics 2021, 10, 2462 13 of 16

When dealing with noisy measurements of the output error, the MA filter is still good
in case of structural perturbances, as shown in Figure 13. Additionally, Figure 13 shows a
series of switches between various types of models, Equations (23), (25) and (26).

Figure 13. A series of switches between various models, mixed structural and parametric pertur-
bances with noisy output measurements.

As far as performance is concerned, GPUs are designed to deal with large data
sets. Depending on the technical specifications, a GPU can handle thousands of parallel
computations of the switching criterion without performance degradations. This allows the
control system to provide real time responses even for real plants that work in extremely
varied working conditions. Table 1 shows the time taken to finish the shader invocation
with an increasing number of nominal models in the knowledge base. Using GPUs is
therefore best in situations where the potential number of nominal models is high. Because
performance is strictly tied to hardware, we can observe that execution times do not have
a linear increase. For 100 and 1000 models, the execution time does not grow in a linear
fashion, with only a slightly 2× increase in execution time for a 10× increase in the number
of models. Things take a turn for the worse at 10,000 models copying of structured data
from GPU memory to CPU memory.

Table 1. Performance figures for compute shaders with various number of elements. Performance is
subject to variations based on hardware specifications, its power state, operating system, and driver
version. All values are averages over 600 samples. Memory copy from GPU to CPU also involves
converting raw bytes to the data structures describing model state, which is why it is slightly slower
and consumes the better part of the GPU operation.

No. of Models Input Buffer Create Compute Dispatch Memory Copy from
GPU to CPU

100 ~0.0202 ms ~0.3998 ms ~1.2346 ms

1000 ~0.0365 ms ~0.5479 ms ~2.8668 ms

10,000 ~0.1506 ms ~1.3838 ms ~18.5257 ms

4. Discussion

The premises of the research were to show that GPUs and compute shaders can be
used in real time systems control. The adaptive robust multimodel control philosophy
is a perfect place to apply such technologies, as the parallel nature of the GPU hardware
makes it extremely easy to handle many nominal models in the knowledge base, perhaps
hundreds or even thousands of nominal models, and compute the value of the switching

Electronics 2021, 10, 2462 14 of 16

criterion for each of them in a single shader invocation. As seen in the results section, this
approach works for both parametric and structural perturbations.

It was possible to use a single shader implementation for both first and second order
transfer functions. Second order transfer functions can be combined to achieve higher
order functions, but it may no longer be possible to use the same shader declaration for
higher order functions.

Unlike traditional programming, shaders are supposed to be simple and not contain
much branching logic or iterative functions. Branching logic is supported through various
instructions such as if, for, and while, but it is notoriously expensive, and many have
unforeseen side effects. The recommendation is to not use branching logic unless it is
unavoidable. Iterative functions are usually replaced by the parallel nature of the GPU.
Implementing a universal solution for all possible kinds of models is therefore possible but
remains as a future research topic on the matter.

The choice of models that form the knowledge base also has a significant impact on
the behavior of this control scheme. As physical processes can be represented by several
transfer functions, it is possible that the chosen model from the knowledge base will not
always be the expected one. If its robust controller provides decent performance, then it
will be deemed good enough by the supervisor. This is because the robustness margin
from (1) creates a zone of stability around nominal models, and any other model that fits
in that zone will be a good match for the robust controller (although maybe not optimal).
This can be adjusted by using a different criterion for detecting performance degradation.

Another important aspect regarding the choice of models is stability. The results show
that poorly dumped or undumped models will introduce instability, and this instability is
further augmented by the shock of switching. This control scheme is therefore not suitable
for handling such models, but this is not related to the use of GPUs.

Output measurement noise was filtered out using a moving average filter. This worked
very well, as seen in the results section, but it may not always be the best choice. Assuming
more information is known about the system and the type of disturbances it may encounter,
other time domain filters like band pass biquad filters or other time domain IIR filters may
be used for removing the noise.

The potential applicability of compute shaders in real time control is extensive. Most
modern vehicles now come equipped with GPU hardware, as infotainment systems or
state of the art car status systems no longer use mechanical knobs or gauges but use high
resolution displays and touchscreens to show information to drivers, sometimes even in
3D. This requires powerful GPU hardware that can keep up with real time considerations.
The GPUs can potentially be used to keep track of the many electronic control units in
modern cars and act as powerful supervisors over the good functioning of cars. Future
research will explore the usability of compute shaders in fault detection and recovery.

As performance scales very well with a large number of models in the knowledge base,
the GPU approach makes it possible to use multimodel control with a large knowledge
base for fast systems, where the sampling period imposes a hard limit on the number of
models, as traditional CPUs will have limited scalability due to a lower number of cores.

5. Conclusions

This article presented the use of graphics processing units in real time adaptive robust
multimodel control, which is best suited for processes that may encounter repetitive types
of parametric or structural perturbances. The multimodel aspect of this implementation is
based on a knowledge base of previously discovered nominal models and their robust con-
trollers. Graphics processing units are designed to deal with massive parallel computations
and are extremely proficient at dealing with large knowledge bases, containing hundreds
or thousands of models matching various types of perturbances that the real process may
encounter during its function. The knowledge base can be filled in advance, depending on
the knowledge on the functional environment of the plant, or it can be combined with an

Electronics 2021, 10, 2462 15 of 16

adaptive closed loop identification algorithm that discovers new working models for the
plant and fills in the knowledge base in real time.

The results section showed how the control scheme would behave when dealing
with parametric and structural perturbances, both with and without output measurement
noise. The algorithms performed as expected, showing that graphics processing units and
compute shaders can be used in real time control.

Future research will focus on implementing the control model on physical systems and
implementing more of the adaptive-robust control scheme using the GPU. This includes
implementing the PID tuning algorithms and system identification procedures on the GPU,
thus removing the dependency on third party software, such as MATLAB.

Author Contributions: C.-C.M. handled conceptualization, methodology, software development,
writing the original draft of the research article, formal analysis, investigation data acquisition,
validation, and visualization. C.L. contributed to conceptualization, handled project administration
and funding acquisition, reviewed scientific approach and article, and approved final research results.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This paper was financed together with the U. P. B—A.C.P.C. Research Center
and by the Faculty of Automatic Control and Computer with the support of the PRECIS Research
Center, laboratory 10. The authors would like to thank the support of these institutions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Popescu, D.; Gharbi, A.; Stefanoiu, D.; Borne, P. Process Control Design for Industrial Applications; John Wiley & Sons: Hoboken, NJ,

USA, 2017.
2. Afshar, S.; Paunonen, L. Adaptive robust output regulation control design. In Proceedings of the 2019 American Control

Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019.
3. Liu, K.Z.; Yao, Y. Robust Control: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016.
4. Lupu, C.; Borne, P.; Popescu, D. Multi-model adaptive control for nonlinear system. J. Control Eng. Appl. Inform. 2007, 40,

108–112. [CrossRef]
5. Narendra, K.S.; Driollet, O.A.; Feiler, M.; George, K. Adaptive control using multiple models, switching, and tuning. Int. J. Adapt.

Control Signal Process. 2003, 17, 87–102. [CrossRef]
6. Lupu, C.; Mihai, C.C.; Secuianu, F.D.; Petrescu, C. Fast Disturbance Rejection in MIMO Process Based on Algorithms Switching.

In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
10–12 October 2018.

7. Li, W.; Ke, H. Adaptive control using multiple models without switching. J. Theor. Appl. Inf. Technol. 2013, 53, 229–235.
8. Mihai, C.C.; Lupu, C.; Secuianu, D.; Vulpe, A. Implementing high performance system simulators using modern graphics

rendering devices: Implementing system control algorithms on graphics hardware. In Proceedings of the 14th International
Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017.

9. Narendra, K.S.; Han, Z. Adaptive Control Using Collective Information Obtained from Multiple Model. IFAC Proc. Vol. 2011, 44,
362–367. [CrossRef]

10. Narendra, K.S.; Balakrishnan, J. Adaptive Control Using Multiple Models. IEEE Trans. Autom. Control 1997, 42, 171–187.
[CrossRef]

11. Khronos Group. Rendering Pipeline Overview. Available online: https://www.khronos.org/opengl/wiki/Rendering_Pipeline_
Overview (accessed on 15 July 2021).

12. Khronos Group. Compute Shader. 2019. Available online: www.khronos.org/opengl/wiki/Compute_Shader (accessed on 16
July 2021).

13. nVidia. Nvidia Turing Gpu Architecture Whitepaper. 2019. Available online: https://images.nvidia.com/aem-dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf (accessed on 15
May 2021).

14. Microsoft Corporation. Compute Shader Overview. 31 May 2018. Available online: https://docs.microsoft.com/en-us/windows/
win32/direct3d11/direct3d-11-advanced-stages-compute-shader (accessed on 15 July 2021).

15. Microsoft Corporation. Pipeline Stages (Direct3D 10). 31 May 2018. Available online: https://docs.microsoft.com/en-us/
windows/win32/direct3d10/d3d10-graphics-programming-guide-pipeline-stages (accessed on 15 July 2021).

16. Microsoft Corporation. Accessing Resources. Available online: https://docs.microsoft.com/en-us/windows/win32/direct3d11/
direct3d-11-advanced-stages-cs-access (accessed on 17 July 2021).

http://doi.org/10.3182/20070723-3-PL-2917.00017
http://doi.org/10.1002/acs.740
http://doi.org/10.3182/20110828-6-IT-1002.02237
http://doi.org/10.1109/9.554398
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
www.khronos.org/opengl/wiki/Compute_Shader
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader
https://docs.microsoft.com/en-us/windows/win32/direct3d10/d3d10-graphics-programming-guide-pipeline-stages
https://docs.microsoft.com/en-us/windows/win32/direct3d10/d3d10-graphics-programming-guide-pipeline-stages
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-cs-access
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-cs-access

Electronics 2021, 10, 2462 16 of 16

17. Mihai, C.C.; Lupu, C.; Vulpe, A.A. Using graphics processing units and openGL in adaptive-robust real time control. In
Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest,
Romania, 25–27 June 2020.

18. MathWorks. PID Tuning Algorithm for Linear Plant Model. Available online: https://www.mathworks.com/help/control/ref/
lti.pidtune.html (accessed on 10 August 2021).

19. MathWorks. Calling MATLAB as COM Automation Server. Available online: https://www.mathworks.com/help/matlab/call-
matlab-com-automation-server.html (accessed on 10 August 2021).

20. Microsoft Corporation. Visual Studio Community. Available online: https://visualstudio.microsoft.com/vs/community/
(accessed on 3 February 2021).

21. Gliga, L.I.; Mihai, C.C.; Lupu, C.; Popescu, D. Adaptive—Robust control a computational efficient real time simulation. In
Proceedings of the 2015 13th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania,
11–12 June 2015.

22. Khronos Group. Shader Compilation. Available online: www.khronos.org/opengl/wiki/Shader_Compilation (accessed on 16
July 2021).

23. Lupu, C.; Petrescu, C.; Popescu, D. Practical Solution for Software Implementation of Algorithms Switching in Multiple Models
Control Systems. In Proceedings of the CSCS15—Control Systems and Computer Science, Bucharest, 25–27 May 2005.

https://www.mathworks.com/help/control/ref/lti.pidtune.html
https://www.mathworks.com/help/control/ref/lti.pidtune.html
https://www.mathworks.com/help/matlab/call-matlab-com-automation-server.html
https://www.mathworks.com/help/matlab/call-matlab-com-automation-server.html
https://visualstudio.microsoft.com/vs/community/
www.khronos.org/opengl/wiki/Shader_Compilation

	Introduction
	Materials and Methods
	GPU Hardware Overview
	Computations of System Outputs
	Using the Compute Shader

	Results
	Discussion
	Conclusions
	References

