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Abstract: This paper develops a detail image signal enhancement that makes images perceived as
being clearer and more resolved and so more effective for higher resolution displays. We observe
that the local variant signal enhancement makes images more vivid, and the more revealed granular
signals harmonically embedded on the local variant signals make images more resolved. Based
on this observation, we develop a method that not only emphasizes the local variant signals by
scaling up the frequency energy in accordance with human visual perception, but also strengthens
the granular signals by embedding the alpha-rooting enhanced frequency components. The proposed
energy scaling method emphasizes the detail signals in texture images and rarely boosts noisy signals
in plain images. In addition, to avoid the local ringing artifact, the proposed method adjusts the
enhancement direction to be parallel to the underlying image signal direction. It was verified through
subjective and objective quality evaluations that the developed method makes images perceived as
clearer and highly resolved.

Keywords: image detail enhancement; DCT domain perceived contrast; perceptual image quality

1. Introduction

Humans recognize more sharpened images as being clearer and perceive images
embedding finely resolved signals as being higher resolution images, even at the same
resolution. So, as image contents are increasingly produced toward higher quality and are
presented at higher resolution displays, state-of-the-art detail image enhancements need to
make images clearer and finely resolved.

Figure 1 shows a comparison of the original image with one that is clearer and another
that is clearer and more finely resolved. To get a better understanding, one-dimensional
horizontal signals of the images are plotted. The image in Figure 1b is clearer than the
original image because magnified local variations sharpen the image. In the image in
Figure 1c, the local variations are magnified, and, simultaneously, the granular variations
indicated by circles are embedded while preserving the contour of the local variant signals.
The granular signals are the most resolved signals for an image display to represent. Owing
to the granular variations, humans tend to perceive the image shown in Figure 1c as being
the highest resolution.

Since existing detail enhancement methods increase local contrast only without ob-
serving the different effects of local variants and granular signals, they enhance only the
sharpness of the images. Therefore, it is necessary to develop a detail image enhancement
capable of magnifying local variations and simultaneously emphasizing granular signals
in harmony with local variant signals.

The detail enhancement methods can be roughly categorized into spatial domain,
frequency domain, and learning-based methods. Spatial domain methods focus primarily
on elevating local variant signals. In the spatial domain, Majumder et al. [1] intensified
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the local contrasts based on Weber’s law. Kou et al. equalized the overall gradient by
increasing the image signal gradients at small local variant regions [2]. Deng et al. applied
a multi-resolution filter to decompose image signals into base and detail image signals and
then emphasized the detail image signals [3]. Nercessian et al. measured the energy ratio
among different resolution signals in the wavelet transform domain and then increased the
energy ratio of high-resolution signals [4]. Since the granular signals are tiny compared to
local variant signals, these methods are technically unable to extract the granular signals
and thus rarely enhance them. Therefore, although the spatial domain methods usually
enhance the local contrast for the images to become clearer, they rarely enhance images to
be finely resolved.

(a)

(b)

(c)

Figure 1. Effects of detail image signals. (a) Original image. (b) Image with increased local variants.
(c) Image with increased local variants and enhanced granular signals.

Using the capability of dissolving the image signals into frequency components,
the frequency domain methods have focused on how to increase the frequency energy of
detail signals. The multi-band energy scaling method (MESM) developed by Tang et al.
recursively scales up the frequency energy ratio in the discrete cosine transform (DCT)
domain as the frequency band increases [5]. This method sharpens local variant signals
in line with human visual perception, but rarely makes images seemed more resolved.
The alpha rooting method exponentially boosts the frequency energy inversely to the
original frequency energy [6] and results in the granular signals well, but often produces
noisy signals. Celik conducted the DCT over the entire image to utilize an extremely fine
frequency resolution [7]. This method weights higher frequency components as being
greater in proportion to the global variation. Since the method processes detail signals
globally, it may produce insufficiently enhanced textures or excessively boosted noises.
Moreover, it is not easy in actual systems to take the DCT over the entire image. Therefore,
the existing frequency domain methods either rarely reveal granular signals or may produce
noisy signals when they reveal granular signals.

More recently, learning-based image-enhancement methods have been developed and
are effective for improving global contrast or tuning color tones, such as de-hazing, low-
light and underwater areas [8,9]. Yan et al. applied a convolution neural network (CNN)
that was learned from images enhanced by algorithms or human experts [10]. Gharbi et al.
designed a bilateral CNN separately learning global and local variant signals to achieve
real-time processing, even on mobile devices [11]. Chen et al. proposed a GAN-based image
enhancement network that overcomes the ill-convergence that often occurs in GAN [12].
Since the GAN-based methods are unsupervised approaches, the method inherently bears
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the possibility of producing unnatural image signals. Because learning-based methods
could easily lose detailed signal information in deep-hidden layers, the methods may
generate insufficient detail signals or erroneous detail signals. Therefore, learning-based
methods mainly improve the global contrast and color brightness; however, it has limita-
tions in generating or inferring detail image signals. Moreover, learning-based methods
commonly require heavy computation, compared to model-based methods.

We develop a frequency domain method that enhances an image to be perceived
as being both clearer and of a higher resolution, distinguished from existing methods
that enhance images to be clearer, only. The proposed method further decomposes the
detail image signals into local variant and granular signals. To increase the sharpness
of local variant signals, we devise a recursive frequency energy scaling-up method from
the perceived contrast model that indicates the visual sensitivity of detail signals in the
frequency domain. We enhance the frequency components by the alpha-rooting while
scaling up the frequency energy to embed the granular signals harmonically on the local
variant signals. We also design the energy scalar to emphasize the detail image signals at
texture images and suppress the increasing noisy patterns in plain images. Additionally,
to reduce the ringing artifact, we devise a method for tuning the enhancement direction to
be parallel with the signal direction in the DCT domain.

The remainder of this paper is organized as follows. Section 2 discusses the perceived
contrast measure in the DCT domain. Section 3 proposes the perceptual contrast increment
method that recursively modifies DCT coefficients and presents a method to avoid artifacts
and noise boosting. Section 4 evaluates the proposed method’s performance, compared to
existing enhancement methods, and analyzes the artifacts caused by enhancement methods.
Section 5 reaches conclusions.

2. DCT Domain Human Perceptual Contrast

Many psychological and physiological studies have reported that human visual neu-
rons accept visual signals in frequency components; thus, human visual perception is
primarily affected by the frequency energy distributions of images [13,14]. The image
signal components in the frequency domain are also efficiently separated and robustly
processed. Therefore, we adopt the DCT as the enhancement platform.

Let f (i, j) be an image pixel value at position (i, j) of the N × N DCT block. The DCT
coefficient F(u, v) is obtained as follows:

F(u, v) = CuCv

N−1

∑
i=0

N−1

∑
j=0

f (i, j) · cos
(2i + 1)uπ

2N

· cos
(2j + 1)vπ

2N
, 0 ≤ u, v ≤ N − 1

(1)

where

Cp =

{ √
1/N for p = 0,√
2/N otherwise.

When the ratio between the viewing distance and display height is Rd and the vertical
pixel number of the displayed image is Pix, the spatial frequency, ω(u, v), in actual viewing
conditions is converted into the DCT frequency as follows:

ω(u, v) =
1

2Nθ

√
u2 + v2 (2)

where
θ = 2 · arctan(

1
2 · Rd · Pix

).

Several studies have found that the human physiological visual sensitivity varies in the
spatial frequency, is highest at 3 ∼ 5 cycles/degree, and is higher in the vertical and
horizontal directions than in the diagonal direction because of the oblique effect. The



Electronics 2021, 10, 2461 4 of 14

studies also have modeled the visual sensitivity in the DCT domain, referred to as the
contrast sensitivity function (CSF) [15,16]. The CSF in the DCT domain is as follows:

CSF(u, v) = Frequency Sensitivity×Oblique Effect

= 0.25 ·
[

1
φuφv

· exp(0.18 ·ω(u, v))
1.33 + 0.11 ·ω(u, v)

]
·
[

1
0.6 + 0.4 cos(ψ(u, v))2

] (3)

where the direction angle is ψ(u, v) = arcsin(2ω(u, 0)ω(0, v) /ω(u, v)2).
In addition to the CSF, the human visual sensitivity at specific frequency is also affected

by the frequency energy distribution of an underlying image. Haun and Peli conducted
experiments measuring human visual sensitivities to stimuli with different frequencies
and directions, deriving a human visual sensitivity model, called perceptual contrasts
(PC) [13,14]. The perceptual contrasts (PC) are as follows:

PC(u, v) =
|F(u, v)|2.4

CSF(u, v)−2 + B(u, v) + |F(u, v)|2 . (4)

where B(u, v) is the background energy at (u, v). The background energy with respect to
F(u, v) is the energy accumulation of the frequency components lower than (u, v) [5,14].
That is,

B(u, v) =
u−1

∑
p=0

v−1

∑
q=0
|F(p, q)|2. (5)

The PC indicates that human visual sensitivity is higher for the frequency components
with a larger CSF value, lower background energy and larger frequency energy [13,14].
While the existing contrast measurements quantify image signal variations in the spatial
domain, the PC measures how much a human actually perceives each frequency component
and thus, provides the contrast measure more matched with human visual perception.

3. Development of Human Perception Oriented Detail Image Enhancement

We develop a detail image signal enhancement method that recursively increases the
perceptual contrast (PC) and simultaneously intensifies the granular signals. In addition,
to avoid the ringing artifact, we devise a method that adjusts the enhancement direction to
be parallel to the image signal direction.

3.1. Perceptual Contrast (PC) Based Energy Scaling Method

Human visual perception generally prefers images with higher visual sensitivity [17].
In order to increase human perceived visual sensitivities at frequency components, we
propose a method that recursively scales up the PC as the frequency proceeds from low to
high band.

The original and enhanced DCT coefficients are denoted as F(u, v) and F̄(u, v), respec-
tively. Subsequently, the perceptual contrast at (u, v) of the original and enhanced images
are denoted as PC(u, v) and PC(u, v), respectively. Introducing the PC-enhancing scalar,
λ(> 1), PC(u, v) is related to PC(u, v) in the following way:

PC(u, v) = λ · PC(u, v), 0 ≤ u, v ≤ (N − 1). (6)

By inserting (4) to (6), the following equation is obtained:

F̄(u, v) = λ · R(u, v) · F(u, v) (7)
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where R(u, v) is the energy scaling factor and the following holds:

R(u, v) =
{

CSF(u, v)−2 + B̄(u, v) + |F̄(u, v)|2
CSF(u, v)−2 + B(u, v) + |F(u, v)|2

} 1
2.4

. (8)

To enhance the granular signals, the alpha rooting method is exploited, which empha-
sizes the energy of high-frequency components. The frequency component enhanced by
the alpha rooting method is as follows:

F̄(u, v) =
∣∣∣∣ F(u, v)

F(0, 0)

∣∣∣∣α−1

· F(u, v), 0 < α < 1 (9)

where α is the enhancement factor. As α is closer to 0, the higher-frequency components
are emphasized to generate more granular signals.

Then, R(u, v) embedding the alpha routine enhancement becomes the following:

R(u, v) =


CSF(u, v)−2 + B̄(u, v) +

∣∣∣ F(u,v)α

F(0,0)α−1

∣∣∣2
CSF(u, v)−2 + B(u, v) + |F(u, v)|2


1

2.4

.

(10)

R(u, v) is recursively updated from (7) and (10) as the frequency increases.
The role of R(u, v) is to control the enhancement in adaptation with the characteristics

of the image signals. Since CSF(u, v) has high values at middle-frequency components
corresponding to local variant image signals, R(u, v) correspondingly has large values at
these frequency bands so that it primarily enhances the local variant signals to produce
sharpened images. Because the alpha rooting enhanced frequency component is embedded
into R(u, v), the granular signals become more visible, while the noise signals probably
occurring from the enhanced high-frequency signals are prevented. Thus, in texture
images typically having a large energy at middle- and high-frequency components, R(u, v)
enhances the detail signals while revealing the granular signals. In plain images that do not
contain many detail image signals, the frequency energies of detail image signals are much
smaller that those of CSF(u, v), and CSF(u, v) dominates over the background energy.
Therefore, R(u, v) becomes approximately 1 at all frequency bands and rarely produces
noise signals that may occur if the plain image signals are enhanced.

Figure 2 compares R(u, v) for the texture and plain images and shows their detail
enhanced images. The texture image is shown in Figure 2a, where the proposed method
not only increases local variations but also embeds granular signals in local variant signals.
The plane image is shown in Figure 2b, where the proposed method rarely enhances the
image signals and does not produce noisy image signals.
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(a) (b)

Figure 2. The proposed energy scalar spectrums for texture and plane images and their images enhanced by the proposed
method. (a) A texture image. (b) A plane image.

3.2. Signal Direction Adaptive Enhancement

We develop the DCT domain method to remove the ringing artifact. When directional
images, such as edges, are not processed in parallel with their directions, overshooting
occurs, which appears as ringing patterns. The ringing artifact is apparent as the enhance-
ment direction becomes more perpendicular to the image direction. To prevent ringing
artifacts, the enhancement direction must be parallel to the signal direction.

Figure 3 shows the DCT energy distribution of edge and texture images. As shown
in Figure 3a, when an image signal is directed more vertically, the energy of the DCT
coefficients is further condensed in the first row. Conversely, more horizontally directed
signals have greater energy from the DCT coefficients in the first column as shown in
Figure 3b. In the diagonal signals, the DCT coefficients are symmetric such as in Figure 3c.
Therefore, the magnitudes of the first column and row DCT coefficients are equivalent to
the gradients in the vertical and horizontal directions [18,19]. Let ∇ver and ∇hor be the
vertical and horizontal gradients, respectively. Then, the following hold:

∇ver =
1
Γ

N−1

∑
u=1
|F(u, 0)|, ∇hor =

1
Γ

N−1

∑
v=1
|F(0, v)| (11)

where

Γ =
N−1

∑
u=0

N−1

∑
v=0
|F(u, v)| − |F(0, 0)|.

As an image signal slants closer to the vertical direction, ∇ver is larger than ∇hor.
When an image signal is directed diagonally, ∇ver = ∇hor.

To adjust the energy scaling direction, the DCT coefficients are decomposed into
horizontal and vertical directions. The recursive PC scaling factors for the horizontal and
vertical directions are obtained as follows:

Rhor(v) =
N−1

∑
u=0

R(u, v), Rver(u) =
N−1

∑
v=0

R(u, v). (12)
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Then, the enhanced DCT coefficients for each direction become the following:

F̄hor(u, v) = λ · Rver(u) · F(u, v)

F̄ver(u, v) = λ · Rhor(v) · F(u, v).
(13)

(a) (b)

(c) (d)

Figure 3. DCT energy distribution of edge and texture images. (a) DCT energy distribution of vertical
edge. (b) DCT energy distribution of horizontal edge. (c) DCT energy distribution of diagonal edge.
(d) DCT energy distribution of non-directional texture.

To steer the PC scaling direction in parallel with the image signal direction, we weight
each gradient to vertical and horizontal enhanced DCT coefficients. So, we propose the
direction adaptive enhanced DCT coefficients as the following:

F̄(u, v)

=
∇ver

∇ · F̄ver(u, v) +
∇hor
∇ · F̄hor(u, v)

=
λ

∇ · {∇ver · Rver(u) +∇hor · Rhor(v)} · F(u, v)

(14)

where ∇ = ∇ver +∇hor.
The energies of the DC and low-frequency bands control the overall brightness of

the DCT block. A change in the energy in the DC and low-frequency bands induces a
brightness discontinuity among adjacent blocks, called the block artifact. The existing
methods that avoid block artifacts do not scale the energies at DC and the first three
frequency bands [20]. Following the existing methods, we do not scale the energy at the
first three bands by setting λ as follows:

λ =

{
1, for u + v ≤ bN/3c,

> 1, otherwise
(15)

Figure 4 shows the edge images enhanced by the proposed method without the signal
direction adaptive method and the proposed method with the signal direction adaptive
method. Not using the signal direction adaptive method creates ringing artifacts at the sail
edges; however, the direction-adaptive method tunes the DCT-coefficient scaling direction
in parallel with the sail edge direction to avoid visible ringing artifacts.

Figure 5 shows the edge images enhanced by MESM, CWM and the proposed method.
The proposed method and CWM do not create the ringing artifact, whereas MESM does,
as it enhances image signals in all directions. The CWM linearly scales up the frequency
components as the frequency increases. Hence, it does not significantly change low- and
middle-frequency components corresponding to edge signals and avoids visible ringing
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artifacts. As discussed in this section, the proposed method scales up the frequency
components in parallel with the edge direction, and so does not make the ringing artifact.

(a) (b) (c)

Figure 4. Reducing ringing artifact by direction-adaptive method. (a) Original edge image. (b) Image
enhanced by the proposed method without direction-adaptive method. (c) Image enhanced using
the proposed method with direction-adaptive method.

(a) (b) (c) (d)

Figure 5. Edge image enhancement. (a) The original edge image. (b) The image enhanced by MESM.
(c) The image enhanced by CWM. (d) The image enhanced by the proposed method.

3.3. Outline of the Proposed Method

Figure 6 shows an overview of the proposed detail image enhancement method. The
method consists of detail signal enhancement and artifact reduction.

Figure 6. Overview of the proposed detail image signal enhancement.

In part of the detail image signal enhancement, the frequency energies are recursively
scaled up in match with the human-perceived contrast. The proposed method designs
the energy scalar R(u, v) from the perceived contrast embedding the alpha-rooting en-
hanced frequency components. R(u, v) enhances the detail image signals in texture images
suppressing the enhancement of noisy signals in plain images. Additionally, since the
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alpha rooting enhanced frequency component is embedded into the perceived contrast,
the granular signals become more suitable for human visual perception.

In part of the artifact reduction, the proposed method measures the vertical and horizon-
tal gradients in the DCT domain. To reduce ringing artifacts, the proposed method adjusts the
frequency energy scaling direction parallel to the image signal direction by weighting each
gradient to the enhanced DCT coefficients in the horizontal and vertical directions.

We analyze the computing complexity of the proposed method. Our method is the
O(n/N2) time method, where N is the block size. So, the large block size requires less
computing time. If the block size is 16, the computing time of the proposed method is 118
msec per 1 mega pixel on a processor of intel I5-2500 3.3 GHz and 8 GB RAM. Thus, our
proposed method would be processed in real time at full HD image.

4. Experiment and Discussion

We evaluate and analyze the performances of the proposed method in terms of
objective and subjective image quality evaluations and artifact occurrence analysis. The
test images are the ultra HD images in [21].

4.1. Objective and Subjective Image Quality Evaluation

The performance of the proposed method is evaluated and compared to recently
developed local contrast enhancement methods, including unsharp masking [3], content
adaptive image detail enhancement (CAIDE) [2], the multiband energy scaling method
(MESM) [20] and the coefficient weight method (CWD) [7]. The unsharp masking method
only enhances the detail signals after decomposing the image signals into the detail and
base signals. The CAIDE exploits global optimization to enhance the detail signals by
minimizing the less gradient region. By measuring the local contrasts with the energy
ratio of the frequency bands, the MESM recursively scales the DCT coefficients to increase
the measured contrasts. The CWM conducts the DCT over the entire image and linearly
scales up the higher frequency coefficients. The unsharp masking and CAIDE are the
spatial domain methods, and the proposed method, MESM and CWM are the frequency
domain methods.

In objective quality evaluation, there are image signal feature–based and learning-
based methods [22–25]. As an image signal feature–based method, the cumulative probabil-
ity of blur detection (CPBD) metric is adopted, which has been reported to produce a more
stable image quality score [22]. CPBD, a no-reference image quality assessment metric,
measures the degree of artifacts, such as blurring, ringing and sharpness collectively and
determines the numerical value indicating image quality. As the metric score approaches
1, the image quality is perceived to be better for humans. As a deep learning–based
method, the full reference deep image quality assessment network (DeepIQA) [25] is used.
DeepIQA allows a neural network to train the subjective image quality for predicting the
differential mean opinion score (DMOS) values of the original and enhanced image pairs.
The DeepIQA well evaluates image qualities in accordance with human visual perception
because the DeepIQA exploits perceptual sensitivity map based on human visual percep-
tion. Positive DeepIQA values indicate the degree of quality improvement of the processed
images over the original images.

For the subjective evaluation, we followed the categorical stimulus comparison judg-
ment method recommended by ITU-R BT.500-11 [26]. We placed two identical Ultra HD
monitors next to each other in ambient illumination of approximately 200 lux.The monitor
resolution was set to 3840 × 2160 with the DPI at approximately 130. The color depth was
24 bits per pixel. The monitor luminance (brightness) was set at 250 cd/m2, and the contrast
ratio was 3000:1. For the 20/20 eyesight to fully observe the enhanced detailed signals,
we set the viewing distance at about 1.5 m of which the vertical and horizontal viewing
angles were about approximately 30◦ and 50◦, respectively. [27] A total of 20 subjects were
invited to compare the qualities of the 20 original images and images enhanced by the
proposed method and the existing methods. The images were shown adjacent to each other
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to guarantee blindness. Subjects assigned a score in the range of [−3, 3] to the sequences.
A score of −3 indicates that the left sequence has a significantly better visual quality than
the sequence on the right whilst a score of 3 signifies that the sequence on the right has
significantly better visual quality than the sequence on the left. A score of 0 indicates that
no difference in visual quality is perceived.

In order to statistically analyze the improvement achieved by the proposed method,
we conducted the Student’s t-test [28]. The null hypothesis is that the proposed method or
the conventional methods show no improvement, compared to the original images. We set
the confidence level to be 95%; subsequently, the rejection region (rr) is 2.093σ

/√
N, where

µ, σ, and N are the average score, the standard deviation, and the number of subjects,
respectively. The performance improvement scores of DMOS with 95% confidence can be
calculated as (µ− rr).

Table 1 lists the scores of each method. It should be noted that CPBD and DeepIQA are
objective measures, and DMOS is the subjective measure. The negative DMOS indicates
that the subjects perceive the enhanced images as being of lower quality than the original
images. Negative values usually occur when an enhancement method generates artifacts.
The scores, even if expressed on different scales, show similar patterns, confirming the
reliability of the experimental results. Because human perception is more precisely de-
scribed in the frequency domain, the performance of frequency domain methods is usually
higher than that of spatial domain methods. Among the frequency domain methods, the
proposed method consistently produces competitive performances for most test images. In
particular, the proposed method produced higher values in images containing more detail
image signals.

Table 1. Image quality evaluation scores.

Method Aerial Bar Boat
Cross

Market
Nar-

Square Tango
Foun-

Tunnel Flag1 Flag2 Avg.
Walk Tator Tain

CPBD

Unsharp [3] 0.54 0.78 0.36 0.72 0.65 0.48 0.55 0.80 0.50 0.60 0.91 0.46 0.61

CAIDE [2] 0.54 0.76 0.45 0.78 0.70 0.74 0.60 0.78 0.53 0.69 0.82 0.61 0.67

MESM [20] 0.57 0.81 0.41 0.74 0.68 0.63 0.62 0.81 0.56 0.62 0.92 0.55 0.66

CWM [7] 0.59 0.80 0.49 0.80 0.77 0.70 0.66 0.84 0.59 0.69 0.92 0.65 0.71

Proposed 0.69 0.81 0.61 0.85 0.81 0.67 0.69 0.86 0.68 0.74 0.93 0.73 0.76

DIQA

Unsharp [3] 0.12 0.11 0.08 0.08 0.15 0.11 0.07 0.09 0.07 0.08 0.12 0.06 0.10

CAIDE [2] 0.07 0.05 0.13 0.08 0.12 0.10 0.17 0.11 0.06 0.07 0.11 0.02 0.09

MESM [20] 0.15 0.14 0.12 0.19 0.19 0.19 0.18 0.14 0.12 0.12 0.17 0.19 0.16

CWM [7] 0.30 0.29 0.22 0.31 0.37 0.31 0.26 0.20 0.21 0.26 0.30 0.26 0.27

Proposed 0.31 0.29 0.19 0.31 0.37 0.31 0.23 0.22 0.20 0.23 0.30 0.24 0.27

DMOS

Unsharp [3] 0.15 0.06 0.25 0.14 0.13 0.15 0.04 0.06 0.23 0.04 0.18 0.13 0.13

CAIDE [2] −0.85 −0.21 −0.93 −0.60 −0.21 −0.63 −0.81 −1.18 −0.67 −0.18 −0.31 −0.15 −0.56

MESM [20] 0.73 0.08 0.59 0.23 0.06 −0.11 0.12 0.06 −0.19 −0.28 −0.23 −0.17 0.07

CWM [7] 0.36 0.06 0.67 0.34 0.23 0.18 0.23 0.18 0.37 0.13 0.49 0.23 0.29

Proposed 0.91 0.08 0.87 0.46 0.57 0.34 0.22 0.25 0.46 0.08 0.34 0.59 0.43

The DMOS values of the proposed method and the CWM are in the superior group.
The proposed method outperforms, especially in Arial and Boat, which contain many
textures. Consequently, the proposed method produces superior perceptual performances
for various test images, compared to existing methods.
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Figure 7 compares the images enhanced by each method. The images enhanced by
the frequency domain methods appear to be more sharpened, compared to those by the
spatial domain methods. With increasing the sharpness, the proposed method also embeds
granular signals onto the texture signals. Therefore, the images enhanced by the proposed
method have the most resolved detail signals. Similarly, in the DMOS test, the subjects
selected the image enhanced by the proposed method as being the highest resolution image.

(a) (b) (c) (d) (e) (f)

Figure 7. Enhancement results of images. (a) Original image. (b) By the Unsharp masking method. (c) By the CAIDE
method. (d) By the MESM method. (e) By the CWM method. (f) By the proposed method.

Figure 8 analyzes how each method enhances detail image signals. For a better under-
standing, the horizontal signals of the enhanced images are presented in one dimension.
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As shown in the rectangles, the frequency domain methods intensify locally variant signals
compared to the spatial domain methods, demonstrating how the frequency domain meth-
ods produce better sharpness. The signals of the in circles indicate the granular signals
embedded at locally variant signals. Such granular signals make the textures more finely
resolved, allowing images to be perceived to have a higher resolution by humans. As
shown by the circles in Figure 8e,f, the proposed method and CWM mainly generate such
signals. CWM simply emphasizes higher frequency components over the entire image,
and thus, it may generate granular signals that appear as noise in plain images. How-
ever, as discussed in Section 3, because the proposed method increases the high-frequency
components according to R(u, v), the proposed method does not produce noisy granular
signals in plain images.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison of enhanced detail image signal. (a) Original detail signal. (b) By the Unsharp masking method. (c)
By the CAIDE method. (d) By the MESM method. (e) By the CWM method. (f) By the proposed method.

4.2. Artifact Analysis

The major artifacts related to the frequency domain methods are ringing artifacts and
noise boost-up. Figure 9 compares the enhanced results of the plain, edge, and texture re-
gions. In texture regions, such as grass areas, the proposed method and MESM enhance the
texture image signals. However, in plain regions, such as cloud areas, whereas MESM pro-
duces noisy signals with a mosaic pattern because it increases the frequency energy without
observing the image signal features, the proposed method does not produce any visible
noise signals. This indicates that, through the energy scalar R(u, v), the proposed method
properly controls the enhancement effect in accordance with the underlying images.

In edge regions, such as wall boundaries, MESM produces ringing patterns along
the edges because it enhances the image signals in all directions, including the direction
perpendicular to the edge. However, the proposed method adjusts the enhancement
direction to be parallel to the edge direction and rarely generates the ringing artifact.
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(a) (b) (c) (d)

Figure 9. Comparison of enhancement results at plane, edge and texture. (a) The original images. (b) By the MESM method.
(c) By the CWM method. (d) By the proposed method.

5. Conclusions

We exploited the human perceptual contrast that measures the sensitivity of human
visual perception to frequency components. Based on the perceptual contrast measure,
we developed a frequency energy scaling-up method that not only emphasizes the local
variant signals, but also strengthens the granular signals embedded in the local variant
signals. Additionally, we developed a method to control the enhancement strength in
adaptation to the characteristics of the underlying image signals. To reduce the ringing
artifact, we devised a method that adjusts the enhancement direction to be parallel to the
signal direction in the DCT domain. Therefore, the developed method enhances images to
be perceived as clear and finely resolved, while avoiding any visible artifacts.

For improvements and further application of the proposed method, future work
could proceed as follows. To increase enhancement performance, it is required to tune
lambda adaptively to the underlying image signals. It would also be beneficial to extend
the proposed method to color channels. For applications, in super-resolution, low-light,
de-haze, and under-water areas, the parts—especially R(u, v)—of the proposed method
could be positively exploited to efficiently enhance the detail images. Additionally, the pro-
posed method could be applied to next generation displays for virtual and augmented
reality [29,30].
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