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Abstract: With the development of global navigation satellite systems (GNSS), multiple signals mod-
ulated on different sub-carriers are needed to provide various services and to ensure compatibility
with previous signals. As an effective method to provide diversified signals without introducing
the nonlinear distortion of High Power Amplifier (HPA), the multi-carrier constant envelope mul-
tiplexing is widely used in satellite navigation systems. However, the previous method does not
consider the influence of sub-carrier frequency constraint on the multiplexing signal, which may lead
to signal power leakage. By determining the signal states probability according to the sub-carrier
frequency constraint and solving the orthogonal bases according to the homogeneous equations, this
article proposed multi-carrier constant envelope multiplexing methods based on probability and
homogeneous equations. The analysis results show that the methods can multiplex multi-carrier
signals without power leakage, thereby reducing the impact on signal ranging performance. Mean-
while, the methods could reduce the computation complexity. In the case of three different carriers
multiplexing, the number of optimization equations is reduced by nearly 66%.

Keywords: multi-carrier; constant envelope multiplexing; frequency constraint; signal states proba-
bility; homogeneous equations

1. Introduction

With the development of the global navigation satellite systems (GNSS), there is a great
demand for providing diversified services and ensuring that the services are compatible
with previous signals [1–4]. However, the limitation of power on satellite requests the
signal to have a constant envelope. The most important reason is that the high power
amplifier (HPA) has to operate in its full-saturation for maximum efficiency, ensuring that
most of the energy is converted into signal power and transmitted to the earth. When the
high power amplifier is working in the saturation region, the non-constant envelope signal
will introduce amplitude modulation-amplitude modulation (AM-AM) and amplitude
modulation-phase modulation (AM-PM) distortion, resulting in ranging distortion and
power loss [5]. Therefore, how to construct a constant envelope signal has become a
research hotspot, especially in the GNSS field.

Early GNSS signals only had two binary direct spread spectrum sequences (DSSS)
modulated on the same carrier. It is easy to construct a constant envelope signal by
modulating one binary DSSS signal on the in-phase and the other on the quadrature-phase,
such as the C/A code and P(Y) code in the legacy GPS. The modulation is called quaternary
phase shift keying (QPSK) [6]. As the number of DSSS signals increases, constant envelope
multiplexing is not so simple. Interplex [7] and coherent adaptive subcarrier modulation
(CASM) [8] are used to construct a constant envelope signal when more than two signals are
multiplexed, and these two methods are proved to be mathematically equivalent. Although
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Interplex and CASM are very useful for three binary DSSS signals, as the number of DSSS
signals increases, the multiplexing efficiency will reduce rapidly. Spiker and Orr proposed
majority voting to use for the constant envelope multiplexing [9], and the upper bound
of its multiplexing efficiency is not good enough. Cangiani, Orr, etc., proposed Inter-Vote,
which is mixed Interplex and majority voting [10]. Although it improves multiplexing
efficiency, it is still unsatisfactory in the case of more than five signals to be multiplexed.
P. A. Dafesh and C. R. Cahn proposed phase-optimized constant-envelope transmission
(POCET) [11], which is a very effective method for multiplexing more than 3 binary
DSSS signals. This method is a constant envelope multiplexing method with optimal
multiplexing efficiency. K. Zhang, H. Zhou, etc., proposed the multi-level POCET [12],
which extended the multiplexed signals from binary to multi-level. Nevertheless, the
POCET cannot intuitively reveal the relationship between various signal components. X.M.
Zhang, X. Zhang, etc., proposed an inter-modulation construction method, revealing how
to use the signal and its inter-modulation components to construct a POCET signal [13].

In addition to multiplexed signals at the same frequency point, there is also a need to
multiplex signals with a constant envelope at multiple adjacent frequency points. Because
if the signals modulated using different channels, the low interval between the bands
would generate high propagation delays inside the desired band potentially leading to
signal distortion and propagation time instability [14]. The first multi-frequency constant
envelope signal in GNSS is the AltBOC [15], which is used in the Galileo system to emit the
near band signals. ZuPing Tang, etc., proposed TD-AltBOC multiplexing different signals
in different time slot [16]. The compatibility of this method is not well, and the number of
multiplexed signals is limited. Zheng Yao, J Zhang, etc., proposed ACE-BOC, which is used
for different signals power ratio [17]. Rotating POCET method is proposed by P. A. Dafesh
and C. R. Cahn used for different frequency point [18]. Based on the inter-modulation
construction method, Yao Zheng and Guo Fu, etc., proposed a method of constructing
constant envelope signals at different frequencies based on the orthogonal basis [19]. Ma
Junjie and Yao Zheng proposed the sub-carrier vector to describe the sub-carrier space on
above method [20]. This method can flexibly multiplex multi-frequency and multi-level
signals with constant envelope. However, the influence of sub-carrier frequency constraint
on the signal states probability is not considered, and the method of constructing the
orthogonal basis of multi-frequency signals based on tensor product is computationally
expensive.

On the basis of orthogonal base multi-carrier constant envelope multiplexing, this
article proposed multi-carrier constant envelope multiplexing methods based on probability
and homogeneous equations. On the one hand, this method analyzes the influence of
sub-carrier frequency constraint on the multiplexing signal by introducing the signal states
probability, and constructs the multiplexing signal without signal power leakage based on
this. On the other hand, this method solves orthogonal bases by homogeneous equations,
which effectively reduces the number of orthogonal bases and optimization equations. As
an effective multi-carrier constant envelope multiplexing method, it can flexibly select
different frequency parameters to achieve constant envelope multiplexing according to
frequency resources and signal design requirements, thereby improving the diversity and
compatibility of GNSS signals.

This article is organized as follows: Section 2 will depict the constant envelope multi-
plexing principles. Section 3 will describe the constant envelope multiplexing based on
probability and homogeneous equations. Section 4 provides the application of the method
proposed in Section 3. Section 5 provides the analysis of the multiplexing signals. Section 6
gives the paper’s conclusions.
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2. Constant Envelope Multiplexing Principles

Consider the combination of N independent DSSS signal components located at several
adjacent frequencies, a generalized mixed radio frequency (RF) signal can be expressed
as [17]:

SRF =
N

∑
i=1

Re
{√

Pisi(t)ej(2π fit+φi)
}

, (1)

where Pi, fi and φi are the nominal power, carrier frequency, and initial phase of the ith
component, respectively; si(t) is the ith baseband code signal decided by the data and
pseudo-random noise (PRN) code.

As the signal’s RF frequency to emit is f , its initial phase is φ0 and power is P, then
the multiplexing RF signal can be expressed as:

SRF = Re
{√

P
[

N
∑

i=1

√
Pi
P si(t)ej(2π( fi− f )t+(φi−φ0))ej(2π f t+φ0)

]}
= Re

{√
P
[

N
∑

i=1
Aiej(2π∆ fit+∆φi)si(t)

]
ej(2π f t+φ0)

}
= Re

{√
PSSUMej(2π f t+φ0)

}
,

(2)

where Ai =
√

Pi/P is the relative amplitude; ∆ fi and ∆φi are the frequency difference
and initial phase difference between the ith signal and the emitting RF signal respectively;
ej(2π∆ fit+∆φi) is the sub-carrier of the ith signal; SSUM is the complex envelope of the N sum
signals.

From the discussion above, SSUM could be expressed as:

SSUM =
N

∑
i=1

Aiej∆φi ej2π∆ fitsi(t). (3)

Generally, si(t) is a binary sequence, and for digital circuit processing the carrier
ej2π∆ fit needs to be sampled and quantified, as shown in Figure 1 below.

Figure 1. (a) Four-level and two-level quantization within one cycle of the carrier, respectively; (b) The binary sequence of
DSSS signal.

Abbreviate ej2π∆ fitsi(t) as s̃i(t), and s̃i is the sampled and quantized signal of s̃i(t),
which has κi levels

{
L̃1, L̃2, · · · , L̃i, · · · , L̃κi

}
, L̃i ∈ C. For N signals {s̃1, s̃2, · · · , s̃N}, the

ith signal state could be expressed as {s̃1, s̃2, · · · , s̃N}i = {K1i, K2i, · · · , KNi}, where Kji is

one level of the κj, Kji ∈
{

L̃1, L̃2, · · · , L̃i, · · · , L̃κi

}
, and there are H signal states in total,

i = 1 ∼ H.
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For s̃i, any two signals of N, such as s̃i and s̃j, are required to be orthogonal. This
means that the correlation result of s̃i and s̃j is 0. If the probability that s̃i selects level L̃k

and s̃j selects level L̃m is pk,m, then

Corr
(
s̃i, s̃j

)
= ∑

H
pk,m L̃k L̃ ∗m = 0. (4)

Define ci = ai + jbi = Aiej∆φi , then

SSUM =
N

∑
i=1

ci s̃i, (5)

where ci is the coefficient of the signal s̃i, and ci ∈ C is a complex number, which describes
the amplitude and phase of the signal s̃i.

Generally, the multiplexing signal SSUM would not be a constant envelop signal. To
construct a constant envelope signal, an extra signal denoted as E needs to be provided.
Then the constant envelope signal could be expressed as:

SCE = SSUM + E =
N

∑
i=1

ci s̃i + E. (6)

To get the signal s̃i at the receiver, the received signal needs to be correlated with s̃i,
which can be expressed as follows:

Corr(SCE, s̃i) = Corr(ci s̃i, s̃i) + Corr(E, s̃i). (7)

To avoid the interference of the extra signal to the receiving signal, the extra signal
needs to be orthogonal to the receiving signal expressed as below:

Corr(E, s̃i) = 0. (8)

This means that if the signal space is S , ∀s̃i ∈ S , then the extra signal E ∈ S⊥ must
be satisfied, where S⊥ is the orthogonal complement space of the signal space. The extra
signal E does not carry any information, it is only used to construct a constant envelope
signal. Therefore, when the transmission power is limited, the lower the power of the
extra signal, the higher the power of the useful signal transmitted. This means that the
optimization goal is to construct a complete orthogonal complement space of the signal
space, and select an extra signal E with the lowest power from the space.

As the multiplexing signal is a phase modulation signal, different signal states will
be mapped to different phases {s̃1, s̃2, · · · , s̃N}i → Cejθi . To obtain a complete orthogonal
complement space, construct a set of the following orthogonal basis:

li =
{

1 {s̃1, s̃2, · · · , s̃N}i is the ith signal state of H
0 other signal states

, (9)

where i is from 1 to H. Then the constant envelope signal based on phase modulation could
be described as:

SCE = Cejθ1 l1 + Cejθ2 l2 + · · ·+ CejθH lH = θl, (10)

where θi is the ith phase mapping when {s̃1, s̃2, · · · , s̃N}i is the ith signal state; C is the
constant modulus of those phase mapping; θ =

[
Cejθ1 , Cejθ2 , · · · , CejθH

]
is the phase

mapping vector; l = [l1, l2, · · · , lH ]
T is the phase orthogonal basis vector.
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In order to understand the relationship between signal and phase mapping, make the
following linear transformation:

s =



s̃1
...

s̃N
ẽN+1

...
ẽH


=



K11 · · · K1i
...

. . .
...

KN1 · · · KNi

· · ·
. . .
· · ·

K1H
...

KNH
JN+11 · · · JN+1i

...
. . .

...
JH1 · · · JHi

· · ·
. . .
· · ·

JN+1H
...

JHH





l1
...

lN
lN+1

...
lH


= Kl, (11)

where s = [s̃1, · · · , s̃N , ẽN+1, · · · , ẽH ]
T is the vector describing the signals and the extra

signals;
~
s = [s̃1, · · · , s̃N ] describe N signals and e = [ẽN+1, · · · , ẽH ] describe H − N extra

signals; K is the state matrix describing signal state. It can be seen from the definition
of l that {s̃1, · · · , s̃N}i = {K1i, · · · , KNi} is the ith signal state, and {ẽN+1, · · · , ẽH}i =
{JN+1i, · · · , JHi} at this time; {s̃1, · · · , s̃N} is a set of complete orthogonal bases in the
signal space S , and {ẽN+1, · · · , ẽH} is a set of complete bases in the orthogonal complement
space S⊥.

Then, the constant envelope multiplexing signal could be expressed as:

SCE = θl = θK−1s = cs, (12)

where θ =
[
Cejθ1 , Cejθ2 , · · · , CejθH

]
is the phase mapping vector; define c = θK−1, and

c = [c1, · · · , cN , cN+1, · · · , cH ] are the coefficients of the signals and the extra signals. The
constant envelope could be expressed as:

‖cK‖ = ‖θ‖ = C, (13)

where ‖•‖ is the l2-norm; C is a constant, which can be normalized to 1, that’s ‖cK‖ =
‖θ‖ = 1.

To maximize the power of the useful signal, it is necessary to select the coefficients of
the extra signal that minimize the power of the extra signal. For DSSS constant envelope
multiplexing signal, its power could be expressed as:

Corr(SCE, SCE) = Corr(SSUM, SSUM) + Corr(E, E), (14)

where Corr(•, •) is the correlation between the two signals; SSUM =
N
∑

i=1
ci s̃i is the signal;

E =
H
∑

i=N+1
ci ẽi is the extra signal. As the bases of extra signal space {ẽN+1, · · · , ẽH}

are orthogonal to each other, there is no cross-correlation, and the power of constant
multiplexing signal could be expressed as:

Corr(SCE, SCE) = Corr
(

N
∑

i=1
ci s̃i,

N
∑

i=1
ci s̃i

)
+ Corr

(
H
∑

i=N+1
ci ẽi,

H
∑

i=N+1
ci ẽi

)

=
N
∑

i=1
‖ci‖Corr(s̃i, s̃i) +

N
∑

i,j=1,i 6=j
cicjCorr

(
s̃i, s̃j

)
+

H
∑

i=N+1
‖ci‖Corr(ẽi, ẽi) +

H
∑

i,j=N+1,i 6=j
cicjCorr

(
ẽi, ẽj

)
=

N
∑

i=1
‖ci‖Corr(s̃i, s̃i) +

H
∑

i=N+1
‖ci‖Corr(ẽi, ẽi)

, (15)

where s̃i and s̃j are orthogonal, Corr
(
s̃i, s̃j

)
= 0; ẽi and ẽj are orthogonal, Corr

(
ẽi, ẽj

)
= 0.
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From the above description, for N signals with H signal states, the method of construct-
ing a multi-carrier constant envelope multiplexing signal is to find H− N orthogonal bases
in the extra signal space and select their coefficients to satisfy the following Equation (16):

{c1, · · · , cN} decided by signals

‖cK‖ = 1

max{Corr(SSUM, SSUM)/Corr(SCE, SCE)}
, (16)

where {θ1, · · · , θH} = arg{cK} is the phase of different signal states.
The Equation (16) is actually a nonlinear constrained optimization problem. The

objective function is {Corr(SSUM, SSUM)/Corr(SCE, SCE)}, and the constraint is ‖cK‖ = 1.
Any method of solving nonlinear constraint optimization can be used to solve the equation.
One of the effective methods is the quasi-Newton algorithm based on penalty function,
which construct the optimization function as follows:

F = (1− Corr(SSUM, SSUM)/Corr(SCE, SCE)) + µ(‖cK‖ − 1)

= (Corr(E, E)/Corr(SCE, SCE)) + µ(‖cK‖ − 1)
, (17)

where µ is the penalty factor. According to quasi-Newton method, find the minimum value
of F and the coefficient vector c.

3. Constant Envelope Multiplexing Based on Probability and
Homogeneous Equations
3.1. General Constuction Based on Probability and Homogeneous Equations

For binary signals, the method of constructing orthogonal bases is Inter-Modulation.
There are N binary signals s1, s2, s3, · · · , si, · · · sN , the Inter-Modulation to construct 2N

orthogonal bases is

1︸︷︷︸
C0

N

, s1, s2, · · · si, · · · sN︸ ︷︷ ︸
C1

N

, s1s2, s1si, · · · , sN−1sN︸ ︷︷ ︸
C2

N

, s1s2s3, · · ·︸ ︷︷ ︸
C3

N

, · · · , s1s2 · · · sN︸ ︷︷ ︸
CN

N

(18)

where Cm
N is the number of m-combinations from a set of N elements. For multi-level

signals, the orthogonal bases are constructed by Gram–Schmidt orthogonalization based on
the Inter-Modulation. The method of multi-carrier constant envelope multiplexing method
based on Inter-Modulation (CEMIM) first constructs a set of orthogonal bases in baseband
code space and a set of orthogonal bases in subcarrier space, as shown in Equations (19)
and (20) respectively.

sbb−code = {s1, · · · , sN , IMN+1, · · · , IM2N}, (19)

ssub =
{

Q
[
ej2π∆ f1t

]
, · · · , Q

[
ej2π∆ fN t

]
, IMN+1, · · · , IMF

}
, (20)

where sbb−code are a set of orthogonal bases in baseband code space; ssub are a set of
orthogonal bases in subcarrier space; 2N and F are the dimension of baseband code space
and subcarrier space respectively; IM is the Inter-Modulation; Q[•] is quantization function.
Then, the tensor product of two sets of orthogonal bases is used to construct the orthogonal
base of multi-carrier signal space, as shown in Equation (21).

s = sbb−code ⊗ ssub (21)

However, the frequency constraint of the sub-carriers will affect the orthogonality of
the orthogonal bases in Equation (20). At the same time, because the two sets of orthogonal
bases are not considered uniformly, the construction of the orthogonal bases of the signal
space by the tensor product will greatly increase the computational complexity. The signal
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states probability and homogeneous equations are introduced in this article to solve these
problems.

Let s̃i(t) = ej2π∆ fitsi(t), and after quantization, it can be expressed as:

s̃i = Q
[
ej2π∆ fit

]
si = Q[cos(2π∆ fit)]si + jQ[sin(2π∆ fit)]si, (22)

where Q[•] is quantization function. For N independent baseband code signals s1, s2, · · · , sN
with M-level {L1,−L1, · · · , LM/2,−LM/2}, Li ∈ R, there are MN baseband code states{

s1 = Lj1, s2 = Lj2, · · · , sN = LjN
}

k, Lji ∈ {L1,−L1, · · · , LM/2,−LM/2}, k = 1 ∼ MN ,
where Lji is the level of the ith code; k is the kth baseband code state. Since sub-carriers are
known signals with symmetry, after T-level quantization of N subcarriers
{ζ1,−ζ1, · · · , ζT/2,−ζT/2}, ζi ∈ C, there are F subcarrier states {Q[ej2π∆ f1t] = ζ j1,
Q[ej2π∆ f2t] = ζ j2, · · · , Q[ej2π∆ fN t] = ζ jN}k, ζ ji ∈ {ζ1,−ζ1, · · · , ζT/2,−ζT/2}, k = 1 ∼ F,
where F is determined by the number of quantization levels and the subcarrier frequency
constraint; ζ ji is the level of the ith sub-carrier; k is the kth sub-carrier state. The symmetry
of the code and sub-carrier will make the value of the ith multiplexed signal equal in the
following cases, s̃i = Q

[
ej2π∆ fit

]
si = ζ jiLji =

(
−ζ ji

)(
−Lji

)
, so the dimension of the signal

state space can be reduced. Define the kth valid sub-carrier state as:{
ab
(

Q
[
ej2π∆ f1t

])
, · · · , ab

(
Q
[
ej2π∆ fN t

])}
k
, (23)

where ab(•) is that if ζi ∈ {−ζ1, · · · ,−ζT/2}, then ab(ζi) = −ζi, else ab(ζi) = ζi;
k = 1 ∼ U, and U is the number of valid sub-carrier states in F sub-carrier states. Then the
dimension of the signal state space is H = UMN . For binary code, it would be H = 2NU.

One of the signal state probability is

Pi

(
ab
(

Q
[
ej2π∆ f1t

])
s1 = Li1ζ j1, · · · , ab

(
Q
[
ej2π∆ fN t

])
sN = LiNζ jN

)
, (24)

where Li1, · · · , LiN ∈ {L1,−L1, · · · , LM/2,−LM/2} and ζ j1, · · · , ζ jN ∈ {ζ1, · · · , ζT/2}. Us-
ing the principle of conditional probability, the probability of one signal state could be
gotten:

Pi

(
ab
(

Q
[
ej2π∆ f1t

])
s1 = Li1ζ j1, · · · , ab

(
Q
[
ej2π∆ fN t

])
sN = LiNζ jN

)
= Pi

(
ab
(

Q
[
ej2π∆ f1t

])
= ζ j1, · · · , ab

(
Q
[
ej2π∆ fN t

])
= ζ jN

∣∣∣s1 = Li1, · · · , sN = LiN

)
· P(s1 = Li1, · · · , sN = LiN)

= Pi

(
ab
(

Q
[
ej2π∆ f1t

])
= ζ j1, · · · , ab

(
Q
[
ej2π∆ fN t

])
= ζ jN

∣∣∣s1 = Li1, · · · , sN = LiN

)
· P(s1 = Li1) · · · P(sN = LiN),

(25)

where baseband codes s1, s2, · · · , sN are independent each other.
As there are H signal states, H − N orthogonal bases need to be constructed. Sup-

posing a basis is x = [x1, x2, · · · , xH ], it needs to be orthogonal with any signal s̃i. The
homogenous equations could be listed as follows:{

Corr(s̃i, x) = 0, i = 1 ∼ H − 1
Corr(1, x) = 0

, (26)

where Corr(s̃i, x) =
H
∑

i=1
Pi L̃ixi, L̃i = Liiζ ji is the ith value; Corr(1, x) = 0 means that x does

not contain DC component. The solution space of the equations together with the space of
DC component forms the signal orthogonal complement space. Solving the homogeneous
linear equations and orthogonalize its solutions, the orthogonal bases could be gotten:

{ẽN+1, · · · , ẽH} = {1, sol1, · · · , solH−N−1} (27)
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where soli is the ith solution vector. Using Equations (12) and (16) could get the constant
envelope multiplexing signal. The algorithm to construct general multi-carrier constant
envelope multiplexing signal based on probability and homogeneous equations (GCEMPH)
is listed in Algorithm 1.

Algorithm 1: General construction based on probability and homogeneous equations

Input: c1 s̃1, c2 s̃2, · · · , cN s̃N

Output: GCEMPH signal
1 Determine the U valid sub-carrier states and H signal states according to the DSSS codes and
sub-carriers;
2 According to Equation (25), find the probability of each signal states Pi, i = 1, · · · , H;
3 According to homogeneous Equation (26) and orthogonal bases Equation (27) to find the H − N
extra signals {ẽN+1, · · · , ẽH};

4 GCEMPH signal SCE = SSUM + E =
N
∑

i=1
ci s̃i +

H
∑

i=N+1
ci ẽi , where {cN+1, · · · , cH} are the H − N

unknowns;
5 According to Equations (15) and (16), use the optimization algorithms such as Equation (17) to
find {c1, · · · , cH}.

3.2. Constuction Based on Probability and Homogeneous Equations without Sub-Carrier
Interference

There are two orthogonal bases, they are signal s1(t)Q[cos(ωst)] and extra signal
s1(t)Q[cos(ωst)] ·Q[sin(ωst)]. The correlation result of the two bases will introduce inter-
ference as shown in Figure 2. The interference is actually introduced by the sub-carrier
with the same PRN code, which is called sub-carrier (S-C) interference. Figure 2b shows
the influence of S-C interference on the correlation curve, and it can be seen that it causes
the distortion of the correlation curve.
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Figure 2. (a) The S-C interference of s1(t)Q[cos(ωst)] and s1(t)Q[cos(ωst)] ·Q[sin(ωst)]; (b) The influence of S-C interference
on the correlation curve.

The reason for generating the interference is the period of PRN code and sub-carrier
are different. To eliminate the interference, the product of the subcarrier space bases ssub
and the baseband codes {s1, · · · , sN} cannot appear in the extra signal term, which means
the orthogonal bases of the signal complement space is incomplete, and will lead to a
reduction in multiplexing efficiency.
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To get the constant envelope multiplexing signal without sub-carrier interference
conveniently, an optimization method based on the combination of orthogonal basis
and phase shift is proposed. There are N signals s̃1, s̃2, · · · , s̃N , on which s1, s2, · · · , sN
are baseband codes with M-level and sub-carrier signals have U valid sub-carrier states{

ab
(

Q
[
ej2π∆ f1t

])
, ab
(

Q
[
ej2π∆ f2t

])
, · · · , ab

(
Q
[
ej2π∆ fN t

])}
k
, k = 1, · · · , U, and the ith

valid sub-carrier state probability is Pi. The baseband codes s1, s2, · · · , sN and their extra
parts construct a group of orthogonal bases {s1, · · · , sN , eN+1, · · · , eMN}. Because the extra
parts {eN+1, · · · , eMN} are orthogonal to the baseband codes {s1, · · · , sN}, the baseband
codes {s1, · · · , sN} won’t appear in the extra parts. The N baseband code coefficients are
{c1, c2, · · · , cN}, ci ∈ C, then the constant envelope signals could be expressed as:

‖SCE‖ =
∥∥∥c1s1ab

(
Q
[
ej2π∆ f1t

])
+ · · ·+ cNsNab

(
Q
[
ej2π∆ fN t

])
+ dN+1eN+1 + · · ·+ dMN eMN

∥∥∥ = 1. (28)

where {dN+1, · · · , dMN} are the coefficients of the extra parts which varies with the

value of
{

ab
(

Q
[
ej2π∆ f1t

])
, · · · , ab

(
Q
[
ej2π∆ fN t

])}
. If the ith valid sub-carrier state is{

ab
(

Q
[
ej2π∆ f1t

])
i
, · · · , ab

(
Q
[
ej2π∆ fN t

])
i

}
, and the extra part coefficients in the ith valid

sub-carrier state are
{

dN+1,i, · · · , dMN ,i
}

, di ∈ C. The constant envelope equations could
be listed as:

∥∥∥c1s1ab
(

Q
[
ej2π∆ f1t

])
1
+ · · ·+ cNsNab

(
Q
[
ej2π∆ fN t

])
1
+ dN+1,1eN+1 + · · ·+ dMN ,1eMN

∥∥∥ = 1
...∥∥∥c1s1ab

(
Q
[
ej2π∆ f1t

])
U
+ · · ·+ cNsNab

(
Q
[
ej2π∆ fN t

])
U
+ dN+1,UeN+1 + · · ·+ dMN ,UeMN

∥∥∥ = 1

. (29)

If the amplitude ratio of the baseband code is A1 : A2 : · · · : AN = 1 : α2 : · · · : αN , then
the amplitude of the N signals could be expressed as {A1 = a, A2 = α2a, · · · , AN = αN a},
where a is an unknown. If the phase relationship of N baseband code is

{
ejϕ1 , ejϕ2 , · · · , ejϕN

}
,

then the baseband code coefficients are {c1, c2, · · · , cN} =
{

aejϕ1 , α2aejϕ2 , · · · , αN aejϕN
}

.
Optimization

{
a, dN+1,1, · · · , dMN ,1, · · · , dN+1,U , · · · , dMN ,U

}
, to get the maximum of mul-

tiplexing efficiency:

P1
Corr(S1, S1)

Corr(S1 + E1, S1 + E1)
+ · · ·+ PU

Corr(SU , SU)

Corr(SU + EU , SU + EU)
, (30)

where Si = c1s1ab
(

Q
[
ej2π∆ f1t

])
i
+ · · ·+ cNsNab

(
Q
[
ej2π∆ fN t

])
i
, Ei = dN+1,ieN+1 + · · ·+

dMN ,ieMN .

Taking Equation (30) as the objective function and Equation (29) as the constraint,
those unknown could be easily obtained by using the nonlinear constrained optimization
algorithm, such as the quasi-Newton method based on the penalty function.

Actually, the AltBoc modulation used in the Galileo System can be seen as a special
case of this method. The algorithm to construct multi-carrier constant envelope multiplex-
ing signal based on probability and homogeneous equations no sub-carrier interference
(CEMPHNSI) is listed in Algorithm 2.
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Algorithm 2: Construction based on probability and homogeneous equations without sub-carrier
interference

Input: c1s1, c2s2, · · · , cNsN ,
{

Q
[
ej2π∆ f1t

]
, Q
[
ej2π∆ f2t

]
, · · · , Q

[
ej2π∆ fN t

]}
Output: CEMPHNSI signal
1 Determine the baseband code states MN and the valid sub-carrier states U;
2 Find the probability of each valid sub-carrier state Pi, i = 1, · · · , U;
3 According to homogeneous Equation (26) or Inter-modulation Equation (18) to find the
MN − N extra signals {eN+1, · · · , eMN};
4 According to Equations (29) and (30), find the coefficients of extra parts

{
dN+1,i, · · · , dMN ,i

}
and

signals {c1, c2, · · · , cN} by the optimization algorithm;

5 CEMPHNSI signal:

SCE = c1s1ab
(

Q
[
ej2π∆ f1t

])
i
+ · · ·+ cNsNab

(
Q
[
ej2π∆ fN t

])
i
+ dN+1,ieN+1 + · · ·+ dMN ,ieMN .

4. Constant Envelope Multiplexing of Three Different Frequency Signals

There are three independent binary DSSS signals s1, s2, s3 with code frequency 2.046 MHz
and BPSK(2) modulation:

si =
∞

∑
k=−∞

codeiψTc(t− kTc), (31)

where codei is the PRN code of the ith signal si, its value is 1 or −1; ψTc is the dura-
tion of each chip and the code frequency is fc = 1/Tc = 2.046 MHz. The amplitude
ratio of the three signals is As1 : As2 : As3 = 1 : 1 : 1, and the phase relationship

is {Phs1 , Phs2 , Phs3} =
{

ej0, ej0, ejπ/2
}

. s1 has a frequency offset ejωst from the center

frequency, s2 has the frequency offset e−j3ωst from the center frequency, and s3 has no
frequency offset, where ωs = 2π fs and fs = 4.092 MHz.

According to the principle of constant envelope multiplexing, the CE signal could be
expressed as:

SCE = a1s1ejωst + a1s2e−j3ωst + ja1s3 + E

= (a1s1 cos(ωst) + a1s2 cos(3ωst) + Sextra−I) + j
(
a1s1 sin(ωst)− a1s2 sin(3ωst) + a1s3 + Sextra−Q

)
,

(32)

where Sextra−I is the in-phase component of the extra signal and Sextra−Q is the quadrature-
phase component of the extra signal; the coefficients of signals are c1 = a1, c2 = a1, c3 = ja1
decided by amplitude and phase relationship. After two-level quantization, the sub-carrier
could be expressed as follows:

scc−ωs = sign[cos(ωst)], scs−ωs = sign[sin(ωst)]

scc−3ωs = sign[cos(3ωst)], scs−3ωs = sign[sin(3ωst)]
, (33)

then the multiplexing signal could be expressed as follows:

SCE = (a1s1scc−ωs + a1s2scc−3ωs + Sextra−I) + j
(
a1s1scs−ωs − a1s2scs−3ωs + a1s3 + Sextra−Q

)
. (34)

For the 3 multiplexed signals, there are 23 = 8 baseband code states and F = 12
sub-carrier states. The sub-carrier states are decided by the frequency constraint and
quantization level as shown in Figure 3. The probability of each code state is PCi = 1/8
and the probability of each sub-carrier state is PFi = 1/12.
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Figure 3. The sub-carrier state of the multiplexing signal.

According to the definition of valid sub-carrier states, there are only four valid sub-
carrier states in the 12 sub-carrier states, they are U1 : {1 + j, 1 + j, 1}, U2 : {1 + j,−1 + j, 1},
U3 : {−1 + j,−1 + j, 1}, and U4 : {−1 + j, 1 + j, 1}, the probability of valid sub-carrier
states are PU1 = 1/3, PU2 = 1/6, PU3 = 1/3 and PU4 = 1/6, respectively. Where ζ1 = 1 + j,
−ζ1 = −1− j, ζ2 = −1 + j and −ζ2 = 1− j. The number of signal states is H = 23 · 4 = 32
in total. The probability of one of the signal states is

P1 = P(s1scc−ωs = 1, s1scs−ωs = 1, s2scc−3ωs = 1, s2scs−3ωs = 1, s3 = 1)
= P(U1|s1 = 1, s2 = 1, s3 = 1)P(s1 = 1, s2 = 1, s3 = 1) = 1/24

(35)

and other probability of the signal states could be gotten as well. From homogeneous
Equation (26) and orthogonal bases Equation (27) the extra signals could be gotten and
from Equations (16) and (17) the coefficients of extra signals could be gotten.

After optimization, the GCEMPH could be gotten, and according to Equations (16)
and (17), its multiplexing efficiency is 83.88%. The Figure 4 provides the power spectrum
and the constellation of GCEMPH.

Figure 4. (a) The spectrum of GCEMPH and multiplexed signals; (b) The constellation of GCEMPH.

According to Algorithm 2, the CEMPHNSI could be gotten, and its multiplexing
efficiency is 62.50%. The Figure 5 provides the power spectrum and the constellation of
CEMPHNSI. Compared with GCEMPH, its multiplexing efficiency is reduced by 21.38%,
which is the price paid for not introducing sub-carrier interference.
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Figure 5. (a) The spectrum of CEMPHNSI and multiplexed signals; (b) The constellation of CEMPHNSI.

5. Multiplexing Signal Analysis
5.1. Receiving Correlation Results and Power Ratio

The receiving module of constant envelope multiplexing signal is shown in Figure 6.

Figure 6. The receive module of the constant envelope multiplexing signal in Section 4.

The normalized cross-correlation between the ith signal and the multiplexing signal is
defined as:

Rsi (τ) = |Corr(SCE(t), si(t + τ))|/max[Corr(si, si)]. (36)

And the normalized cross-correlation between the ith signal and the extra signal is
defined as:

R(E,si)
(τ) = |Corr(E(t), si(t + τ))|/max[Corr(si, si)] (37)

Figure 7a shows the normalized cross-correlation results of s1 and three multiplexing
signals. The three multiplexing signals are implemented using CEMIM, GCEMPH and
CEMPHNSI methods, respectively. Figure 7b shows the normalized cross-correlation re-
sults of s2 and three multiplexing signals; Figure 7c shows the normalized cross-correlation
results of s3 and three multiplexing signals. Figure 8a shows the normalized cross-
correlation results of s1 and three extra signals. The three extra signals are extra parts
of CEMIM, GCEMPH and CEMPHNSI, respectively. Figure 8b shows the normalized
cross-correlation results of s2 and three extra signals; Figure 7c shows the normalized
cross-correlation results of s3 and three extra signals. In Figure 7, the maximum correlation
result of CEMPHNSI is lower than GCEMPH that because the multiplexing efficiency
of CEMPHNSI is lower than GCEMPH. In Figure 7c, the maximum correlation result of
CEMIM has a noticeable drop, the reason is CEMIM has power leakage shown in Figure 8c
and it is negatively correlated with the correlation result. From Figure 8, it can be seen that
the CEMIM has more power leakage in extra signal compared with GCEMPH proposed in
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this paper, and GCEMPH and CEMIM all introduced sub-carrier interference compared
with CEMPHNSI.
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Figure 7. (a) The correlation between 3 multiplexing signals and signal s1; (b) The correlation between 3 multiplexing
signals and signal s2; (c) The correlation between 3 multiplexing signals and signal s3.
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Figure 8. (a) The correlation between 3 extra signals and signal s1; (b) The correlation between 3 extra signals and signal s2;
(c) The correlation between 3 extra signals and signal s3.

The receiving power ratio of the three signals could be expressed as:

Ps1 : Ps2 : Ps3 = max[Rs1 ] : max[Rs2 ] : max[Rs3 ]. (38)

Due to the influence of the quantization, the receiving signal power of a designed
signal is Ps1 : Ps2 : Ps3 = 1 : 1 : 0.79. The receiving power ratio of the three situations and
designed situation are listed in Table 1, respectively.

Table 1. The receiving power ratio of different multiplexing signal and of designed signal.

Different Situation The Receiving Power Ratio

Design Ps1 : Ps2 : Ps3 = 1 : 1 : 0.79
GCEMPH Ps1 : Ps2 : Ps3 = 1 : 1.01 : 0.80
CEMIM Ps1 : Ps2 : Ps3 = 1 : 1.01 : 0.64

CEMPHNSI Ps1 : Ps2 : Ps3 = 1 : 1 : 0.79

From Table 1, the received power ratio of GCEMPH and CEMPHNSI is the same as
the designed power ratio. Due to the power leakage, the received power ratio of CEMIM is
different from the designed power ratio and is smaller than the design power ratio.

5.2. S-Curve Bias and Slope

Define the normalized cross-correlation-function (CCF) as [21]:

CCF(SCE, si, τ) =
Corr(SCE, si, τ)√

Corr(SCE, SCE, 0) ·
√

Corr(si, si, 0)
, (39)
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Then the normalized S-Curve with early-late spacing δ is given by [21]:

SC(SCE, si, τ) = |CCF(SCE, si, τ + δ/2)|2 − |CCF(SCE, si, τ − δ/2)|2. (40)

With the smallest zero-crossing of the S-Curve τ0 according to the S-Curve bias, the
relative change of S-Curve slope “dSlope”, relative to the ideal S-Curve slope for the
undistorted signal is given by:

dSlope(SCE, si, τ0) = 1− dSC(SCE, si, τ0)/dτ

dSC(si, si, 0)/dτ
. (41)

Generally, the cross-correlation function affects the S-Curve bias and slope. In practical
applications, the cross-correlation function will not be zero, so the S-Curve bias will be
introduced, but it should not be too large. Otherwise, it will affect the ranging performance.
In order to measure the influence of extra signals on the S-Curve bias and slope, define the
S-Curve bias introduced by extra signals as:

SC(E, si, τ) = SC(SCE, si, τ)− SC(SSUM, si, τ), (42)

and the S-Curve slope introduced by extra signals as:

dSlope(E, si, τ0) = dSlope(SCE, si, τ0)− dSlope(SSUM, si, τ0). (43)

Figures 9 and 10 provides the S-Curve bias and slope of 3 multiplexing signals intro-
duced by extra signal, respectively. From Figure 9, it can be seen that the S-Curve bias of
the s1 and s2 are no more than 1 ns, while for the s3, the CEMIM introduces the more S-
Curve bias compared with GCEMPH and CEMPHNSI, which more than 2 ns, that because
the CEMIM has more power leakage. From Figure 10, it can be seen that the sub-carrier
interference will cause the S-Curve slope fluctuations, and because the CEMPHNSI doesn’t
have sub-carrier interference, it won’t introduce the S-Curve slope fluctuations.
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dSC s s d
τ τ

τ
τ

= − . (41)

Generally, the cross-correlation function affects the S-Curve bias and slope. In prac-
tical applications, the cross-correlation function will not be zero, so the S-Curve bias will 
be introduced, but it should not be too large. Otherwise, it will affect the ranging perfor-
mance. In order to measure the influence of extra signals on the S-Curve bias and slope, 
define the S-Curve bias introduced by extra signals as: 

( ) ( ) ( ), , , , , ,i CE i SUM iSC E s SC S s SC S sτ τ τ= − , (42)

and the S-Curve slope introduced by extra signals as: 

( ) ( ) ( )0 0 0, , , , , ,i CE i SUM idSlope E s dSlope S s dSlope S sτ τ τ= − . (43)

Figures 9 and 10 provides the S-Curve bias and slope of 3 multiplexing signals intro-
duced by extra signal, respectively. From Figure 9, it can be seen that the S-Curve bias of 
the 1s  and 2s  are no more than 1 ns, while for the 3s , the CEMIM introduces the more 
S-Curve bias compared with GCEMPH and CEMPHNSI, which more than 2 ns, that be-
cause the CEMIM has more power leakage. From Figure 10, it can be seen that the sub-
carrier interference will cause the S-Curve slope fluctuations, and because the CEMPHNSI 
doesn’t have sub-carrier interference, it won’t introduce the S-Curve slope fluctuations. 
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Figure 9. (a) The S-Curve bias of 3 multiplexing signals with signal s1; (b) The S-Curve bias of 3 multiplexing signals with 
signal s2; (c) The S-Curve bias of 3 multiplexing signals with signal s3. 
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Figure 9. (a) The S-Curve bias of 3 multiplexing signals with signal s1; (b) The S-Curve bias of 3 multiplexing signals with
signal s2; (c) The S-Curve bias of 3 multiplexing signals with signal s3.
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Figure 10. (a) The S-Curve slope of 3 multiplexing signals with signal s1; (b) The S-Curve slope of 3 multiplexing signals 
with signal s2; (c) The S-Curve slope of 3 multiplexing signals with signal s3. 
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From Table 2, it can be seen that the GCEMPH and CEMPHNSI proposed in this 
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the computational complexity in the orthogonal basis and optimization solution. 

6. Conclusions 
Flexible construction of diverse signals is the trend of next-generation satellite navi-

gation systems. On the basis of the previous constant envelope multiplexing methods, this 
article considers the influence of the sub-carriers frequency constraint on the signal states 
probability of multi-carrier constant envelope multiplexing, and proposed multi-carrier 
constant envelope multiplexing methods based on probability and homogeneous equa-
tions including GCEMPH and CEMPHNSI. The analysis results reveal that, compared 
with previous methods, the methods can easily multiplex signals with any adjacent fre-
quency offset and multiplex multi-carrier signals without power leakage, thereby reduc-
ing the impact on signal ranging performance. Meanwhile, the methods could reduce the 
computation complexity. Furthermore, compared with GCEMPH, CEMPHNSI could not 
introduce the sub-carrier interference, while its multiplexing efficiency is less than 
GCEMPH. 
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Figure 10. (a) The S-Curve slope of 3 multiplexing signals with signal s1; (b) The S-Curve slope of 3 multiplexing signals
with signal s2; (c) The S-Curve slope of 3 multiplexing signals with signal s3.

5.3. Computational Complexity

As mentioned before, the dimension of the baseband code space is 23 = 8 and the
dimension of the sub-carrier space is F = 12. The number of valid sub-carrier states is
U = 4. As the signal space dimension of CEMIM is based on the tensor product, then
it would be H = 23F = 96. The GCEMPH and CEMPHSI are based on homogenous
equations, they uniformly consider code space and sub-carrier space, the signal space
dimension of them are H = 23U = 32.

The signals to be multiplexed are provided in Section 4. Table 2 shows the number of
optimization equations for 3 multiplexing methods.

Table 2. The number of optimization equations for different multiplexing methods.

Multiplexing Method The Number of Optimization Equations

CEMIM 96
GCEMPH 32

CEMPHNSI 32

From Table 2, it can be seen that the GCEMPH and CEMPHNSI proposed in this paper
has much less number optimization equations than CEMIM, which greatly reduces the
computational complexity in the orthogonal basis and optimization solution.

6. Conclusions

Flexible construction of diverse signals is the trend of next-generation satellite naviga-
tion systems. On the basis of the previous constant envelope multiplexing methods, this
article considers the influence of the sub-carriers frequency constraint on the signal states
probability of multi-carrier constant envelope multiplexing, and proposed multi-carrier
constant envelope multiplexing methods based on probability and homogeneous equations
including GCEMPH and CEMPHNSI. The analysis results reveal that, compared with pre-
vious methods, the methods can easily multiplex signals with any adjacent frequency offset
and multiplex multi-carrier signals without power leakage, thereby reducing the impact
on signal ranging performance. Meanwhile, the methods could reduce the computation
complexity. Furthermore, compared with GCEMPH, CEMPHNSI could not introduce the
sub-carrier interference, while its multiplexing efficiency is less than GCEMPH.
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