
electronics

Article

Achieving Balanced Load Distribution with Reinforcement
Learning-Based Switch Migration in Distributed SDN Controllers

Sangho Yeo, Ye Naing , Taeha Kim and Sangyoon Oh *

����������
�������

Citation: Yeo, S.; Naing, Y.; Kim, T.;

Oh, S. Achieving Balanced Load

Distribution with Reinforcement

Learning-Based Switch Migration in

Distributed SDN Controllers.

Electronics 2021, 10, 162. https://

doi.org/10.3390/electronics10020162

Received: 30 November 2020

Accepted: 11 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Artificial Intelligence, Ajou University, Suwon 16499, Korea; soboru963@ajou.ac.kr (S.Y.);
yenaingmdy@ajou.ac.kr (Y.N.); kth@ajou.ac.kr (T.K.)
* Correspondence: syoh@ajou.ac.kr; Tel.: +82-031-219-2633

Abstract: Distributed controllers in software-defined networking (SDN) become a promising ap-
proach because of their scalable and reliable deployments in current SDN environments. Since the
network traffic varies with time and space, a static mapping between switches and controllers causes
uneven load distribution among controllers. Dynamic migration of switches methods can provide
a balanced load distribution between SDN controllers. Recently, existing reinforcement learning
(RL) methods for dynamic switch migration such as MARVEL are modeling the load balancing of
each controller as linear optimization. Even if it is widely used for network flow modeling, this
type of linear optimization is not well fitted to the real-world workload of SDN controllers because
correlations between resource types are unexpectedly and continuously changed. Consequently,
using the linear model for resource utilization makes it difficult to distinguish which resource types
are currently overloaded. In addition, this yields a high time cost. In this paper, we propose a rein-
forcement learning-based switch and controller selection scheme for switch migration, switch-aware
reinforcement learning load balancing (SAR-LB). SAR-LB uses the utilization ratio of various resource
types in both controllers and switches as the inputs of the neural network. It also considers switches
as RL agents to reduce the action space of learning, while it considers all cases of migrations. Our
experimental results show that SAR-LB achieved better (close to the even) load distribution among
SDN controllers because of the accurate decision-making of switch migration. The proposed scheme
achieves better normalized standard deviation among distributed SDN controllers than existing
schemes by up to 34%.

Keywords: distributed controllers; software-defined networking (SDN); load balancing; switch
migration; reinforcement learning

1. Introduction

SDN provides powerful programmable network architecture and can be used to
design a logical topology that defines the placement of a network entity (e.g., hardware
equipment such as a router, switch, load balancer, firewall, and VPN) [1]. SDN separates
network space into a control plane and a data plane. In the data plane, the switches transfer
actual data between hosts, while the control plane defines the flow rule, which is the rule
for routing data among switches [2]. Decoupling of the data plane and the control plane
makes the efficient management of the network logic possible.

However, when incoming packets are massive, a single SDN controller [3] could
become a performance bottleneck where all SDN switches are connected to a single SDN
controller. In addition, the controller could be a single point of failure [4] since all packet
processing must be stopped. To address these two major problems, distributed SDN
controllers are proposed [5]. In distributed SDN controllers, each SDN controller manages
its own domain network while SDN switches are statically mapped to the specific controller.
Therefore, load imbalances between controllers could occur, and, owing to the static
mapping between switches and controllers, uneven load distribution between controllers
becomes significant.

Electronics 2021, 10, 162. https://doi.org/10.3390/electronics10020162 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2257-0915
https://orcid.org/0000-0002-9521-2633
https://orcid.org/0000-0001-5854-149X
https://doi.org/10.3390/electronics10020162
https://doi.org/10.3390/electronics10020162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020162
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/162?type=check_update&version=2

Electronics 2021, 10, 162 2 of 16

To resolve this load imbalance problem, dynamic switch-to-controller mapping changes
have been studied to achieve an evenly balanced load among distributed SDN con-
trollers [6–12]. These approaches are majorly focused on load balancing of distributed
SDN controllers with switch migration schemes, and they are based on the repetitive
optimization methods with a greedy selection of switch-to-controller mapping for the
migration. In addition, some approaches adapt the reinforcement learning (RL) based
decision-making for switch-to-controller mapping changes [13–15]. Generally, RL-based
decision-making for switch migration concerns training the model adaptively in various
SDN environments. However, the conventional RL-based methods use tabular Q-learning,
which is a well-known model-free RL method that is utilized for the exploration of the
environment for avoiding local optima problems. Because its definition of the state is not
able to represent a load of each controller as a continuous value due to the limited size of
the Q table [14,15], it is hard to utilize the dynamic change of load among controllers. This
limitation makes it difficult to work promptly with the changes of a load of each controller
for decision-making of switch migration.

To resolve this problem, a state of the art RL-based method, MARVEL [13], adopts a
neural network to approximate the value of actions in continuous state space, and it models
load balancing among controllers as linear optimization that is widely used for modeling
network flow. To model linear optimization, they define the utilization of each controller
as a linear summation of utilization per resource type with a fixed weight. However, a
recent study [16] shows that the utilization of each controller cannot be effectively modeled
by linear optimization because correlations of utilization per resource type are changed
when the rate of PACKET_IN is changed. In addition, when controllers use a high network
bandwidth, CPU utilization could unexpectedly jitter even if the utilization of network
bandwidth is constantly high [17]. As a result, the linear model of resource utilization
makes it difficult to distinguish which resource type is currently overloaded. Furthermore,
the simplified action space of MARVEL worsens the problem. It is because its action space
only considers the limited number of switch migration cases.

Consequently, the conventional RL methods make a less-optimized decision for switch
migration, and that yields an unevenly balanced load among controllers. Furthermore,
the time cost of migrating switch to another domain is relatively high [9,18]. In this study,
we propose a switch-aware reinforcement learning load balancing (SAR-LB) scheme to
resolve the problem in linear optimization for load balancing. We consider the utilization
ratio of various resource types as an input state. In addition, to consider all possible switch
migration cases effectively with small action sizes, we define a switch as an RL agent in
SAR-LB. As we define a switch as an RL agent, the action size of our RL model is limited
to the number of possible target controllers while enabling us to consider all possible
switch migration cases in the working phase. As a consequence, SAR-LB selects the target
controller more accurately.

We evaluated our proposed scheme in a simulated SDN environment. The results
show that our proposed scheme achieves better normalized standard deviation among
distributed controllers of up to 34% than other schemes. The contributions of this study are
as follows:

• We enhance the switch migration decision-making scheme by considering various
types of resource utilization of controllers and a switch to migrate as an input state of
the RL model to cope with changed correlation among resource types;

• We efficiently consider all possible cases of migration with relatively small action
sizes (i.e., the number of controllers) by modeling the switches as RL agents in the
proposed scheme;

• We conduct the performance evaluation of our proposed scheme and other competing
schemes on stochastic and various environment settings. We evaluate SAR-LB in two
network conditions (i.e., with/without bursty network traffic) and five cases with
different numbers of switches and controllers. The results show that our scheme
performs better when the number of switches is much larger than the number of

Electronics 2021, 10, 162 3 of 16

controllers, and this confirms that our SAR-LB is well suited to the common data
center where the controller manages more than dozens of switches [19–22].

The rest of the paper is organized as follow. We describe the background of our
study in Section 2. In Section 3, we present the related works. We describe the details
of our proposed scheme and present the experiment setups and the evaluation results in
Sections 4 and 5, respectively. The discussion is presented in Section 6, and we conclude
our paper in Section 7.

2. Background

In this section, we describe the background of the switch migration for the load
balancing in distributed SDN controllers. Then, we introduce the RL used in the switch
migration domain of the load balancing in distributed SDN controllers.

2.1. Switch Migration in Load Balancing of Distributed SDN Controllers

In distributed SDN controllers, a switch can be controlled by multiple SDN controllers.
However, only one controller can manage the switch to process the PACKET_IN requests
and installation of flow rules. The relationship between switch and controller is specified
according to the southbound interface protocol.

For example, OpenFlow [2] provides the multiple connections of SDN controllers
to switches with different types of roles: (i) “master”, (ii) “equal”, and (iii) “slave”. An
SDN switch can be controlled by multiple controllers with “equal” and “slave” roles. The
difference is that SDN controllers with “slave” roles have read-only access to the SDN
switches. However, controllers with the “equal” role receive all asynchronous messages
and have full access to manage these messages send from the SDN switches. The “master”
role is similar to the “equal” role; however, the difference is that there is only one “master”
for an SDN switch to manage asynchronous messages and other controllers become “slave”
for the switch. Controllers with different types of roles can provide fault-tolerance to the
SDN network. Additionally, even load distribution among the distributed SDN controllers
can be achieved by migrating the switches from overutilized to an underutilized controller
with role changes between controllers. As a result, PACKET_IN requests from the switches
can be controlled by multiple controllers.

2.2. Reinforcement Learning

RL is a type of learning concerned with what to do in dynamic situations of the
environment [23]. Unlike other learning categories (e.g., supervised learning, unsupervised
learning), the learning of RL is processed by interacting with the environment. This
interaction is made by the basic elements of RL framing: the agent (i.e., it receives a reward
from the environment and sends back the action to the environment), the state (i.e., it
represents the current situation of the environment), and the reward (i.e., it is the feedback
from the environment to change the state). RL can deal with complex problems. For
example, RL is used as a tool for training AI models in complex systems such as healthcare,
robotics, and network automation [24].

Figure 1 presents an overview of deep Q networks (DQN). DQN [25] is the most
well-known deep reinforcement learning method, and it has two characteristics. The first
characteristic is the replay buffer. By using the replay buffer, DQN can store and utilize
previous experiences in the current training steps. The second is the target Q network.
The target Q network is a supportive network for the Q network and is slowly trained
by the Q network, while the Q network is trained directly via samples from the replay
buffer. By setting the target Q network, the Q network can be trained more stably due to
the conservative change of the target Q network.

Electronics 2021, 10, 162 4 of 16

Electronics 2021, 10, x FOR PEER REVIEW 4 of 19

setting the target Q network, the Q network can be trained more stably due to the con-
servative change of the target Q network.

Figure 1. Overview of deep Q-networks (DQN).

Algorithm 1 describes the whole process of DQN. In line 4, the DQN agent selects an
action by the 𝜖𝜖-decay policy. In the 𝜖𝜖-decay policy, the action is selected randomly or by
the Q network, and the probability of selecting the random action or the action by the
neural network is determined by the value of 𝜖𝜖. After selecting the action, the experience,
which consists of state, action, next state, reward, and done (i.e., Boolean value for defin-
ing the end of the episode), is saved to the replay buffer. The training process of DQN is
defined in lines 11–19. Especially, the loss function of DQN is an important part of the
training. To define the loss function, 𝑦𝑦𝑥𝑥 is defined by the combination of reward and the
maximum target Q value of the next state. This 𝑦𝑦𝑥𝑥 is utilized as the labeling value of su-
pervised learning. Thus, the mean square error of the value of Q network and 𝑦𝑦𝑥𝑥 become
the loss function of DQN.

Figure 1. Overview of deep Q-networks (DQN).

Algorithm 1 describes the whole process of DQN. In line 4, the DQN agent selects an
action by the ε-decay policy. In the ε-decay policy, the action is selected randomly or by the
Q network, and the probability of selecting the random action or the action by the neural
network is determined by the value of ε. After selecting the action, the experience, which
consists of state, action, next state, reward, and done (i.e., Boolean value for defining the
end of the episode), is saved to the replay buffer. The training process of DQN is defined
in lines 11–19. Especially, the loss function of DQN is an important part of the training.
To define the loss function, yx is defined by the combination of reward and the maximum
target Q value of the next state. This yx is utilized as the labeling value of supervised
learning. Thus, the mean square error of the value of Q network and yx become the loss
function of DQN.

Algorithm 1 DQN

Input: ReplayBuffer: data store for saving experience (i.e., state, reward, next state, action, done)
Q: the neural network which is directly trained for the approximate value of actions in each state,
target Q: the neural network which is trained through the Q neural network for stable training,
EPISODE_NUM: total number of episodes, STEP_NUM: total step numbers in each episode
1. time_step = 0
2. for i in range (EPISODE_NUM):
3. for j in range (STEP_NUM):
4. Select action by ε-decay policy
5. Send action to the environment and get statetime_step+1 and reward by action
6. if (j == STEP_NUM-1):
7. done = True
8. else:
9. done = False
10. Store experience (,action,statetime_step+1,reward,done) in ReplayBuffer
11. if learning start < time_step:
12. Sample random experiences (statex, actionx, statex+1, rewardx, done) as
13. if (done)
14. yx = rewardx
15. else;
16. yx = rewardx + γmax

a′
target Q(statex+1, action′)

17. Optimize a Q network by loss (yx–Q(statex, actionx))
2.

18. if target Q model update frequency % time_step == 0:
19. Apply weight parameter of Q to target Q
20. time_step ++

3. Related Works

Many researchers have studied various solutions for load balancing the distributed
SDN controllers. This section discusses the existing studies based on conventional opti-
mization and RL-based decision-making for switch migration.

Electronics 2021, 10, 162 5 of 16

3.1. Switch Migration Schemes for Load Balancing in SDN Environment

Switch migration schemes in the previous studies focused on PACKET_IN processing,
resource utilization, and switch group migration for migration efficiency. In the studies
of [6–8], the decisions of switch migration schemes are considered according to the number
of PACKET_IN requests to the distributed SDN controllers. In [6], the authors designed
a migration algorithm with the distributed hopping algorithm (DHA). Their proposed
algorithm randomly selected a switch from the overutilized controller and broadcast
the coming migration activity to the neighbor controllers in each iteration. Therefore,
communication overheads increase along with the synchronization of the states for global
network view after migration. Al-Tam et al. [7] proposed a heuristic algorithm with “shift”
and “swap” moves for switch migration. However, their proposed approach caused an
increase in the decision-making time for migration. This was because their proposed “shift”
and “swap” moves iteratively occur until the optimal switch-to-controller pair is decided
for even load distribution among SDN controllers. Jie et al. [8] also proposed a switch
migration scheme based on the response time of the PACKET_IN request. The response
time depends on the network condition of the southbound communication. For example,
the link failures between the switch and controller may affect the delay in the response time.

In [9,10], the authors also proposed a switch migration schemes focusing on maximiz-
ing the resource usages of distributed SDN controllers. In their approaches, the overutilized
controller selects a switch with less load and at the farthest distance to eliminate the overuti-
lization status of the controllers. In Cheng et al. [9], each underutilized controller played the
game independently until there was only one controller (i.e., targeted controller), indicating
that the controller migrated. The decision-making for switch migration is repetitively occur-
ring until the optimal targeted controller is selected for the migration. Sahoo et al. [10] also
proposed a framework called ESMLB. Their proposed framework uses the preliminary iter-
ative calculation for every pair of switch-to-controller prior to decision-making. Therefore,
the computation overhead of the preliminary calculation may affect the response time of the
load balancing along with the scalability in the distributed SDN controller’s environment.

Switch migration decision with switch groups’ migration has been studied in [11]
and [12]. Therein, switch group migration from an overutilized to an underutilized con-
troller was iteratively performed. Switch group migration increased the migration cost. In
Cello et al. [11], the authors also proposed a decision algorithm based on the graph parti-
tioning technique. In their approach, a switch migration decision was conducted among
the partitions in the short distance between the switches and the controller. Therefore, their
approach was suitable for small networks. Wu et al. [12] designed a switch migration-based
load balancing scheme by utilizing a non-cooperative game with iterative migration of
switches. In their approach, switch migration activities occurred greedily in each round of
the game. Moreover, switch group migration increases the extra overhead in the migration
of switches.

3.2. Reinforcement Learning-Based Load Balancing in SDN Environment

The load balancing issue in distributed SDN controllers has been addressed by the
integration of artificial intelligence (AI) in recent studies. RL is a widely used AI method in
the SDN environment. Particularly, it is used for the load balancing through an optimal
policy, which is trained by the RL agent. In recent studies, RL-based research in the SDN
environment can be divided into two categories: (i) use of RL in load balancing of the data
plane, and (ii) use of RL in switch migration for load balancing of the control plane.

In the case of RL used in the load balancing of the data plane, Mu et al. [26] detect
elephant flows in advance to reduce traffic between the controllers and switches. They
employed two types of RL algorithms (i.e., traditional reinforcement learning and deep
reinforcement learning algorithms) to better control overhead up to 60% and 14% improve-
ment in table-hit ratio. In [27], Wu et al. proposed a deep Q-network (DQN) empowered
dynamic flow data-driven approach for controller placement problem (D4CPP) that takes
full consideration in the flow fluctuating, latency reducing, and load balancing. The results

Electronics 2021, 10, 162 6 of 16

of their simulation show that D4CPP outperforms the traditional scheme by 13% in latency
and 50% in load balance in the SDN environment with dynamic flow fluctuating. Tosouni-
dis et al. [28] concentrate on dynamic load balancing with predictive methods using CNN
and Q-learning. These methods try to predict the traffic and the state of controllers and
networks in order to maximize the availability of the network. Their proposed method com-
pares the performance of their approach with traditional methods only, such as round-robin,
weighted round-robin, without the comparison with other RL-based solutions.

In the case of RL used in load balancing of the control plane, the switch migration-
based load balancing of a distributed SDN controllers has been addressed with a multi-
agent RL called MARVEL [13]. MARVEL trained the agents with the controller load
generated by the Poisson process, revealing the overutilization of the controller caused by
the distributed SDN controllers in real-world SDN controller load. MARVEL simplified the
switch migration action by defining the action space as three cases (i.e., STAY, IMPORT, and
EXPORT). However, simplified action space does not consider many other possible switch
migration cases in current steps. Li et al. [14] also proposed RL-based switch migration
decision-making for SDN controller load balancing. Their proposed approach is focused
on the selection of an underutilized controller with minimal hop counts between the
switch and the controller. This limits the selection space of underutilized controllers and
cannot provide the scalability of the distributed SDN controller architecture. Min et al. [15]
addressed the switch migration problem of distributed SDN controllers with a Q-learning
algorithm. In their paper, the authors described the analysis of the proposed algorithm.
However, there is no comparison with other switch migration algorithms in the evaluation
of their algorithm.

4. Design of SAR-LB

Our proposed switch-aware reinforcement learning load balancing (SAR-LB) is a
reinforcement learning-based switch and controller selection scheme for switch migration.
It takes the utilization ratio of various resource types as input state of RL agent and defines
a switch as an RL agent to limit the number of action size while considering all possible
cases of switch migration. We present the design of SAR-LB as three-part: (i) the definition
of RL communication channel, (ii) training and working phase, and (iii) DNN model for
DQN agent.

To describe SAR-LB in detail, it would be effective to compare our proposed schemes,
SAR-LB, with existing RL approaches in switch migration. Table 1 shows the comparison
between the conventional RL based switch migration methods and our SAR-LB. Both
MARVEL and SAR-LB use the DNN model to approximate the value of actions in the
current SDN environment status, while other methods in [14,15] use tabular Q learning in
the computation of the Q value. If the methods use the tabular Q learning, the only limited
number of states can be defined as states because of the limited space of the Q table. In
the Q table, a row index represents the controller selected as the initial controller, and a
column index represents the selected switch migration cases. When the action is selected
by the Q table, it is passively updated by reward. Thus, it is difficult to adapt to a dynamic
variation of loads.

To adapt promptly to a dynamic variation of the load from controllers, a load of each
controller should be used as an input state of a neural network. Or a machine-learning
method should be used to approximate the value of actions in each load information
of controllers. MARVEL and SAR-LB are taken these considerations into their methods.
However, there are differences between MARVEL and SAR-LB. Unlike SAR-LB, MARVEL
is based on multi-agent reinforcement learning (MARL), which is a distributed version
of RL. However, MARVEL does not consider the utilization of resources in each resource
type; it models resource utilization of each controller as a linear optimization instead. This
yields a less-optimized switch migration since the utilization of each resource type has
not been consistently correlated. For example, the memory and CPU utilization of the
controller is exponentially increased as the number of PACKET_IN message increases [16].

Electronics 2021, 10, 162 7 of 16

Thus, it is almost impossible that the linear model with a constant weight of a resource type
models the dynamically changing correlation among the various resource types. Moreover,
when the network bandwidth of a controller is highly used (i.e., the utilization of network
bandwidth is high), CPU utilization of a controller could unexpectedly jitter, while the
utilization of network bandwidth is still constant [17]. Thus, the reason for overutilization is
not clarified if the utilization per resource type is not defined. Because of this, it is better to
model the load of the controller as the utilization ratios of each resource type. Furthermore,
all possible switch migration cases should be considered for accurate decision-making for
switch migration.

Table 1. Comparison of existing reinforcement learning (RL)-based switch migration methods with
switch-aware reinforcement learning load balancing (SAR-LB).

Type MARVEL Li et al. [17] Min et al. [17] SAR-LB (Ours)

Utilized
multi-agent

model
Yes No No No

State definition
Coarse-grained

resource
utilization

Index of initial
controller

Index of initial
controller

Fine-grained
resource

utilization

Utilized DNN Yes No (tabular Q
learning)

No (tabular Q
learning) Yes

4.1. The Definition of RL Communication Channel for Switch Migration

SAR-LB uses the resource utilization of various resource types as inputs to the training
phase and can provide more precise action by considering more switch migration cases. We
constructed the RL framing for our study, as shown in Figure 2. To compose the framing
of RL, it is necessary to define two entities and three communication channels. The two
entities are defined as agent and environment. An agent is defined as a candidate Open
vSwitch [29] for migration, and the environment is defined as an SDN environment with
targeted controllers to migrate the candidate switch. The three communication channels
(i.e., state, reward, and action) are important factors in the context of the learning process
of the agent. Because state and action space define the input and output space for the RL
agent. Moreover, the reward is an important term because the reward is used when the
objective function of each agent is calculated.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 19

jitter, while the utilization of network bandwidth is still constant [17]. Thus, the reason for
overutilization is not clarified if the utilization per resource type is not defined. Because
of this, it is better to model the load of the controller as the utilization ratios of each re-
source type. Furthermore, all possible switch migration cases should be considered for
accurate decision-making for switch migration.

Table 1. Comparison of existing reinforcement learning (RL)-based switch migration methods
with switch-aware reinforcement learning load balancing (SAR-LB).

Type MARVEL Li et al. [14] Min et al. [15] SAR-LB (Ours)
Utilized

multi-agent
model

Yes No No No

State defini-
tion

Coarse-grained resource
utilization

Index of initial
controller

Index of initial
controller

Fine-grained resource
utilization

Utilized
DNN

Yes
No (tabular Q

learning)
No (tabular Q

learning)
Yes

4.1. The Definition of RL Communication Channel for Switch Migration
SAR-LB uses the resource utilization of various resource types as inputs to the train-

ing phase and can provide more precise action by considering more switch migration
cases. We constructed the RL framing for our study, as shown in Figure 2. To compose the
framing of RL, it is necessary to define two entities and three communication channels.
The two entities are defined as agent and environment. An agent is defined as a candidate
Open vSwitch [29] for migration, and the environment is defined as an SDN environment
with targeted controllers to migrate the candidate switch. The three communication chan-
nels (i.e., state, reward, and action) are important factors in the context of the learning
process of the agent. Because state and action space define the input and output space for
the RL agent. Moreover, the reward is an important term because the reward is used when
the objective function of each agent is calculated.

Figure 2. Reinforcement learning model in our proposed scheme.

We defined switches as RL agents, and the action is defined as selecting the controller
for migration (i.e., selecting the target controller). Furthermore, the action size is defined
by the number of controllers that a switch can select. Because we use the neural network
to evaluate the value of actions in each input state, the output of the neural network is
defined as the value of controllers in the current SDN environment status. Thus, the target
controller for the switch is selected by the index of the output element, which has a maxi-
mum value.

Figure 2. Reinforcement learning model in our proposed scheme.

We defined switches as RL agents, and the action is defined as selecting the controller
for migration (i.e., selecting the target controller). Furthermore, the action size is defined
by the number of controllers that a switch can select. Because we use the neural network

Electronics 2021, 10, 162 8 of 16

to evaluate the value of actions in each input state, the output of the neural network is
defined as the value of controllers in the current SDN environment status. Thus, the
target controller for the switch is selected by the index of the output element, which has a
maximum value.

Figure 3 defines the state for the RL model. The state is linear feature vectors of
resource utilization of controllers and a resource utilization ratio of selected switch to
migrate. In Figure 3, we represent linear feature vectors in a table format for a better
understanding of state definition. Each row defines each controller’s resource utilization
per resource type. This resource utilization of the controller is defined as five tuples;
Ci.ID is an identifier number to classify each controller, and zero (i.e., 0) is a Boolean flag
indicating the current information is about a controller. Moreover, the following three
Ci.Util define the controller’s resource utilization rate for each resource type (e.g., CPU,
RAM, and network bandwidth). This information for the controller merges with the
information of the remaining controllers, which are defined as the same formats that we
described in this paragraph.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 19

Figure 3 defines the state for the RL model. The state is linear feature vectors of re-
source utilization of controllers and a resource utilization ratio of selected switch to mi-
grate. In Figure 3, we represent linear feature vectors in a table format for a better under-
standing of state definition. Each row defines each controller’s resource utilization per
resource type. This resource utilization of the controller is defined as five tuples; 𝐶𝐶𝑡𝑡 . 𝐼𝐼𝐼𝐼 is
an identifier number to classify each controller, and zero (i.e., 0) is a Boolean flag indicat-
ing the current information is about a controller. Moreover, the following three 𝐶𝐶𝑡𝑡 .𝑈𝑈𝑡𝑡𝑡𝑡𝑈𝑈
define the controller’s resource utilization rate for each resource type (e.g., CPU, RAM,
and network bandwidth). This information for the controller merges with the information
of the remaining controllers, which are defined as the same formats that we described in
this paragraph.

Figure 3. State definition of SAR-LB.

After the controller information is described, additional information on the selected
switch to migrate is added to the feature vector, as shown in the last row of the table in
Figure 3. The information on the switch is similar to the description of the controller in-
formation. However, the ID of the controller in the switch information represents the ID
of the initial controller where the switch is located. In this context, the Boolean flag is one
(i.e., 1), which shows the information is about a switch, and the following three
𝑆𝑆𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 .𝑈𝑈𝑡𝑡𝑡𝑡𝑈𝑈 represents the resource utilization ratio in the initial controller by the se-
lected switch for migration.

Switch migration can be defined as a process of selecting a target controller wherein
the load of the selected switch will be added. In our definition of switch migration, the
initial controller also needs to be considered as a candidate controller along with other
controllers in the learning environment. In this context, as shown in the blue arrow of
Figure 3, a load of the selected switch should be removed from a load of the initial con-
troller, 𝐶𝐶𝑡𝑡, for a fair comparison of other controllers because the target controller selection
is based on the comparison of loads among controllers in the environment.

To reflect the difference between the resource utilization of the initial controller and
the target controller in the reward, the reward is calculated as the variation of the square
difference of resource utilization per resource type between the previous step and the cur-
rent time-step. It is calculated as described in Equation (1).

𝑅𝑅𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 = 𝑈𝑈𝑡𝑡𝑡𝑡𝑈𝑈_𝐼𝐼𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡−1(𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐 ,𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐) − 𝑈𝑈𝑡𝑡𝑡𝑡𝑈𝑈_𝐼𝐼𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐 ,𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐) (1)

where, 𝑈𝑈𝑡𝑡𝑡𝑡𝑈𝑈_𝐼𝐼𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐 ,𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐) = �𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 −

𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡�
2

+ �𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡
− 𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡

�
2

+ �𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡 − 𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡�
2

Figure 3. State definition of SAR-LB.

After the controller information is described, additional information on the selected
switch to migrate is added to the feature vector, as shown in the last row of the table
in Figure 3. The information on the switch is similar to the description of the controller
information. However, the ID of the controller in the switch information represents the
ID of the initial controller where the switch is located. In this context, the Boolean flag
is one (i.e., 1), which shows the information is about a switch, and the following three
Sselected.Util represents the resource utilization ratio in the initial controller by the selected
switch for migration.

Switch migration can be defined as a process of selecting a target controller wherein
the load of the selected switch will be added. In our definition of switch migration, the
initial controller also needs to be considered as a candidate controller along with other
controllers in the learning environment. In this context, as shown in the blue arrow of
Figure 3, a load of the selected switch should be removed from a load of the initial controller,
Ci, for a fair comparison of other controllers because the target controller selection is based
on the comparison of loads among controllers in the environment.

To reflect the difference between the resource utilization of the initial controller and
the target controller in the reward, the reward is calculated as the variation of the square
difference of resource utilization per resource type between the previous step and the
current time-step. It is calculated as described in Equation (1).

Reward = Util_Di f f erencet−1(initcontroller, destcontroller)− Util_Di f f erencet(initcontroller, destcontroller) (1)

where, Util_Di f f erencet(initcontroller, destcontroller) = (initcontrollerCPUt − destcontrollerCPUt)
2

+(initcontroller RAMt − destcontroller RAMt)
2

+(initcontroller NBt − destcontroller NBt)
2

Electronics 2021, 10, 162 9 of 16

4.2. Training and Working Phases of SAR-LB
For load balancing of distributed SDN controllers, we propose switch migration decision

algorithms with training and working phases in Algorithms 2 and 3, respectively. Algorithm 2
describes our proposed switch migration scheme using the DQN agent [25]. The number of repetitions
is set in line 1 of Algorithm 2. After initializing the SDN environment, the initial state value is created
according to the information of controllers and target switch to migrate (lines 2 to 4 in Algorithm 3).
The communication and action execution process between the DQN agent and the SDN environment
is performed from Lines 6 to 12. Lines 13 to 14 define the learning process of the DQN agent.

Algorithm 2 Training phase of SAR-LB

Input: ReplayBuffer: the memory space for saving previous experiences
EPISODE_NUM: the number of episodes, STEP_NUM: the number of steps,
CONTROLLER_NUM: the number of controllers in the SDN environment,
SWITCH_NUM: the number of switches in the SDN environment,
Output: switch migration decision
1. for i in range (EPISODE_NUM):
2. Initialize SDN environment and get initial state state0 with CONTROLLER_NUM and
SWITCH_NUM
3. Select migration target switch, S0 randomly in the overutilized controller
4. Append information of migration target switch on initial state state0 as shown in equation
(1)
5. for j in range (STEP_NUM):
6. Select destination controller (i.e., action), Cj by DQN agent with epsilon greedy policy
7. Migrate target switch, Sj based on selected controller, Cj
8. Get next state, statej+1 and reward, rewardj from SDN environment
9. Save experience (statej, controllerj, rewardj) on ReplayBuffer
10. Select next target switch for migration, switchj+1 randomly in the overutilized controller
11. Append information for Sj+1 on next_state statej+1 as shown in Equation (1)
12. Next state, statej+1 assigns to current state, statej
13. Sampling experience from ReplayBuffer
14. Train DQN agent by sampled experience//which is equal to line 11–19 in algorithm 1
15. end for
16. end for

In Algorithm 2, we proposed a training phase for switch migration through reinforcement
learning. However, the training phase is hard to utilize directly due to its randomness switch
selection. To effectively utilize the trained model, the working phase for switch migration is described
in Algorithm 3.

In Algorithm 3, the controller with the highest resource utilization rate is selected through
line 2 to 5. In line 7 to 10, the information of controllers with the resource utilization rate of each
switch, Cmax.Sj, in the controller, Cmax, is taken as the input of the neural network. After this, actions
and rewards for each switch in the controller, Cmax, are collected. In lines 11 to 12, switch migration
is performed through the action with the highest reward.

4.3. DNN Model for DQN Agent
The DQN agent was configured through two types of layers, which are the LSTM [30] layer and

the fully connected (FC) layer to recognize the change in the incoming load. Long short-term memory
(LSTM) is a type of recurrent neural network (RNN) [30]. An RNN is a type of neural network that is
designed to operate sequential information between layers. Moreover, second, the FC layer is simple,
feed-forward neural networks. FC layers commonly form the last few layers in the network. Thus,
the input to the fully connected layer is the output from the final pooling or convolutional layer or
LSTM layer. In the combination of LSTM and FC, the number of input features in the FC layer is the
number of hidden units in LSTM.

As shown in Figure 4, history length, which defines the number of consecutive experiences
when sampling experiences in the DQN replay buffer, is defined as the LSTM sequence length.
Thereafter, the result value of the LSTM layer is connected to the fully connected layer so that the
behavior considering the continuous experience can be determined.

Electronics 2021, 10, 162 10 of 16

Algorithm 3 Working phase of SAR-LB

Input: Ci: Controller i,
Ci.CPU,Ci.RAM,Ci.NB : CPU utilization, RAM utilization, and network bandwidth utilization of
Ci
Ci.utilization : total resource utilization rate,
Ci.Sj : switch j from Ci,
CONTROLLER_NUM: the number of controllers in SDN environment,
Output: Load balanced controllers
1. Set list List_Utilization controller for Ci.utilization of all controllers
2. for i in range (CONTROLLER_NUM):
3. Append each utilization of controller in Ci.utilization in List_Controller utilization
4. end for

5. Find Cmax in List_Utilization controller which has maximum resource utilization
6. Set list List_Reward switch for rewards of switches in Cmax,
7. for Cmax.Sj in Cmax:
8. Get reward, Cmax.Sj.reward by selected action, Cmax.Sj.action of the agent for switch,
Cmax.Sj based on current input state
9. Append reward Ci.Sj.reward in List_Reward switch
10. end for
11. Find action (i.e., destination controller), actionmaxwhich has maximum reward,
12. Migrate target switch which have maximum reward action to target controller, actionmax

Electronics 2021, 10, x FOR PEER REVIEW 12 of 19

Figure 4. DNN model definition for DQN agent.

5. Evaluation and Results
5.1. Experimental Environment

To evaluate our proposed scheme, SAR-LB, we defined a simulation environment
using an SDN environment based on Python, and we used the host machine with Intel
Xeon Skylake (Gold 6230)/2.10 GHz (20-cores) processor, 384 GB RAM and V100 GPU as
shown in Table 2. Each switch from the simulated SDN environment creates a workload
through a Poisson distribution [31] for each episode. Additionally, the loads for each re-
source type (i.e., CPU, RAM, network bandwidth) are also generated differently for each
environment creation, which enables our proposed scheme to learn in a dynamic load
environment. The DQN-agent based on PyTorch [32] performed the learning by config-
uring the hyperparameters, as shown in Table 3.

Table 2. Hardware configuration.

Processor Memory Graphics Card
Intel Xeon Skylake (Gold 6230)/
2.10 GHz (20-cores) processor 384 GB V100 GPU

Table 3. Hyperparameter setting.

Hyper Parameters Values
Minibatch size 64

Replay buffer size 1,000,000 frames
Learning start (i.e., time-steps to start learning) 3000 time-steps

Learning frequency (i.e., time-steps intervals to train RL agent) 4 time-steps
History length 32 frames

Target Q model update frequency 10,000 time-steps
Learning rate 0.0001

Optimizer RMSProp [33]
The number of episodes 10,000

The number of time-steps per episode 300

5.2. Competing Schemes to Evaluate with SAR-LB
To evaluate our proposed scheme, we set and tested the following schemes as com-

parisons. For evaluating our schemes statistically, we trained SAR-LB and MARVEL on a
stochastic SDN network environment. This stochastic environment means that the net-
work environment at each episode generates different network overhead randomly. Fur-
thermore, we averaged our evaluation results on four different network simulations,

Figure 4. DNN model definition for DQN agent.

5. Evaluation and Results
5.1. Experimental Environment

To evaluate our proposed scheme, SAR-LB, we defined a simulation environment using an
SDN environment based on Python, and we used the host machine with Intel Xeon Skylake (Gold
6230)/2.10 GHz (20-cores) processor, 384 GB RAM and V100 GPU as shown in Table 2. Each switch
from the simulated SDN environment creates a workload through a Poisson distribution [31] for
each episode. Additionally, the loads for each resource type (i.e., CPU, RAM, network bandwidth)
are also generated differently for each environment creation, which enables our proposed scheme to
learn in a dynamic load environment. The DQN-agent based on PyTorch [32] performed the learning
by configuring the hyperparameters, as shown in Table 3.

Table 2. Hardware configuration.

Processor Memory Graphics Card

Intel Xeon Skylake (Gold 6230)/
2.10 GHz (20-cores) processor 384 GB V100 GPU

Electronics 2021, 10, 162 11 of 16

Table 3. Hyperparameter setting.

Hyper Parameters Values

Minibatch size 64
Replay buffer size 1,000,000 frames

Learning start (i.e., time-steps to start learning) 3000 time-steps
Learning frequency (i.e., time-steps intervals to train RL agent) 4 time-steps

History length 32 frames
Target Q model update frequency 10,000 time-steps

Learning rate 0.0001
Optimizer RMSProp [33]

The number of episodes 10,000
The number of time-steps per episode 300

5.2. Competing Schemes to Evaluate with SAR-LB
To evaluate our proposed scheme, we set and tested the following schemes as comparisons. For

evaluating our schemes statistically, we trained SAR-LB and MARVEL on a stochastic SDN network
environment. This stochastic environment means that the network environment at each episode
generates different network overhead randomly. Furthermore, we averaged our evaluation results
on four different network simulations, which are generated by setting different random seeds. Our
SAR-LB is compared with other approaches as follows:

Round robin: In a round-robin (RR) scheme, the switch with the highest load in the controller is
selected from the overutilized controller, and the targeted controller for migration is selected in a
round-robin fashion.

ElastiCon [34]: ElastiCon is well-known research in dynamic switch migration. For balancing
load between controllers, their scheme compares every case of switch migration and selects the best
migration case based on a standard deviation of utilization among controllers. For a fair comparison
with MARVEL and SAR-LB, we have modified their algorithm to find the best migration case using
utilization difference between an initial controller and targeted controller as shown in Equation (1),
which is used as a reward function in both MARVEL and SAR-LB.

MARVEL [13]: In MARVEL, controllers run multiple agents, and the RL model takes controller
resource utilization as input and decides the optimal switch-to-controller mapping for the migration.
However, we did not compare our schemes with [14,15] because we consider MARVEL as state-
of-the-art schemes that utilize the RL for switch migration than previous studies, and the study
of [14,15] is difficult to handle the dynamic changes of load in switches.

SAR-LB: In our proposed scheme, we collect actions (i.e., selected target controller by DQN)
of switches for the controller with the highest load and then migrate a switch that has a maximum
reward to the target controller. Compared to MARVEL, our scheme utilizes the novel input state
definition for representing the utilization ratio per resource type. In addition, action space for our
schemes can consider every possible target controller in which this switch can be migrated.

5.3. Evaluation Results and Analysis
In our simulation, we conducted the experiments within 300 time-steps in five scenarios: three

cases that increase only the number of switches and two cases that increase the number of switches
and controllers both. In addition, we conducted the evaluations in these five scenarios on two cases
of network conditions: (i) network condition without bursty traffic and (ii) network condition with
bursty traffic. The average workload of network conditions with/without bursty traffic is represented
in Figure 5. The workload in each controller is dynamically changed along with the time. Therefore,
uneven load distribution is shown in Figure 5. Figure 5b shows the average workload distribution
of bursty traffic that we utilized in the evaluations. In this figure, the network overhead of each
controller is sharply increased unexpectedly.

5.3.1. Comparison of Load Balancing Rate
We applied our proposed switch migration decision-making scheme, SAR-LB, to all controllers

in five scenarios with two network conditions, as explained above. The load balancing rate before
and after applying our scheme is shown in Figures 6 and 7. In figures, the x-axis shows the time-steps,
and the y-axis shows the standard deviation of workload distribution. As shown in Figures 6 and 7,
the load balancing of the controller after applying SAR-LB (“red” line in Figures 6 and 7 has more
even load distribution among controllers in contrast to the load distribution pattern without load

Electronics 2021, 10, 162 12 of 16

balancing. Furthermore, we also applied alternative schemes in the testbed (i.e., RR, ElatiCon, and
MARVEL) to evaluate the performance of our proposed scheme, and the result of the workload
distribution in these schemes is shown in Figures 6 and 7 with different colors, respectively. Overall,
the standard deviation of load distribution with our approach is better than other competing schemes
when the case with four controllers and 80 switches.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 19

Figure 5. Average workload distribution of four controllers and 20 switches: (a) general network
traffic; (b) bursty network traffic.

5.3.1. Comparison of Load Balancing Rate
We applied our proposed switch migration decision-making scheme, SAR-LB, to all

controllers in five scenarios with two network conditions, as explained above. The load
balancing rate before and after applying our scheme is shown in Figures 6 and 7. In fig-
ures, the x-axis shows the time-steps, and the y-axis shows the standard deviation of work-
load distribution. As shown in Figures 6 and 7, the load balancing of the controller after
applying SAR-LB (“red” line in Figures 6 and 7 has more even load distribution among
controllers in contrast to the load distribution pattern without load balancing. Further-
more, we also applied alternative schemes in the testbed (i.e., RR, ElatiCon, and MARVEL)
to evaluate the performance of our proposed scheme, and the result of the workload dis-
tribution in these schemes is shown in Figures 6 and 7 with different colors, respectively.
Overall, the standard deviation of load distribution with our approach is better than other
competing schemes when the case with four controllers and 80 switches

Figure 6. Comparison of workload distribution after load balancing in four controllers with 80 switches without bursty
network traffic.

Tables 4 and 5 show the average standard deviation of workload load distribution
between SAR-LB and competing schemes in the simulation environments in five scenar-
ios, respectively, in two network conditions. The standard deviation of RR also resulted
in higher than the average standard deviation without load balancing in both scenarios.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Av
er

ag
e

St
an

da
rd

 D
ev

ia
tio

n

Time-steps

MARVEL SAR-LB Round Robin ElastiCon Without Load Balancing

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250

A
ve

ra
ge

 W
or

kl
oa

d

Time-steps

Controller 1 Controller 2
Controller 3 Controller 4

(a)

0 50 100 150 200 250

Time-steps

Controller 1 Controller 2
Controller 3 Controller 4

(b)

Figure 5. Average workload distribution of four controllers and 20 switches: (a) general network
traffic; (b) bursty network traffic.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 19

Figure 5. Average workload distribution of four controllers and 20 switches: (a) general network
traffic; (b) bursty network traffic.

5.3.1. Comparison of Load Balancing Rate
We applied our proposed switch migration decision-making scheme, SAR-LB, to all

controllers in five scenarios with two network conditions, as explained above. The load
balancing rate before and after applying our scheme is shown in Figures 6 and 7. In fig-
ures, the x-axis shows the time-steps, and the y-axis shows the standard deviation of work-
load distribution. As shown in Figures 6 and 7, the load balancing of the controller after
applying SAR-LB (“red” line in Figures 6 and 7 has more even load distribution among
controllers in contrast to the load distribution pattern without load balancing. Further-
more, we also applied alternative schemes in the testbed (i.e., RR, ElatiCon, and MARVEL)
to evaluate the performance of our proposed scheme, and the result of the workload dis-
tribution in these schemes is shown in Figures 6 and 7 with different colors, respectively.
Overall, the standard deviation of load distribution with our approach is better than other
competing schemes when the case with four controllers and 80 switches

Figure 6. Comparison of workload distribution after load balancing in four controllers with 80 switches without bursty
network traffic.

Tables 4 and 5 show the average standard deviation of workload load distribution
between SAR-LB and competing schemes in the simulation environments in five scenar-
ios, respectively, in two network conditions. The standard deviation of RR also resulted
in higher than the average standard deviation without load balancing in both scenarios.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Av
er

ag
e

St
an

da
rd

 D
ev

ia
tio

n

Time-steps

MARVEL SAR-LB Round Robin ElastiCon Without Load Balancing

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250

A
ve

ra
ge

 W
or

kl
oa

d

Time-steps

Controller 1 Controller 2
Controller 3 Controller 4

(a)

0 50 100 150 200 250

Time-steps

Controller 1 Controller 2
Controller 3 Controller 4

(b)

Figure 6. Comparison of workload distribution after load balancing in four controllers with 80 switches without bursty
network traffic.

Tables 4 and 5 show the average standard deviation of workload load distribution
between SAR-LB and competing schemes in the simulation environments in five scenarios,
respectively, in two network conditions. The standard deviation of RR also resulted in
higher than the average standard deviation without load balancing in both scenarios. In
the environment with four controllers and 20 switches, testbed without bursty network
traffic, MARVEL, ElastiCon, and SAR-LB achieved 112%, 121%, and 126% better load
balancing than without load balancing schemes, respectively. This trend is clearer in
the case where only the number of switches is increased. However, the load balancing
performance of our proposed scheme, SAR-LB, is getting worse when both the number
of switches and controllers are increased. As a result, SAR-LB shows up to 20% better
normalized standard deviation than ElastiCon and outperforms other schemes in four of

Electronics 2021, 10, 162 13 of 16

five evaluation scenarios. However, it shows 26–24% less normalized standard deviation
with the scenario with 16 controllers and 80 switches compared to ElastiCon and MARVEL.

The evaluation result with bursty network traffic is shown in Table 5. This table shows
similar results as Table 4. However, the difference in standard deviation becomes larger
as the number of switches or controllers are changed. Therefore, SAR-LB shows a 1%
better normalized standard deviation than ElastiCon in the case of four controllers and
20 switches, and this difference becomes much larger than the network condition without
bursty traffic. As a result, SAR-LB shows up to 34% better normalized standard deviation
than ElastiCon.

As a result, SAR-LB outperforms MARVEL and ElastiCon when the number of con-
trollers is less than eight, and this trend is much stronger when the number of switches
is increased. However, SAR-LB shows less efficient load balancing performance than the
other schemes when the number of controllers is increased. This is due to the increased
dimension of input state and action space of our scheme when the number of controllers is
increased, and it makes it difficult for RL agents in our scheme to learn the current states of
the SDN environment and selecting an action.

Table 4. Average standard deviation of workload distribution without bursty network traffic (nor-
malized standard deviation compared to the case without load balancing in parentheses).

Schemes 4 CTRLs,
20 Switches

4 CTRLs,
40 Switches

4 CTRLs,
80 Switches

8 CTRLs,
40 Switches

16 CTRLs,
80 Switches

W/O Load
Balancing 0.0811 (100%) 0.1210 (100%) 0.1918 (100%) 0.0970 (100%) 0.0960 (100%)

ElastiCon 0.0669 (121%) 0.0857 (141%) 0.1136 (169%) 0.0687 (141%) 0.0729 (132%)
Round Robin 0.0991 (82%) 0.1175 (103%) 0.1455 (132%) 0.0948 (102%) 0.0942 (102%)

SAR-LB 0.0645 (126%) 0.0781 (155%) 0.1014 (189%) 0.0670 (145%) 0.0906 (106%)
MARVEL 0.0724 (112%) 0.0900 (134%) 0.1183 (162%) 0.0732 (132%) 0.0740 (130%)

Table 5. Average standard deviation of workload distribution with bursty network traffic (normalized
standard deviation compared to the case without load balancing in parentheses).

Schemes 4 CTRLs,
20 Switches

4 CTRLs,
40 Switches

4 CTRLs,
80 Switches

8 CTRLs,
40 Switches

16 CTRLs,
80 Switches

W/O Load
Balancing 0.1162(100%) 0.1809(100%) 0.2818(100%) 0.1126(100%) 0.1209(100%)

ElastiCon 0.0717(162%) 0.0917(197%) 0.1364(207%) 0.0751(150%) 0.0850(142%)
Round Robin 0.1028(113%) 0.1313(138%) 0.1682(168%) 0.1014(111%) 0.1103(110%)

SAR-LB 0.0712(163%) 0.0852(212%) 0.1170(241%) 0.0740(152%) 0.1157(104%)
MARVEL 0.0781(149%) 0.1027(176%) 0.1588(177%) 0.0796(141%) 0.0873(138%)

5.3.2. Comparison of Decision Time per Time-Step

Table 6 describes the comparison of decision-making time per time-step, which de-
scribes the results of the experiments over five scenarios. SAR-LB shows 53–104% decision-
making time when it compares to MARVEL. This result is made by the optimization of
the input pipeline, which merges the input states of every switch in a controller as one
input state. Furthermore, SAR-LB and MARVEL show slower decision time than ElastiCon
and RR. This is due to the inference overhead of MARVEL and SAR-LB which utilize the
DNN model. However, the inference overhead is relatively small when it compares to total
switch migration time, as shown in [9,18]. Thus, we assumed that the inference overhead
is acceptable to select a more efficient switch migration case.

Although SAR-LB shows a similar and cheaper time cost than MARVEL in Table 6, our
algorithm is difficult to distribute among controllers. This problem is the main disadvantage
of our algorithm. Therefore, we will discuss this problem with the scalability problem of
our scheme in Section 6.

Electronics 2021, 10, 162 14 of 16
Electronics 2021, 10, x FOR PEER REVIEW 16 of 19

Figure 7. Comparison of workload distribution after load balancing in four controllers and 80 switches with bursty net-
work traffic.

5.3.2. Comparison of Decision Time per Time-Step
Table 6 describes the comparison of decision-making time per time-step, which de-

scribes the results of the experiments over five scenarios. SAR-LB shows 53–104% deci-
sion-making time when it compares to MARVEL. This result is made by the optimization
of the input pipeline, which merges the input states of every switch in a controller as one
input state. Furthermore, SAR-LB and MARVEL show slower decision time than Elasti-
Con and RR. This is due to the inference overhead of MARVEL and SAR-LB which utilize
the DNN model. However, the inference overhead is relatively small when it compares to
total switch migration time, as shown in [9,18]. Thus, we assumed that the inference over-
head is acceptable to select a more efficient switch migration case.

Although SAR-LB shows a similar and cheaper time cost than MARVEL in Table 6,
our algorithm is difficult to distribute among controllers. This problem is the main disad-
vantage of our algorithm. Therefore, we will discuss this problem with the scalability
problem of our scheme in Section 6.

Table 6. Decision-making time per time-step (normalized standard deviation compared to MAR-
VEL is shown in parentheses).

Schemes 4 CTRLs, 20
Switches

4 CTRLs, 40
Switches

4 CTRLs, 80
Switches

8 CTRLs, 40
Switches

16 CTRLs, 80
Switches

W/O load balanc-
ing

0.00212 (34%) 0.00447 (52%) 0.00889 (65%) 0.00439 (35%) 0.00882 (36%)

ElastiCon 0.00277 (44%) 0.00535 (62%) 0.01054 (76%) 0.00562 (45%) 0.01234 (50%)
Round Robin 0.00214 (34%) 0.00422 (49%) 0.00839 (61%) 0.00433 (35%) 0.00857 (35%)

SAR-LB 0.00517 (82%) 0.00817 (94%) 0.01426 (104%) 0.00773 (62%) 0.01312 (53%)
MARVEL 0.00630 (100%) 0.00865 (100%) 0.01377 (100%) 0.01238 (100%) 0.02478 (100%)

6. Discussion
Our proposed scheme, SAR-LB, shows that it improves up to 34% higher normalized

standard deviation among controllers than other competing schemes. The improvement
is mainly because of our effective design of communication channels, training and work-
ing phases, and the DQN model. In addition, the performance of SAR-LB gets better as
the number of switches is increased. Thus, based on these experiment results, we claim
that SAR-LB can be used in a common SDN environment in data center networks because
each controller in the data center manages dozens of switches generally [19–22].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Av
er

ag
e

St
an

da
rd

 D
ev

ia
tio

n

Time-steps

MARVEL SAR-LB Round Robin ElastiCon Without Load Balancing

Figure 7. Comparison of workload distribution after load balancing in four controllers and 80 switches with bursty
network traffic.

Table 6. Decision-making time per time-step (normalized standard deviation compared to MARVEL
is shown in parentheses).

Schemes 4 CTRLs,
20 Switches

4 CTRLs,
40 Switches

4 CTRLs,
80 Switches

8 CTRLs,
40 Switches

16 CTRLs,
80 Switches

W/O load
balancing 0.00212 (34%) 0.00447 (52%) 0.00889 (65%) 0.00439 (35%) 0.00882 (36%)

ElastiCon 0.00277 (44%) 0.00535 (62%) 0.01054 (76%) 0.00562 (45%) 0.01234 (50%)
Round Robin 0.00214 (34%) 0.00422 (49%) 0.00839 (61%) 0.00433 (35%) 0.00857 (35%)

SAR-LB 0.00517 (82%) 0.00817 (94%) 0.01426
(104%) 0.00773 (62%) 0.01312 (53%)

MARVEL 0.00630
(100%)

0.00865
(100%)

0.01377
(100%)

0.01238
(100%)

0.02478
(100%)

6. Discussion

Our proposed scheme, SAR-LB, shows that it improves up to 34% higher normalized
standard deviation among controllers than other competing schemes. The improvement is
mainly because of our effective design of communication channels, training and working
phases, and the DQN model. In addition, the performance of SAR-LB gets better as the
number of switches is increased. Thus, based on these experiment results, we claim that
SAR-LB can be used in a common SDN environment in data center networks because each
controller in the data center manages dozens of switches generally [19–22].

However, SAR-LB still has room to be improved in its scalability. We suggest trans-
forming the feature vectors into a fixed size image format. Since an input size is indepen-
dent of the numbers of controllers and switches, and we are able to stack layers deep on
the neural network if we use a convolution layer, this transformation can be taken as an
advantage. As a consequence, this transformation process will increase scalability as well
as producing more accurate decision-making.

Parallelizing our working phase algorithm into multiple controllers to enhance the scal-
ability is hard to achieve. Thus, we suggest the data parallelism of distributed deep learning.
It can be achieved by distributing the inference overhead of the working phase algorithm
onto multiple controllers and gathering the results of inference by utilizing a collective
communication library (e.g., MPI [35]). The other way to reduce the inference overhead
is to set the threshold for inference, i.e., the inference process can be performed only for
switches that occupy a large resource usage of the controller with the utilization threshold.

Electronics 2021, 10, 162 15 of 16

7. Conclusions

In this paper, we presented our design of switch migration scheme with RL-based
switch migration decision-making, SAR-LB, which achieves more evenly balanced load
distribution between distributed SDN controllers than other schemes. Unlike the existing
RL approaches, we consider the resource utilization ratio of various resource types in state
information as well as making a switch as an RL agent to consider all switch migration
cases efficiently. As a consequence, our proposed scheme provides better load distribution
because of its accurate decision-making for switch migration.

We evaluated the performance of SAR-LB in the simulated testbeds with the five
scenarios. In each scenario, we vary the number of controllers or switches. The results show
that our proposed SAR-LB performs better than competing schemes in load distribution in
four of five scenarios, and the improvement of load distribution between distributed SDN
controllers is up to 34% more than existing schemes.

Author Contributions: Conceptualization, S.Y. and S.O.; methodology, S.Y. and S.O.; software, S.Y.
and Y.N.; validation, S.Y., Y.N., T.K. and S.O.; writing—original draft preparation, S.Y., Y.N., T.K. and
S.O.; writing—review and editing, S.O. and S.Y.; visualization, Y.N. and S.Y.; supervision, S.O.; project
administration, S.O.; funding acquisition, S.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01431)
supervised by the IITP (Institute for Information & Communications Technology Promotion) and
Basic Science Research Program Through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2018R1D1A1B07043858).

Data Availability Statement: The data presented in this study are openly available in FigShare at
10.6084/m9.figshare.13562441.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
2. Shin, M.K.; Nam, K.H.; Kim, H.J. Software-defined networking (SDN): A reference architecture and open APIs. In Proceedings of

the IEEE 2012 International Conference on ICT Convergence (ICTC), Jeju Island, Korea, 15–17 October 2012; pp. 360–361.
3. Open Flow Protocol 1.3. Available online: https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0

.pdf (accessed on 30 November 2020).
4. Pashkov, V.; Shalimov, A.; Smeliansky, R. Controller failover for SDN enterprise networks. In Proceedings of the IEEE 2014 International

Science and Technology Conference (Modern Networking Technologies)(MoNeTeC), Moscow, Russia, 28–29 October 2014; pp. 1–6.
5. Hu, T.; Guo, Z.; Yi, P.; Baker, T.; Lan, J. Multi-Controller Based Software-Defined Networking: A Suvey. IEEE Access 2018,

6, 15980–15996. [CrossRef]
6. Ye, X.; Cheng, G.; Luo, X. Maximizing SDN control resource utilization via switch migration. Comput. Netw. 2017, 126, 69–80.

[CrossRef]
7. Al-Tam, F.; Correia, N. On Load Balancing via Switch Migration in Software-Defined Networking. IEEE Access 2019, 7, 95998–96010.

[CrossRef]
8. Cui, J.; Lu, Q.; Zhong, H.; Tian, M.; Liu, L. A Load-Balancing Mechanism for Distributed SDN Control Plane Using Response

Time. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1197–1206. [CrossRef]
9. Cheng, G.; Chen, H.; Hu, H.; Lan, J. Dynamic switch migration towards a scalable SDN control plane. Int. J. Commun. Syst. 2016,

29, 1482–1499. [CrossRef]
10. Sahoo, K.S.; Puthal, D.; Tiwary, M.; Usman, M.; Sahoo, B.; Wen, Z.; Sahoo, B.P.S.; Ranjan, R. ESMLB: Efficient Switch Migration-

Based Load Balancing for Multicontroller SDN in IoT. IEEE Internet Things J. 2020, 7, 5852–5860. [CrossRef]
11. Cello, M.; Xu, Y.; Walid, A.; Wilfong, G.; Chao H., J.; Marchese, M. BalCon: A Distributed Elastic SDN Control via Efficient Switch

Migration. In Proceedings of the 2017 IEEE International Conference on Cloud Engineering (IC2E), Vancouver, BC, Canada,
4–7 April 2017; pp. 40–50. [CrossRef]

12. Guowei, W.; Jinlei, W.; Obaidat, M.; Yao, L.; Hsiao, K.F. Dynamic switch migration with noncooperative game towards control
plane scalability in SDN. Int. J. Commun. Syst. 2019, 32, e3927.

13. Sun, P.; Guo, Z.; Wang, G.; Lan, J.; Hu, Y. MARVEL: Enabling controller load balancing in software-defined networks with
multi-agent reinforcement learning. Comput. Netw. 2020, 177, 107230. [CrossRef]

http://doi.org/10.1145/1355734.1355746
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
http://doi.org/10.1109/ACCESS.2018.2814738
http://doi.org/10.1016/j.comnet.2017.06.022
http://doi.org/10.1109/ACCESS.2019.2929651
http://doi.org/10.1109/TNSM.2018.2876369
http://doi.org/10.1002/dac.3101
http://doi.org/10.1109/JIOT.2019.2952527
http://doi.org/10.1109/IC2E.2017.33
http://doi.org/10.1016/j.comnet.2020.107230

Electronics 2021, 10, 162 16 of 16

14. Li, Z.; Zhou, Z.; Gao, J.; Qin, Y. SDN Controller Load Balancing Based on Reinforcement Learning. In Proceedings of the 2018
IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018.
[CrossRef]

15. Zhu, M.; Hua, Q.; Zhao, J. Dynamic switch migration with Q-learning towards scalable SDN control plane. In Proceedings of the
2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017.
[CrossRef]

16. Zhu, X.; Chang, C.; Xi, Q.; Zuo, Z. Attribute-Guard: Attribute-Based Flow Access Control Framework in Software-Defined
Networking. Secur. Commun. Netw. 2020, 2020, 6302739. [CrossRef]

17. Imran, M.; Durad, M.H.; Khan, F.A.; Derhab, A. Reducing the effects of DoS attacks in software defined networks using parallel
flow installation. Human Cent. Comput. Inf. Sci. 2019, 9, 16. [CrossRef]

18. Wang, C.A.; Hu, B.; Chen, S.; Li, D.; Liu, B. A switch migration-based decision-making scheme for balancing load in SDN.
IEEE Access 2017, 5, 4537–4544. [CrossRef]

19. Wang, T.; Liu, F.; Xu, H. An efficient online algorithm for dynamic SDN controller assignment in data center networks.
IEEE/ACM Trans. Netw. 2017, 25, 2788–2801. [CrossRef]

20. Wang, T.; Liu, F.; Guo, J.; Xu, H. Dynamic SDN controller assignment in data center networks: Stable matching with transfers.
In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

21. Bogdanski, B. Optimized Routing for Fat-Tree Topologies. Ph.D. Thesis, Department of Informatics Faculty of Mathematics and
Natural Sciences University of Oslo, Oslo, Norway, January 2014.

22. Liu, W.; Wang, Y.; Zhang, J.; Liao, H.; Liang, Z.; Liu, X. AAMcon: An adaptively distributed SDN controller in data center
networks. Front. Comput. Sci. 2020, 14, 146–161. [CrossRef]

23. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
24. Rafique, D.; Velasco, L. Machine learning for network automation: Overview, architecture, and applications [Invited Tutorial].

IEEE/OSA J. Opt. Commun. Netw. 2018, 10, D126–D143. [CrossRef]
25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
26. Mu, T.; Al-Fuqaha, A.; Shuaib, K.; Sallabi, F.M.; Qadir, J. SDN Flow Entry Management Using Reinforcement Learning. ACM Trans.

Auton. Adapt. Syst. 2018, 13, 1–23. [CrossRef]
27. Wu, Y.; Zhou, S.; Wei, Y.; Leng, S. Deep Reinforcement Learning for Controller Placement in Software Defined Network. In

Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada,
6–9 July 2020.

28. Tosounidis, V.; Pavlidis, G.; Sakellaiou, I. Deep Q-Learning for Load Balancing Traffic in SDN Networks. In Proceedings of the
SETN: Hellenic Conference on Artificial Intelligence, Athens, Greece, 2–4 September 2020.

29. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Amidon, K. The design and implementation of open vswitch.
In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI’ 15), Oakland, CA,
USA, 13 January 2015; pp. 117–130.

30. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

31. Xu, Z.; Tang, J.; Meng, J.; Zhang, W.; Wang, Y.; Liu, C.H.; Yang, D. Experience-driven networking: A deep reinforcement learning
based approach. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI,
USA, 15–19 April 2018; pp. 1871–1879.

32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Desmaison, A. Pytorch: An imperative style, high-performance
deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

33. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
34. Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.V.; Kompella, R.R. ElastiCon; an elastic distributed SDN controller. In Proceedings

of the ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Marina del Rey, CA,
USA, 20–21 October 2014.

35. Gropp, W.; Gropp, W.D.; Lusk, E.; Skjellum, A.; Lusk, A.D.F.E.E. Using MPI: Portable Parallel Programming with the Message-Passing
Interface; MIT press: Cambridge, MA, USA, 1999; Volume 1.

http://doi.org/10.1109/ICSESS.2018.8663757
http://doi.org/10.1109/WCSP.2017.8171121
http://doi.org/10.1155/2020/6302739
http://doi.org/10.1186/s13673-019-0176-7
http://doi.org/10.1109/ACCESS.2017.2684188
http://doi.org/10.1109/TNET.2017.2711641
http://doi.org/10.1007/s11704-019-7266-6
http://doi.org/10.1364/JOCN.10.00D126
http://doi.org/10.1145/3281032

	Introduction
	Background
	Switch Migration in Load Balancing of Distributed SDN Controllers
	Reinforcement Learning

	Related Works
	Switch Migration Schemes for Load Balancing in SDN Environment
	Reinforcement Learning-Based Load Balancing in SDN Environment

	Design of SAR-LB
	The Definition of RL Communication Channel for Switch Migration
	Training and Working Phases of SAR-LB
	DNN Model for DQN Agent

	Evaluation and Results
	Experimental Environment
	Competing Schemes to Evaluate with SAR-LB
	Evaluation Results and Analysis
	Comparison of Load Balancing Rate
	Comparison of Decision Time per Time-Step

	Discussion
	Conclusions
	References

