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Abstract: This paper applies a dynamic path planning and model predictive control (MPC) to
simulate self-driving and parking for an electric van on a hardware-in-the-loop (HiL) platform. The
hardware platform is a simulator which consists of an electric power steering system, accelerator and
brake pedals, and an Nvidia drive PX2 with a robot operating system (ROS). The vehicle dynamics
model, sensors, controller, and test field map are virtually built with the PreScan simulation platform.
Both manual and autonomous driving modes can be simulated, and a graphic user interface allows a
test driver to select a target parking space on a display screen. Three scenarios are demonstrated:
forward parking, reverse parking, and obstacle avoidance. When the vehicle perceives an obstacle,
the map is updated and the route is adaptively planned. The effectiveness of the proposed MPC is
verified in experiments and proved to be superior to a traditional proportional–integral–derivative
controller with regards to safety, energy-saving, comfort, and agility.

Keywords: electric van; self-driving vehicle; path planning; model predictive control

1. Introduction

The advanced development of science and technology has made many researchers put
their efforts to enhance safety, energy-saving, comfort, and agility in road traffic through
vehicle automation. Since the last two decades, many researchers have addressed how the
raw images from environment and the steering control states of a vehicle could be used to
drive a vehicle autonomously in real time [1]. Nearly 30 years have passed, and we still
have not seen the commercialization of autonomous vehicles without a steering wheel.
Various advanced driver assistance system (ADAS) modules have been put on the market,
such as adaptive cruise control (ACC), autonomous emergency braking system (AEB), lane
keeping system (LKS), etc. Although these features can help drivers reduce the burden of
driving and improve road safety, they may still not able to solve congestion and parking
problems in urban areas.

Recently, research has also focused on parking assist technologies, such as vision-
based parking assist systems [2,3], ultrasonic-based auto parking systems [4], laser scanner
radar-based parking systems [5], and parking assist systems using hybrid method [6].
While these research efforts ended with the function of assisted parking, more advanced
challenges remain, for instance, to build a system that includes path planning and fully
automated parking. First, the path planning must convey to the vehicle the knowledge of
its surrounding environment so that the vehicle control unit can command its actuators
with appropriate actions in real time. A variety of methods of path planning were based
on the requirements of the problem to be solved, such as rapidly-exploring random trees
(RRT) [7], heuristically-guided RRT [8], potential field algorithm [9], and A-star [10]. By
adding kinematic constraints to the A-star, a hybrid A-star algorithm was proposed by
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Dolgov et al. [11], which had been used by the Stanford team to execute U-turns on blocked
roads and to navigate vehicles in parking lots in a grand challenge project supported by
the Defense Advanced Research Projects Agency (DARPA).

After the path planning task sends signals to command a vehicle to track the expected
path, the vehicle control unit will drive the vehicle by considering its coupled longitu-
dinal and lateral dynamic behaviors. For a small low-speed harvester-assisting vehicle,
Loukatos [12] simply used its geometrical model to calculate speed controls to drive motors
to reach a specific turning angle. For high-speed normal vehicles with nonlinear and/or
time-varying dynamics, traditional PID controller could scarcely be used to maneuver such
vehicles of non-holonomic motions. Alternative methods of gain scheduling, parameter
adaptation, and auto-tuning might be able to upgrade PID control performances [13] with
or without vehicle models. More advanced techniques, such as sliding mode control [14],
pure pursuit control [15,16], optimal predictive control [17], iterative linear quadratic regu-
lator (LQR) [18], nonlinear model predictive control [19], and robust control [20] have been
proposed to control the vehicle with complex dynamic behaviors.

One of the most promising methods of autonomous vehicle control is model predictive
control (MPC), which accommodates both kinematic and dynamic vehicle models to
improve the vehicle tracking performance at low and high speeds [21]. Either nonlinear
MPC or time-varying linear MPC is attractive to the application of trajectory tracking for
self-driving vehicles, and has been proved stable in the sense of Lyapunov theorem [22].
Vougioukas [23] applied a nonlinear model predictive tracking controller to a mobile robot
in the presence of obstacles. Only its kinematic model was used to compute an optimal
M-step-ahead control sequence in real time, by minimizing the cost of tracking errors
and control efforts. However, the computational load may impede fast applications to
self-driving vehicles [24].

This paper combines hybrid A-star path planning and time varying linear MPC with
vehicle dynamic models for an electric van (e-van) to simulate self-driving and parking
on a hardware-in-the-loop (HiL) simulation platform. The HiL simulation technique is
often used for testing the proposed path planning and model predictive control strategy
before it is implemented on a real vehicle in the real-world environment. In this paper, the
hardware part has power steering wheel and motor, accelerator and brake pedals and their
control unit, and computers. Other vehicle physical parts, components, subsystems, and
vehicle dynamics are replaced by mathematical models coded in the software platform on
computers. Since simulations are performed on a virtual plant, no physical plant could be
damaged, and no people could be injured.

Section 2 establishes the kinematic and dynamic vehicle models. Section 3 briefs the
hybrid A-star path planning algorithm. Section 4 presents the MPC by minimizing a cost
function that describes vehicle performance in terms of safety, energy-saving, comfort,
and agility. Section 5 introduces experimental results with the HiL platform and Section 6
concludes the research.

2. Vehicle Model

The e-van discussed in this paper is a Chung-Hua Motor Company commercial vehicle
with a gross weight of 1.46 tons and 2 seats, which is driven by a 45 kW (rated) interior
permanent magnet motor (IPM) and a 32-kWh lithium battery bank.

2.1. Kinematic Model

In Figure 1, the bicycle model of the e-van is introduced with a mass center at C, from
which Lf and Lr are, respectively, the distances to the front and rear tires. With respect to
the instantaneous center of zero velocity at O, the slip angles of the front and rear tires are
denoted by αf and αr, the yaw angle is ψ, the side slip angle of the vehicle is β, and the
steering angle is δ.
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velocity of mass center, i.e., 𝑣𝑣𝑟𝑟 = 𝑣𝑣. 
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Figure 1. Bicycle model of the vehicle.

The velocities Vf and Vr of the front and rear wheels are derived as

Vf =

 v cos β
v sin β +

0
L f

.
ψ

 =

 v f cos(δ − α f )

v f sin
(

δ − α f

)
0

 (1)

and

Vr =

 v cos β
v sin β −

0
Lr

.
ψ

 =

 vr cos αr
−vr sin αr

0

, (2)

where v is the vehicle speed. When both the side slip angle and steering angle are small, i.e.,
tan(δ − α f ) ≈ δ − α f , β ≈ 0, and tan αr ≈ αr, their relationships are simply described as

α f = δ − β − L f

.
ψ

v
and αr = −β + Lr

.
ψ

v
. (3)

Therefore, the lateral force on the front tire and the lateral force on the rear tire are
derived by the Magic Formula tire model, as follows

Fy f = Cα f α f and Fyr = Cαr αr, (4)

where Cαf is the cornering stiffness of the front tire and Cαr is the cornering stiffness of the
rear tire. When the tire side slip angles αf and αr and the vehicle side slip angle β are small,
the kinematic equation can be derived as .

x
.
y
.
ψ

 =

 cos ψ
sin ψ

tan δ
L

vr =

 cos ψ
sin ψ

0

v +

 0
0
1

 .
ψ, (5)

where
.
x =

.
xr and

.
y =

.
yr are the velocity components at the center of rear wheel. Since the

rear tire side slip angle is negligibly small, the velocity of rear axle is equal to the velocity
of mass center, i.e., vr = v.

2.2. Dynamic Model

As shown in Figure 2, the longitudinal traction forces are usually simplified as
Fxr = Fxr1 = Fxr2 and Fx f = Fx f 1 = Fx f 2 when the vehicle moves along a straight line. The
force with subscript 1 stands for the force exerted on the left tire, and subscript 2 stands for
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the force exerted on the right tire. The following equations represent the normal forces Nf
and Nr of the front and rear wheels and the tractive force Fx:

N f =

(
mgLr cos θ − 1

2
ρCd A f v2

xha − mhm
.
vx

)
/2L, (6)

Nr =

(
mgL f cos θ +

1
2

ρCd A f v2
xha + mhm

.
vx

)
/2L, (7)

Fx = 2
(

Fx f + Fxr

)
= m

.
vx + mg sin θ +

1
2

ρCd A f v2
x + 2Ct

(
N f + Nr

)
. (8)

Here, the geometric parameters are: L = L f + Lr, Af the frontal area of vehicle, ha the
equivalent height of aerodynamic point, hm the height of mass center, and θ the slope angle
in degrees. The kinematic and kinetic parameters are: m the vehicle mass, g the gravity
acceleration, ρ the air density, vx the longitudinal vehicle velocity, Cd the aerodynamic
coefficient, Ct the friction coefficient between tire and ground, Fxf the traction force on the
front tire, and Fxr the traction force on the rear tire.
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Figure 2. Vehicle dynamics models in the (a) longitudinal and (b) lateral directions.

When the vehicle is cornering, the four-wheel model is used to describe the vehicle
dynamics equations in the lateral, longitudinal, and yaw directions, as follows:

(Fx f 1 + Fx f 2) cos δ − (Fy f 1 + Fy f 2) sin δ + Fxr1 + Fxr2 = m
[

.
vx −

(
γ +

dβ

dt

)
vy

]
, (9)

(Fx f 1 + Fx f 2) sin δ + (Fy f 1 + Fy f 2) cos δ + Fyr1 + Fyr2 = m
[

.
vy +

(
γ +

dβ

dt

)
vx

]
, (10)

L f (Fy f 1 + Fy f 2) cos δ − Lr(Fyr1 + Fyr2) +
Lw

2

(
Fy f 1 − Fy f 2

)
sin δ + Mz = Iz

d
dt

(
γ +

dβ

dt

)
, (11)

Mz = L f (Fx f 1 + Fx f 2) sin δ +
Lw

2
(−Fx f 1 + Fx f 2) cos δ +

Lw

2
(−Fxr1 + Fxr2), (12)

where Fxf1 is the longitudinal traction force on the left front tire and Fxf2 is the longitudinal
traction force on the right front tire. They are assumed equal when the steering angle δ
is zero. The lateral traction force on the left front tire is denoted by Fyf1 and the lateral
traction force on the right front tire is denoted by Fyf2. Similarly, Fxr1 is the longitudinal
traction force on the left rear tire, Fxr2 is the longitudinal traction force on the right rear
tire, Fyr1 is the longitudinal traction force on the left rear tire, and Fyr2 is the longitudinal
traction force on the right rear tire. In the yaw direction, Iz represents the mass moment of
inertia, Mz is the yaw moment for cornering, and γ =

.
ψ is the yaw velocity.
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Equations (9)–(12) are used to calculate torque distributions as the vehicle is cornering
at low speeds. Then, the pitch and roll motions can be omitted, and the rolling resistance,
aerodynamic drag, and hill climbing resistance of the last terms in (6) can be neglected
for simplicity.

3. Hybrid A-Star Algorithm

A crucial part for a self-driving vehicle is the path planning system, which typically
encompasses different abstract layers, such as mission and motion planning. Mission
planning consists of trajectory planning and path planning. The path planning generates
a collision free path in an obstacle environment by optimizing it with regard to some
rules, while the trajectory planning schedules the vehicle movement on the planned path.
The motion planner, on the other hand, operates at a lower level to avoid obstacles while
progressing towards local goals.

This paper applies the hybrid A-star algorithm [11,25] of path planning for an auto
parking system. The first phase of this approach is different from the well-known A-star
algorithm, which uses 3D kinematic states of the vehicle, but we modify the state-update
rule to obtain the continuous-state data on the discrete searching grids on a map. The tradi-
tional A-star path planning only allows reaching centers of cells connected with piecewise
linear lines. However, the hybrid A-star allows expansion towards any continuous point
on the grid as a state, as shown in Figure 3. The state is described by x = (x, y, ψ), in which
x and y denote the position of the mass center C and ψ the heading of the vertex or the yaw
angle of the vehicle in Figure 1.
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Figure 3. Traditional A* searching path (left) vs. hybrid A* searching path (right).

The non-holonomic constraints of the vehicle are considered for the vertex expansion
by taking one of three actions—maximum steering left, maximum steering right, or no
steering. In Figure 4, the vertex search starts from the current vehicle state xs to the goal
state xg which are provided by the PreScan simulation platform. Then, the hybrid A-star
will generate six successor vertices, three of which are driving forward, while three are
driving in reverse (not shown in the figure). Each vertex expansion is generated by the
minimal turning radius r = L/ tan δ based on the vehicle parameters in Figure 1 to make
sure that the resulting paths are always drivable. When a new vertex is expanded to a cell
already occupied by other vertices, the ones with the higher cost will be deleted and the
vertex with the least cost remains.

Any point xn on the planned path satisfies the optimal value of the cost function

f (xn) = g(xn) + h(xn), (13)

where g(xn) is the distance or cost between xs and xn, h(xn) is the predicted distance or cost
from xn to xg, namely, the heuristic function.

The heuristic function used in the hybrid A-star path planning consists of a constrained
heuristic and an unconstrained heuristic. The constrained heuristic ignores environmental
obstacles but incorporates the geometric and dynamic constraints of the vehicle. The
unconstrained heuristic disregards vehicle constraints but only accounts for obstacles.

In this paper, the Reeds-Shepp curve [26] was used as the constrained heuristic func-
tion for searching a path, which referred to the shortest curve that considered the heading
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and curvature restrictions. Taking the curvature limit of our vehicle into account, the
Reeds-Shepp curve could generate drivable way points for the vehicle. As to the uncon-
strained heuristic function, the traditional A-star with Euclidean distance was introduced.
By combining both constraint and unconstraint heuristic functions, the final path was
generated to satisfy geometry constraints as well as to avoid obstacles.
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Figure 4. Forward part in the path planning process on PreScan platform.

In experiments, the size of each grid cell was 0.5 × 0.5 m2 to compose the scene of
the test field on the PreScan simulation platform. As the vehicle was entering the parking
lot of a size about 65 × 45 m2, it was switched to the self-driving mode. The Nvidia
AutoChauffeur PX2, which had a Cortex A57 microarchitecture, took about 0.5–1.5 s to
plan the path from the entrance of the parking lot to the selected parking space. During the
movement, the vehicle speed was under 10 km/h; the control actions were determined
in a sampling period of 100 ms after collecting the real-time information of sensors and
waypoints along the path.

Though a vehicle model used to expand vertices might result in an excessive steering
action, it can be easily solved by the proposed MPC optimization. Figure 5 illustrates
a visualization process of path planning on the parking lot of testing site created in the
graphical user interface (GUI) of the ROS visualization tool (RViz).
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4. Model Predictive Control

The MPC that imitates the working pattern of the human brain is here applied to
autonomous vehicles under various constraints. Figure 6 illustrates the conceptual diagram
of MPC. The measured or estimated system states are sent to the MPC block, where the
optimal control action is calculated by a system model and constraints to track the pre-
filtered set points by minimizing a cost function.
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4.1. Vehicle States Prediction Model

The system model in Figure 6 is responsible for vehicle states prediction. The kinematic
model (5) can be linearized about a reference state x = [xr, yr, ψr]

T and a reference control
input u = [vr, δr]

T by Taylor series expansion after neglecting high-order terms:

.
x̂(t) = A1 x̂(t) + B1u1(t), (14)

A1 =

 0 0 −vr sin ψr
0 0 vr cos ψr
0 0 1

, (15)

B1 =

 cos ψr 0
sin ψr 0
tan(δ)

L
vr

L cos2 δr

, (16)

where x̂ = [x − xr, y − yr, ψ − ψr]
T , u1 = [v − vr, δ − δr]

T .
Under the assumptions of a small steering angle, sin δ ≈ 0, and cos δ ≈ 1, and small

changing rate of side slip angle, dβ/dt = 0, dynamic Equations (6)–(12) can be simplified
with the Magic Formula tire model (4) as

m
.
vy = −mvxψ + 2

[
Cα f

(
δ −

vy + L f
.
ψ

vx

)
+ Cαr

(
Lr

.
ψ − vy

vx

)]
, (17)

m
.
vx = mvyψ + 2

[
CtN f + Cα f

(
δ −

vy + L f
.
ψ

vx

)
+ CtNr

]
, (18)

IZ
..
ψ = 2

[
L f Cα f

(
δ −

vy + L f
.
ψ

vx

)
− LrCαr

(
Lr

.
ψ − vy

vx

)]
, (19)

.
X = vx cos ψ − vy sin ψ, (20)
.

Y = vx sin ψ + vy cos ψ, (21)

where 2Ct(Nf + Nr) represents the driving force or braking force exerted between tires

and ground. Define a new state z = [vy, vx, ψ,
.
ψ, Y, X]T, and input u2 = [δ, p], where
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p = 2Ct(Nf + Nr)/m denotes the pedal angle of accelerator or brake. The linearized state-
space model of (17)–(21) is derived as

.
z = A2(t)z(t) + B2(t)u2(t), (22)

where

A2(t) =



−2(Ca f + Car)
mvx

A12 0 −vx +
2(LrCαr − L f Cα f )

mvx
0 0

.
ψ − 2Cα f

mvx
A22 0 vy −

2L f Cα f
mvx

0 0
0 0 0 1 0 0

2(LrCαr − L f Cα f )
Izvx

A42 0 −2
Izvx

(
L2

f Cα f + L2
r Cαr

)
0 0

cos ψ sin ψ A53 0 0 0
− sin ψ cos ψ A63 0 0 0


, (23)

A12 =
2

mv2
x

[
Cα f

(
vy + L f

.
ψ
)

+ Cαr

(
vy − Lr

.
ψ
)]

−
.
ψ, (24)

A22 =
2Cα f

mv2
x

(
vy + L f

.
ψ
)

, (25)

A42 =
2

Izv2
x

[
L f Cα f

(
vy + L f

.
ψ
)
− LrCαr

(
vy − Lr

.
ψ
)]

, (26)

A53 = vx cos ψ − vy sin ψ, (27)

A63 = −vy sin ψ − vx cos ψ, (28)

B2(t) =

[
2Cα f

m
2Cα f

m 0
2L f Cα f

Iz
0 0

0 1 0 0 0 0

]T

. (29)

4.2. Cost Function and Constraints

The cost function for the MPC is defined in a quadratic form:

J = wet(et)
2 + weψ

(
eψ

)2
+ wp(p)2 + w .

p
( .

p
)2

+ wδ(δ)
2 + w∆δ(∆δ)2 + wvδ(vδ)2 + wv(v − vr)

2, (30)

where et =
√
(x − xr)

2 + (y − yr)
2 is the cross-tracking error from reference path,

eψ = ψ − ψr is the heading error from reference path, as shown in Figure 7. The weighting
factors w’s account for the importance of vehicle safety, energy-saving, comfort, and agility.
For safety and agility, wet weighs the cross-tracking error from reference path, and weψ

the heading error from reference path. For energy-saving, wp weighs the pedal angle of
accelerator or brake, and w .

p the change of the pedal angle of accelerator or brake. For
comfort and safety, wδ weighs the steering angle, w∆δ the change of steering angle, and wvδ

the coupling effect of vehicle speed and steering angle. For agility, wv weighs the vehicle
speed deviation from the reference.
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4.2. Cost Function and Constraints 
The cost function for the MPC is defined in a quadratic form: 

𝐽𝐽 = 𝑤𝑤𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡)2 + 𝑤𝑤𝑒𝑒𝜓𝜓�𝑒𝑒𝜓𝜓�
2 + 𝑤𝑤𝑝𝑝(𝑝𝑝)2 + 𝑤𝑤𝑝̇𝑝(𝑝̇𝑝)2 + 𝑤𝑤𝛿𝛿(𝛿𝛿)2 + 𝑤𝑤△𝛿𝛿(△ 𝛿𝛿)2 + 𝑤𝑤𝑣𝑣𝑣𝑣(𝑣𝑣𝑣𝑣)2 + 𝑤𝑤𝑣𝑣(𝑣𝑣 − 𝑣𝑣𝑟𝑟)2, (30) 

where 𝒆𝒆𝒕𝒕 = �(𝒙𝒙 − 𝒙𝒙𝒓𝒓)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝒓𝒓)𝟐𝟐 is the cross-tracking error from reference path, 𝒆𝒆𝝍𝝍 =
𝝍𝝍−𝝍𝝍𝒓𝒓 is the heading error from reference path, as shown in Figure 7. The weighting 
factors w’s account for the importance of vehicle safety, energy-saving, comfort, and 
agility. For safety and agility, 𝒘𝒘𝒆𝒆𝒆𝒆 weighs the cross-tracking error from  reference path, 
and 𝒘𝒘𝒆𝒆𝝍𝝍 the heading error from reference path. For energy-saving, 𝒘𝒘𝒑𝒑 weighs the pedal 
angle of accelerator or brake, and 𝒘𝒘𝒑̇𝒑  the change of the pedal angle of accelerator or 
brake. For comfort and safety, 𝒘𝒘𝜹𝜹 weighs the steering angle, 𝒘𝒘△𝜹𝜹 the change of steering 
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It is interesting to devise a rule of choosing reasonable values for the eight weighting
factors. First, the eight weighting factors can be grouped into two categories: the weightings
wet, weϕ, wv, and wvδ on the importance of vehicle states, and the weightings wδ, w∆δ, wp,
and w .

p on the importance of control variables. The former category relates more about
vehicle safety by evaluating the trajectory tracking and heading errors as well as speed
errors, while the latter relates more about energy-saving and somewhat of driving comfort.
Agility has something to do with fast response. In this paper, when we say that the self-
driving vehicle is agile, it means that the vehicle returns quickly back to the planned
reference trajectory from which the vehicle may deviate. Therefore, the weightings on wet,
weϕ and wv care both tracking errors and fast response to diminish the errors.

Safe driving is always the first rule for a self-driving vehicle. It is suggested in this
paper that, in any cases, 60% or more weightings should be assigned to the vehicle states
category which emphasizes safe driving, but less weightings be put to the control variables
category to consider moderately the energy saving and comfort of driving.

The inequality constraints of control input u and ∆u are hard constraints, while the
predicted outputs are usually soft constraints, as follows:

umin(k) ≤ u(k + j) ≤ umax(k)ymin(k) ≤ y(k + j) ≤ ymax(k). (31)

5. Experiments and Results

The HiL simulation platform for experiments encompasses two parts as shown in
Figure 8. The hardware part in quadrants 1 and 2 consists of an Nvidia AutoChauffeur PX2,
a power steering wheel with motor, and an accelerator and brake pedal and its controller
(Logitech G29). The software part includes:

(1) ROS on the Nvidia PX2 in quadrant 1, where the proposed hybrid A-star path plan-
ning algorithm and MPC algorithm are executed;

(2) Vehicle kinematic and dynamic models model coded in the Matlab/Simulink platform
in quadrant 3;

(3) Sensor models of GPS, camera, radar, and lidar, and the world map for simulation
provided by PreScan platform in quadrant 4.
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The test field was on the ITRI campus, whose map was planned off-line by the hybrid
A-star algorithm in the PreScan simulation platform. In each sampling period of 100 ms,
the proposed MPC took from the map of planned path 20–40 waypoints ahead of the
current position to calculate a new control action by applying an open source Interio Point
Optimizer (Ipopt) [27]. The experimental setup is illustrated in Figure 9, and parts of the
test field are illustrated in Figure 10. This section verifies the feasibility of the hybrid A-star
path planning and the proposed MPC strategy through three different simulation scenarios.
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Figure 10. Self-driving route (red star line) by PreScan and parking lot map on the test field.

5.1. Self-driving Performance

In order to verify the independence and intuitiveness of the weighting factors in the
cost function of the MPC strategy, two sets of weighting factors are assigned, as shown in
Table 1. As was suggested, that in any cases 60% or more weighting should be assigned
to the vehicle states category that emphasized safe driving. Setting 1 has 85% weighting
and Setting 2 has 62.5% weighting on the vehicle states category. For more insight into the
weighting factors on the tracking and heading errors, Setting 1 puts 27.5% each on wet and
weψ, but Setting 2 puts only 17.5% each on wet and weψ. In other words, Setting 1 puts more
importance on safety than Setting 2, in terms of 55% versus 35% on the weighting factors
wet and weψ.
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Table 1. Weighting factors for self-driving test.

Weightings Case 1 Case 2 Index of Importance *

Unit % % S E C A

Vehicle states

wet 27.5 17.5 • N

weϕ 27.5 17.5 • N

wv 20 12.5 N •
wvδ 10 15 N •

Control
variables

wδ 1.5 7.5 N N

w∆δ 3.5 10 N N

wp 4.5 5 •
w .

p 5.5 15 •
* S (safety), E (energy-saving), C (comfort), A (agility). • means highly while N partially correlated to S, E, C, or A.

In contrast, less importance is suggested for the category of control variables, consider-
ing the energy saving and comfort of the vehicle. For energy saving, Setting 2 assigns 20%
but Setting 1 assigns only 10% weighting to wp and w .

p, which means that more importance
on energy saving is given in Setting 2 than in Setting 1. For the importance of comfort,
Setting 2 allocates 32.5% while Setting 1 allocates only 15% weighting to wδ, w∆δ, and wvδ,
which means that Setting 2 may cause more driving comfort than Setting 1.

Figure 11, marked with driving ordering numbers, shows that on the prescribed
route in Figure 10, Setting 1 has better tracking and heading performances than Setting 2,
where more erroneous offsets are observed, especially at corners, from the prescribed route.
Figure 12 also shows that the self-driving vehicle with Setting 1 (wv at 20%) follows the
prescribed tracking speed at 10 km/h better than that of Setting 2 (wv at 12.5%). However,
Figure 13 shows that the lateral acceleration curve of Setting 2 is much smoother and
therefore more comfortable for passengers in the vehicle, than that of Setting 1.
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Figure 11. Tracking performance on the prescribed route with different emphasis on safety and
comfort. Setting 1 has better tracking performance than Setting 2.

5.2. Double Lane Change (DLC)

The DLC experiment investigated the driving performance of the proposed MPC
strategy and compared it to the traditional proportional–integral–derivative (PID) con-
troller. Both the driver’s model and the ISO 3888-2 DLC test scenario were built in in the
PreScan simulation platform. Figure 14 shows that the tracking error of the vehicle on the
DLC route by the MPC strategy was smaller than that of the traditional PID controller.
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Similarly, from Figure 15, the MPC strategy resulted in a better DLC performance than the
PID controller in terms of vehicle lateral acceleration.
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Figure 12. Vehicle speed performance on the prescribed route with different emphasis on safety and
comfort. Setting 1 follows the reference speed better than Setting 2.
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Figure 13. Vehicle lateral acceleration curve on the prescribed route with different emphasis on safety
and comfort. Setting 2 provides more comfort driving than Setting 1.

5.3. Energy Efficiency Simulation

Energy saving is often considered a secondary requirement for self-driving vehicles.
With the same scenario of the planned path in Figure 11, the energy efficiency is investigated
with 10 sets of prescribed weighting factors in Table 2. The weightings on the vehicle states
were still assigned with a high percentage within 45–55% to emphasize safe driving. In
addition, it is noticed that the weightings on wv and wvδ were given at the same value,
and the resultant weightings on wδ and w∆δ were assigned within a narrow range between
20.5 and 24, so that the agility and driving comfort were equally important for all these
cases. Thus, the major difference was between the weightings wet and weϕ on the tracking
and heading errors and the weightings wp and w .

p on the energy saving. The range of the
resultant values of wp and w .

p was between 23 and 34.5.



Electronics 2021, 10, 2447 13 of 18
Electronics 2020, 20, x. 14 of 19 
 

 

 
Figure 14. Vehicle tracking error on the DLC test by MPC and PID controllers. 

 

Figure 15. Vehicle yaw rate on the DLC test by MPC and PID controllers. 

Table 2. Weighting factors and energy efficiency improvement. 

Weighting factors (%) 
Case 1 2 3 4 5 6 7 8 9 10 

Vehicle states 

𝑤𝑤𝑒𝑒𝑒𝑒 12.5 17.5 15.5 12.5 16 18 17.5 14 15 17.5 
𝑤𝑤𝑒𝑒𝑒𝑒 12.5 15.5 13 12.5 15 17 15.5 13 13 16 
𝑤𝑤𝑣𝑣 10 10 10 10 10 10 10 10 10 10 
𝑤𝑤𝑣𝑣𝑣𝑣 10 10 10 10 10 10 10 10 10 10 

Control$$vari
ables 

𝑤𝑤𝛿𝛿 8 8 8 10 8.5 8.5 9 10 9 8 
𝑤𝑤△𝛿𝛿 12.5 15 15 14 15 15 15 14 14 15 

Weightings on energy saving  
𝑤𝑤𝑝𝑝 14.5 12 18.5 19 9 18 13 21 14 10 
𝑤𝑤𝑝̇𝑝 20 12 10 14 16.5 9 10 10 15 13.5 

𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑝̇𝑝 34.5 24 28.5 33 25.5 27 23 31 29 23.5 
𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (QWh) 8.28 8.68 8.45 8.31 8.64 8.60 8.49 8.32 8.39 8.73 

∆𝜂𝜂 (%) 7.5 3.3 5.6 7.3 3.6 4.1 2.5 7.2 6.3 2.6 
Figure 16 shows the time histories of the accelerator pedal angle in percentage (%) 

for the traditional PID controller and for the three selected cases (1, 3, and 10) to 

 
MPC 

PID 

 
MPC 

PID 

Figure 14. Vehicle tracking error on the DLC test by MPC and PID controllers.

Electronics 2020, 20, x. 14 of 19 
 

 

 
Figure 14. Vehicle tracking error on the DLC test by MPC and PID controllers. 

 

Figure 15. Vehicle yaw rate on the DLC test by MPC and PID controllers. 

Table 2. Weighting factors and energy efficiency improvement. 

Weighting factors (%) 
Case 1 2 3 4 5 6 7 8 9 10 

Vehicle states 

𝑤𝑤𝑒𝑒𝑒𝑒 12.5 17.5 15.5 12.5 16 18 17.5 14 15 17.5 
𝑤𝑤𝑒𝑒𝑒𝑒 12.5 15.5 13 12.5 15 17 15.5 13 13 16 
𝑤𝑤𝑣𝑣 10 10 10 10 10 10 10 10 10 10 
𝑤𝑤𝑣𝑣𝑣𝑣 10 10 10 10 10 10 10 10 10 10 

Control$$vari
ables 

𝑤𝑤𝛿𝛿 8 8 8 10 8.5 8.5 9 10 9 8 
𝑤𝑤△𝛿𝛿 12.5 15 15 14 15 15 15 14 14 15 

Weightings on energy saving  
𝑤𝑤𝑝𝑝 14.5 12 18.5 19 9 18 13 21 14 10 
𝑤𝑤𝑝̇𝑝 20 12 10 14 16.5 9 10 10 15 13.5 

𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑝̇𝑝 34.5 24 28.5 33 25.5 27 23 31 29 23.5 
𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 (QWh) 8.28 8.68 8.45 8.31 8.64 8.60 8.49 8.32 8.39 8.73 

∆𝜂𝜂 (%) 7.5 3.3 5.6 7.3 3.6 4.1 2.5 7.2 6.3 2.6 
Figure 16 shows the time histories of the accelerator pedal angle in percentage (%) 

for the traditional PID controller and for the three selected cases (1, 3, and 10) to 

 
MPC 

PID 

 
MPC 

PID 

Figure 15. Vehicle yaw rate on the DLC test by MPC and PID controllers.

Table 2. Weighting factors and energy efficiency improvement.

Weighting Factors (%)

Case 1 2 3 4 5 6 7 8 9 10

Vehicle states

wet 12.5 17.5 15.5 12.5 16 18 17.5 14 15 17.5
weϕ 12.5 15.5 13 12.5 15 17 15.5 13 13 16
wv 10 10 10 10 10 10 10 10 10 10
wvδ 10 10 10 10 10 10 10 10 10 10

Control
variables

wδ 8 8 8 10 8.5 8.5 9 10 9 8
w∆δ 12.5 15 15 14 15 15 15 14 14 15

Weightings on energy saving

wp 14.5 12 18.5 19 9 18 13 21 14 10
w .

p 20 12 10 14 16.5 9 10 10 15 13.5
wp +
w .

p
34.5 24 28.5 33 25.5 27 23 31 29 23.5

EMPC (QWh) 8.28 8.68 8.45 8.31 8.64 8.60 8.49 8.32 8.39 8.73

∆η (%) 7.5 3.3 5.6 7.3 3.6 4.1 2.5 7.2 6.3 2.6
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Figure 16 shows the time histories of the accelerator pedal angle in percentage (%) for
the traditional PID controller and for the three selected cases (1, 3, and 10) to investigate
energy efficiency by the proposed MPC strategy for self-driving vehiclecontrol. Since the
sampling frequency was 10 Hz in the simulation, the energy consumption was estimated
by summing 1200 data of pedal angles, each of which corresponds to an equivalent amount
of power. Here, the equivalent power per 1% of pedal angle is assumed to be Q in W/%
the total energy consumption can be calculated by

E =
Q

3600 ∑1200
k=1 p(k) (Wh). (32)
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Figure 16. Accelerator pedal angle (%) history of (a) PID controller, and MPC with (b) Case 1,
(c) Case 3, and (d) Case 10 for energy saving simulation. (The area under the curve represents
energy consumption).

It is easy to understand that the summation is the estimate of energy consumption
that is simply the enclosed area under the curve p(t). The energy efficiency improvement
was then calculated by

∆η =
EPID − EMPC

EPID
× 100%, (33)

where EPID was 8.96Q (Wh). The EMPC and ∆η of each case are shown in Table 2. The
relationship bewteen the energy efficiency improvement and the weighting (wp + w .

p) on
energy saving is given in Figure 17. As was predicted, the energy efficiency was better if
the weighting on energy saving was higher.

5.4. Integral Test of Path Planning and Auto-Parking

In this experiment, we tested manual driving mode, self-driving mode, dynamic path
planning, obstacle avoidance, and automatic parking. The parking lot map (Figure 10) was
created in the PreScan simulation platform. In Figure 18, a driver on the HiL platform
drove the “virtual” vehicle manually to the entrance to the parking lot in about 100 s. After
selecting a parking space on the graphical user interface in ROS (RViz), the driver switched
to self-driving mode. The vehicle automatically followed the prescribed reference path
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without any obstacle. Around 200 s, the vehicle detected an obstacle via RADAR and made
an emergency stop. At this point, the hybrid A-star recalculated and updated a new path to
avoid the obstacle. Finally, the vehicle passed the obstacle and parked in the selected space.
The corresponding curves of the steering angle, yaw rate, and brake pedal signal during
the path planning and auto-parking scenarios are shown, respectively, in Figures 19–21,
where ordering numbers are provided in correspondence with those in Figure 18.
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6. Conclusions

This paper applied a hybrid A-star algorithm for path planning and the MPC strategy
for a self-driving e-van on the HiL simulation platform. The hardware of the platform
consisted of an electric power steering system, accelerator, and brake pedals, and an Nvidia
drive PX2 on ROS. The vehicle dynamics model, sensors, controller, and test field map were
virtually built with the PreScan simulation platform. In comparison with the traditional
PID control, the path tracking performance was improved by the proposed MPC strategy by
minimizing the prescribed cost function which accounted for vehicle safety, energy-saving,
comfort, and agility. Three self-driving scenarios were presented. Self-driving performance
was first investigated by two different sets of weighting factors for the cost function of MPC,
each accounting for different levels of importance on vehicle safety, energy-saving, comfort,
and agility. Second, the stability and tracking performance of the ISO 38888-2 DLC test
by the proposed MPC was verified to be better than that by the traditional PID controller.
Finally, an integral test was executed on the HiL platform to demonstrate the feasibility of
the shift from manual to self-driving mode, obstacle avoidance, dynamic path planning,
and auto-parking. This HiL platform can be used for future development of path planning,
sensing, perception, decision-making, and control for any kind of self-driving vehicles.

Author Contributions: Y.C. and Y.-P.Y. devised and planned the experiments; Y.C. executed the
experiments and explained the data; both Y.-P.Y. and Y.C. composed and edited the paper. Both
authors have read and agreed to the published version of the manuscript.



Electronics 2021, 10, 2447 17 of 18

Funding: This research was financially supported by the Ministry of Science and Technology (MOST)
of Taiwan, Republic of China under contract MOST 109-2221-E-002-153.

Data Availability Statement: This paper used the open source software package Ipopt for large-scale
nonlinear optimization from https://coin-or.github.io/Ipopt/ (accessed on 3 September 2021).

Acknowledgments: The authors acknowledge all the engineering support with experimental equip-
ment and HiL simulation platform, from the intelligent mobility division of Mechanical and Mecha-
tronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057,
Taiwan, China.

Conflicts of Interest: The authors claim no conflict of interest.

References
1. Baluja, S. Evolution of an artificial neural network based autonomous land vehicle controller. IEEE Trans. Syst. Man Cybern.

Part B 1996, 26, 450–463. [CrossRef] [PubMed]
2. Vestri, C.; Bougnoux, S.; Bendahan, R.; Fintzel, K.; Wybo, S.; Abad, F.; Kakinami, T. Evaluation of a vision-based parking assistance

system. In Proceedings of the 2005 IEEE Intelligent Transportation Systems, Vienna, Austria, 16 September 2005; IEEE: Piscataway,
NJ, USA, 2005; pp. 131–135.

3. Rashid, M.M.; Musa, A.; Rahman, M.A.; Farahana, N.; Farhana, A. Automatic Parking Management System and Parking Fee
Collection Based on Number Plate Recognition. Int. J. Mach. Learn. Comput. 2012, 2, 93–98. [CrossRef]

4. Wu, T.-F.; Tsai, P.-S.; Hu, N.-T.; Chen, J.-Y. Research and implementation of auto parking system based on ultrasonic sensors.
In Proceedings of the 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan,
Taiwan, 12–13 November 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 643–645.

5. Jung, H.G.; Cho, Y.H.; Yoon, P.J.; Kim, J. Scanning Laser Radar-Based Target Position Designation for Parking Aid System.
IEEE Trans. Intell. Transp. Syst. 2008, 9, 406–424. [CrossRef]

6. Tashiro, T. Vehicle steering control with MPC for target trajectory tracking of autonomous reverse parking. In Proceedings of the
2013 IEEE International Conference on Control Applications (CCA), Hyderabad, India, 28–30 August 2013; IEEE: Piscataway, NJ,
USA, 2013; pp. 247–251.

7. LaValle, S.M. Rapidly-exploring random trees: A new tool for path planning. Mathematics 1998.
8. Urmson, C.; Simmons, R. Approaches for heuristically biasing RRT growth. In Proceedings of the 2003 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004; Volume 2, pp. 1178–1183.

9. Barraquand, J.; Latombe, J.-C. Robot Motion Planning: A Distributed Representation Approach. Int. J. Robot. Res. 1991, 10,
628–649. [CrossRef]

10. Clarke, G.; Wright, J.W. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Oper. Res. 1964, 12, 568–581.
[CrossRef]

11. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. In Pro-
ceedings of the First International Symposium on Search Techniques in Artificial Intelligence and Robotics, Chicago, IL, USA,
13–14 July 2008; pp. 32–37.

12. Loukatos, D.; Petrongonas, E.; Manes, K.; Kyrtopoulos, I.-V.; Dimou, V.; Arvanitis, K. A Synergy of Innovative Technologies
towards Implementing an Autonomous DIY Electric Vehicle for Harvester-Assisting Purposes. Machines 2021, 9, 82. [CrossRef]

13. Åström, K.J.; Hägglund, T. Advanced PID Control; ISA-The Instrumentation, Systems, and Automation Society: Research Triangle
Park, NC, USA, 2006.

14. Ao, D.; Huang, W.; Wong, P.K.; Li, J. Robust Backstepping Super-Twisting Sliding Mode Control for Autonomous Vehicle Path
Following. IEEE Access 2021. [CrossRef]

15. Yu, L.; Yan, X.; Kuang, Z.; Chen, B.; Zhao, Y. Driverless Bus Path Tracking Based on Fuzzy Pure Pursuit Control with a Front Axle
Reference. Appl. Sci. 2019, 10, 230. [CrossRef]

16. Elbanhawi, M.; Simic, M.; Jazar, R. Receding horizon lateral vehicle control for pure pursuit path tracking. J. Vib. Control. 2016, 24,
619–642. [CrossRef]

17. Samak, C.V.; Samak, T.V.; Kandhasamy, S. Proximally optimal predictive control algorithm for path tracking of self-driving cars.
arXiv 2021, arXiv:2103.13240.

18. Nagariya, A.; Saripalli, S. An Iterative LQR Controller for Off-Road and On-Road Vehicles using a Neural Network Dynamics
Model. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 1740–1745.

19. Chowdhri, N.; Ferranti, L.; Iribarren, F.S.; Shyrokau, B. Integrated nonlinear model predictive control for automated driving.
Control Eng. Pract. 2021, 106, 104654. [CrossRef]

20. Zhang, W. A robust lateral tracking control strategy for autonomous driving vehicles. Mech. Syst. Signal Process. 2021, 150, 107238.
[CrossRef]

https://coin-or.github.io/Ipopt/
http://doi.org/10.1109/3477.499795
http://www.ncbi.nlm.nih.gov/pubmed/18263046
http://doi.org/10.7763/IJMLC.2012.V2.95
http://doi.org/10.1109/TITS.2008.922980
http://doi.org/10.1177/027836499101000604
http://doi.org/10.1287/opre.12.4.568
http://doi.org/10.3390/machines9040082
http://doi.org/10.1109/access.2021.3110435
http://doi.org/10.3390/app10010230
http://doi.org/10.1177/1077546316646906
http://doi.org/10.1016/j.conengprac.2020.104654
http://doi.org/10.1016/j.ymssp.2020.107238


Electronics 2021, 10, 2447 18 of 18

21. Farag, W. Complex-Track Following in Real-Time Using Model-Based Predictive Control. Int. J. Intell. Transp. Syst. Res. 2021, 19,
112–127. [CrossRef]

22. Zhang, R.; Rossi, F.; Pavone, M. Model predictive control of autonomous mobility-on-demand systems. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; Institute of Electrical
and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 1382–1389.

23. Vougioukas, S.G. Reactive Trajectory Tracking for Mobile Robots based on Non Linear Model Predictive Control. In Proceedings
of the Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2007; pp. 3074–3079.

24. Falcone, P.; Borrelli, F.; Tseng, H.E.; Asgari, J.; Hrovat, D. Linear time-varying model predictive control and its application to active
steering systems: Stability analysis and experimental validation. Int. J. Robust Nonlinear Control 2008, 18, 862–875. [CrossRef]

25. Kurzer, K. Path Planning in Unstructured Environments: A Real-Time Hybrid A* Implementation for Fast and Deterministic Path
Generation for the KTH Research Concept Vehicle. Master’s Thesis, Integrated Transport Research Lab., Karlsruhe Institute of
Technology, Baden-Wuerttemberg, Germany, 2016.

26. Reeds, J.; Shepp, L. Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 1990, 145, 367–393. [CrossRef]
27. Wächter, A.; Biegler, L.T. On the implementation of a primal-dual interior point filter line search algorithm for large-scale

nonlinear programming. Math. Program. 2006, 106, 25–57. [CrossRef]

http://doi.org/10.1007/s13177-020-00226-1
http://doi.org/10.1002/rnc.1245
http://doi.org/10.2140/pjm.1990.145.367
http://doi.org/10.1007/s10107-004-0559-y

	Introduction 
	Vehicle Model 
	Kinematic Model 
	Dynamic Model 

	Hybrid A-Star Algorithm 
	Model Predictive Control 
	Vehicle States Prediction Model 
	Cost Function and Constraints 

	Experiments and Results 
	Self-driving Performance 
	Double Lane Change (DLC) 
	Energy Efficiency Simulation 
	Integral Test of Path Planning and Auto-Parking 

	Conclusions 
	References

