# Formulation and Analysis of Single Switch High Gain Hybrid DC to DC Converter for High Power Applications

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design of Proposed System

#### 2.1. Design of PV Array

_{sc}− I

_{d}

_{sc}—Short circuit current

_{d}—Current across the diode

#### 2.2. Proposed Converter

**Mode 1 (t**

_{0}− t_{1})_{0}).

**Mode 2 (t**

_{1}− t_{2})_{1}is turned on at zero voltage during t = t

_{1}.Thus, the current across i

_{lm}is given as

_{1}ON the current induced on the secondary side of the coupled inductor starts charging the switching capacitor (C

_{1}and C

_{2}).

_{l2}, charges C

_{3}and C

_{4}.

_{l2}is negative and hence its magnitude starts decaying.

**Mode 3 (t**

_{2}− t_{3})_{l2}reaches zero. Hence, the change of the direction in i

_{l2}, makes the C

_{1}and C

_{2}discharge their charges to C

_{3}. Thus, current across the inductor i

_{m}during this interval is depicted as

**Mode 4 (t**

_{3}− t_{4})_{3}, S

_{1}is turned off. The current across i

_{m}charges Vc4.

_{c4}is smaller than V

_{o}, the voltage stress over S

_{1}is comparatively low. Hence, the additional clamp circuit is not required.

**Mode 5 (t**

_{4}− t_{5})_{l2}gets reversed and current across the inductor i

_{m}is about

**Mode 6 (t**

_{5}− t_{6})_{5}, the current across the inductor remains the same as the previous mode.

_{o}) of this converter can be calculated as

_{m}and L

_{2}) in modes 3 and 6, the relationship between V

_{1}, V

_{O}, V

_{C}, V

_{C}

_{3}and V

_{C}

_{4}can be derived as,

_{m1}and L

_{m2}), the voltage gain of the converter can be varied.

**Analysis of Ripple Minimization**

**Analysis of switching loss**

#### 2.3. Design of Controllers

#### FOPID Controller

^{λ}D

^{µ}is given in the equation as,

_{p}, K

_{i}and K

_{d}, respectively.

## 3. Simulation Results and Discussion

**Performance of the proposed system with PV under open loop control**

**Performance of Proposed Converter**

**Closed loop analysis**

**Hardware analysis**

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Proposed Converter

Parameters | Values |

fsw | 20 kHz |

C | 500 mF |

C1, C2 | 36 mF |

C3, C4 | 57 μF |

Lm | 617 mH |

Lk2 | 17.1 μH |

## References

- Park, K.B.; Moon, G.W. Non isolated high step-up stacked converter based on boost-integrated isolated converter. IEEE Trans. Power Electron.
**2011**, 26, 577–587. [Google Scholar] [CrossRef] - Liu, H.; Ji, Y.; Wang, L.; Wheele, P. A family of improved magnetically coupled impedance network Boost DC-DC converters. IEEE Trans. Power Electron
**2018**, 33, 3697–3702. [Google Scholar] [CrossRef] - Hwu, K.I.; Peng, T.J. A novel buck-boost converter combining KY and buck converters. IEEE Trans. Power Electron.
**2012**, 27, 2236–2241. [Google Scholar] [CrossRef] - Lu, Y.; Wu, H.; Sun, K.; Xing, Y. A family of isolated buck-boost converters based on semi active rectifiers for high-output voltage applications. IEEE Trans. Power Electron.
**2016**, 31, 6327–6340. [Google Scholar] [CrossRef] - Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Phattanasak, M.; Huangfu, Y.; Luo, G.; Gao, F. Interconnection and damping assignment passivity-based control applied to on-board DC-DC power converter system supplying constant power load. IEEE Trans. Ind. Appl.
**2019**, 55, 6476–6485. [Google Scholar] [CrossRef] - Moon, B.; Jung, H.Y.; Kim, S.H.; Lee, S.H. A modified topology of two-switch buck-boost converter. IEEE Trans. Power Electron.
**2017**, 5, 17772–17780. [Google Scholar] [CrossRef] - Badawy, M.O.; Sozer, Y.; Abreu-Garcia, J.A.D. A novel control for a cascaded buck-boost PFC converter operating in discontinu- ous capacitor voltage mode. IEEE Trans. Ind. Electron.
**2016**, 63, 4198–4210. [Google Scholar] [CrossRef] - Park, K.B.; Moon, G.W.; Myung-Joon, Y. Non isolated high step-up boost converter integrated with Sepic converter. IEEE Trans. Power Electron.
**2010**, 25, 2266–2275. [Google Scholar] [CrossRef] - Yang, J.W.; Do, H.L. Bridgeless SEPIC converter with a ripple-free input current. IEEE Trans. Power Electron.
**2013**, 28, 3388–3394. [Google Scholar] [CrossRef] - Bianchin, C.G.; Gules, R.; Badin, A.A.; Romaneli, E.F.R. High-power-factor rectifier using the modified SEPIC converter operating in discontinuous conduction mode. IEEE Trans. Power Electron.
**2015**, 30, 4349–4364. [Google Scholar] [CrossRef] - Luo, F.L.; Ye, H. Super-lift boost converters. IET Power Electron.
**2014**, 7, 1655–1664. [Google Scholar] [CrossRef] - Berkovich, Y.; Axelrod, B.; Madar, R.; Twina, A. Improved Luo converter modifications with increasing voltage ratio. IET Power Electron.
**2015**, 8, 202–212. [Google Scholar] [CrossRef] - Shih, L.C.; Liu, Y.H.; Luo, Y.F. Adaptive DC-link voltage control of LLC resonant converter. Trans. Power Electron. Appl.
**2018**, 3, 187–196. [Google Scholar] [CrossRef] - Jiang, W.; Chincholkar, S.H.; Chan, C.Y. Improved output feedback controller design for the super-lift Re-lift Luo converter. IET Power Electron.
**2017**, 10, 1147–1155. [Google Scholar] [CrossRef] - Yang, H.T.; Chiang, H.W.; Chen, C.Y. Implementation of bridgeless Cuk power factor corrector with positive output voltage. IEEE Trans. Ind. Appl.
**2015**, 51, 3325–3333. [Google Scholar] [CrossRef] - Joseph, K.D.; Daniel, A.E.; Krishnan, A.U. Interleaved Cuk converter with improved transient performance and reduced current ripple. J. Eng.
**2017**, 7, 362–369. [Google Scholar] - Ferrera, M.B.; Litran, S.P.; Duran, E.; Andujar, J.M. A converter for bipolar DC link based on SEPIC Cuk converter. IEEE Trans. Power Electron.
**2015**, 30, 6483–6487. [Google Scholar] [CrossRef] - Gnanavadivel, J.; Yogalakshmi, P.; Kumar, N.S.; Veni, K.K. Design and development of single phase AC-DC discontinuous conduction mode modified bridgeless positive output Luo converter for power quality improvement. IET Power Electron.
**2019**, 12, 2722–2730. [Google Scholar] [CrossRef] - Muhammad, K.S.B.; Lu, D.D.C. ZCS bridgeless boost PFC rectifier using only two active switches. IEEE Trans. Ind. Electron.
**2015**, 62, 2795–2806. [Google Scholar] [CrossRef] - Singh, B.; Bist, V.; Chandra, A.C.; Al-Haddad, K. Power factor correction in bridgeless Luo converter-fed BLDC motor drive. IEEE Trans. Ind. Appl.
**2015**, 51, 1179–1188. [Google Scholar] [CrossRef] - Scognamillo, C.; Catalano, A.P.; Borghese, A.; Riccio, M.; d’Alessandro, V.; Breglio, G.; Irace, A.; Tripathi, R.N.; Castellazzi, A.; Codecasa, L. Electrothermal modeling, simulation, and electromagnetic characterization of a 3.3 kV SiC MOSFET power module. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; pp. 123–126. [Google Scholar]
- Hussein, A.; Mouawad, B.; Castellazzi, A. Dynamic performance analysis of a 3.3 kV SiC MOSFET half-bridge module with parallel chips and body-diode freewheeling. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 13–17. [Google Scholar]
- Catalano, A.P.; Scognamillo, C.; d’Alessandro, V.; Castellazzi, A. Numerical simulation and analytical modeling of the thermal behavior of single-and double-sided cooled power modules. IEEE Trans. Compon. Packag. Manuf. Technol.
**2020**, 10, 1446–1453. [Google Scholar] [CrossRef] - Doss, M.A.N.; Theresa, A. Bidirectional AC/DC converter PWM strategy with forward control for grid tied microgrid systems. Int. J. Appl. Eng. Res.
**2015**, 44, 30768–30773. [Google Scholar] - Doss, M.A.N.; Naveenkumar, R.; Ravichandran, R.; Rengaraj, J.; Manikandan, M. PV fed asymmetrical switched diode multi level inverter with minimum number of power electronic components. Energy Procedia
**2017**, 117, 592–599. [Google Scholar] [CrossRef] - Doss, M.A.N.; Christy, A. Modified hybrid multilevel inverter with reduced number of switches for PV application with smart iot system. Springer J. Ambient. Intell. Humaniz. Comput.
**2018**, 1–13. [Google Scholar] [CrossRef] - Doss, M.A.N.; Mohanraj, K.; Bhattacharjee, S.; Tiwari, M.; Vashishtha, D. Photovoltaic fed multilevel inverter using reverse voltage topology for standalone systems. Int. J. Power Electron. Drive Syst.
**2019**, 10, 1347–1354. [Google Scholar] [CrossRef] - Sathiya, R.; Doss, M.A.N.; Prasanthi, R.A. PV based DC to DC boost converter with RC snubber circuit. Solid State Technol.
**2020**, 63, 10438–10447. [Google Scholar]

**Figure 2.**(

**a**) Schematic diagram of proposed converter (

**b**) Steady state waveforms (

**c**) Mode 2 operation. (

**d**) Mode 3 operation. (

**e**) Mode 4 operation. (

**f**) Mode 5 operation.

**Figure 10.**(

**a**) Input voltage waveform of the proposed converter, (

**b**) output voltage waveform of the proposed converter, (

**c**) switching pulse to the switch S

_{1.}

Topology | Boost Converter | Proposed Converter |
---|---|---|

Voltage gain | $\frac{1}{1-D}$ | $\frac{2+n+nD}{1-D}$ |

No. of switches | 1 | 1 |

No. of diodes | 1 | 5 |

Voltage stress across the switch | ${V}_{o}$ | V_{C4} |

Diode voltage stress | ${V}_{o}$ | V_{c3}, V_{c4} |

Switching condition | Hard switching | ZVS |

Coupled inductor utilization | - | Yes |

Converters | Voltage Gain |
---|---|

Chen et al. (2015) | $\frac{n+2-D}{1-D}$ |

Luo converter | $\frac{2-D}{1-D}$ |

Proposed converter | $\frac{2+n+nD}{1-D}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ranganathan, S.; Mohan, A.N.D.
Formulation and Analysis of Single Switch High Gain Hybrid DC to DC Converter for High Power Applications. *Electronics* **2021**, *10*, 2445.
https://doi.org/10.3390/electronics10192445

**AMA Style**

Ranganathan S, Mohan AND.
Formulation and Analysis of Single Switch High Gain Hybrid DC to DC Converter for High Power Applications. *Electronics*. 2021; 10(19):2445.
https://doi.org/10.3390/electronics10192445

**Chicago/Turabian Style**

Ranganathan, Sathiya, and Arun Noyal Doss Mohan.
2021. "Formulation and Analysis of Single Switch High Gain Hybrid DC to DC Converter for High Power Applications" *Electronics* 10, no. 19: 2445.
https://doi.org/10.3390/electronics10192445