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Abstract: With the evolution of Internet technology, social networking sites have gained a lot of
popularity. People make new friends, share their interests, experiences in life, etc. With these activities
on social sites, people generate a vast amount of data that is analyzed by third parties for various
purposes. As such, publishing social data without protecting an individual’s private or confidential
information can be dangerous. To provide privacy protection, this paper proposes a new degree
anonymization approach k-NDDP, which extends the concept of k-anonymity and differential privacy
based on Node DP for vertex degrees. In particular, this paper considers identity disclosures on
social data. If the adversary efficiently obtains background knowledge about the victim’s degree and
neighbor connections, it can re-identify its victim from the social data even if the user’s identity is
removed. The contribution of this paper is twofold. First, a simple and, at the same time, effective
method k–NDDP is proposed. The method is the extension of k-NMF, i.e., the state-of-the-art method
to protect against mutual friend attack, to defend against identity disclosures by adding noise to the
social data. Second, the achieved privacy using the concept of differential privacy is evaluated. An
extensive empirical study shows that for different values of k, the divergence produced by k-NDDP
for CC, BW and APL is not more than 0.8%, also added dummy links are 60% less, as compared to
k-NMF approach, thereby it validates that the proposed k-NDDP approach provides strong privacy
while maintaining the usefulness of data.

Keywords: degree anonymity; k-anonymity; mutual friend attack; k-NMF; differential privacy

1. Introduction

Social networking sites have gained popularity due to the advanced features they
provide to the users. Because of this popularity, people use social sites to connect with their
friends and family, share their interests, and establish connections. The information about
the user’s interest and the connection is publicly available to everyone, although a user can
change their privacy settings and set the differential access to their private information [1].
By using the social networking sites, a user generates a massive amount of data daily.
Social network service providers collect and maintain this generated data. Generated data
is being published by network providers for research purposes which is useful in domains
like marketing and survey, as shown in Figure 1. While making data publicly available,
protection of the sensitive information becomes of the prime concern. In particular, social
data contains a lot of important information, such as user contact details that must not be
disclosed. Social data is typically published in the form of social graphs where each vertex
is a representation of an individual and their links represent their connections. The problem
with such types of data publishing is that the adversary easily gets the victim’s connection
information (background knowledge) from their social media account and uses it to identify
its victim on a published graph [2]. If the adversary successfully identifies its victim from a

Electronics 2021, 10, 2440. https://doi.org/10.3390/electronics10192440 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5083-0019
https://doi.org/10.3390/electronics10192440
https://doi.org/10.3390/electronics10192440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192440
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192440?type=check_update&version=1


Electronics 2021, 10, 2440 2 of 18

social graph, we say privacy is breached. A privacy violation [3] is an action that exposes
private or confidential information about an individual to the adversary. One common
approach to provide defense against privacy breaches is simply removing user identities
from a published graph [4]. However, this solution is not always appropriate due to the
availability of useful information on different social sites. Adversaries intelligently apply
different queries to get background knowledge about a user, such as number of connections,
mutual connections, and connections among connections, etc.

Figure 1. Social networks data publishing scenario.

For privacy preservation, the social graph should be anonymized before releasing it
for research purposes. For privacy persevered data publishing, many models are proposed
for relational and social datasets.

1.1. Motivational Example

With the background knowledge, the adversary tries to obtain sensitive information
about the victim using a published dataset [5]. Based on this background information, the
adversary performs three different types of attacks on a published data. These attacks
are categorized as identity disclosure, sensitive attribute disclosure, and sensitive link
disclosure. Identity disclosure [6] is a type of breach that occurs when an adversary
reveals the individual behind the record. Sensitive attribute disclosure collects sensitive
or confidential details about the individual [7]. Correlation between different sensitive
attributes might cause identity disclosure. Sensitive link disclosure discovers the relation
between two individuals. It causes a mutual friend attack [8]. Among all of these privacy
issues, identity disclosure is most of concern.

To elaborate accurately, consider the example of a graph shown in Figure 2, where
each vertex represents a person and their links represent their connections. Suppose
Figure 2b is the published graph. It is being published after applying sufficient privacy by
anonymizing its vertices. Before initiating any attack, the adversary collects background
knowledge about its victim. Now, presume that adversary obtains information about
its victim’s neighbor connections (Degree of a vertex) and connection among neighbors
(neighbor mutual connections). Once the adversary effectively obtains such information, it
discerns the position of its victim from the graph structure because of uniqueness, and it
can certainly identify the individual.
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Figure 2. Social graphs: (a) Original graph, (b) naïve anonymized graph.

Suppose the adversary knows Bob has five friends (Alice, Fara, Cece, Kate, and Nena)
and some of them know each other; say Fara and Kate and Emily and Alice are friends.
Figure 3a shows the neighborhood graph of Bob. Unfortunately, Bob can be recognized
from the published social network graph, as no other vertex has the same graph structure as
Bob, which causes identity disclosure. Similarly, an adversary can identify any individual
whose neighborhood graph is available to it. If the adversary identifies both Alice and Bob
from the graph, it might perceive that both are friends and they share the same mutual
friends, which causes sensitive link disclosure. To provide defense against such intrusions,
inserting dummy links in a graph is one possible and highly accepted solution. So, the
probability to identify a user from an anonymous social graph is less or equal to 1/k.
This concept is proposed by L.Sweeney, called k-anonymity [9,10]. Which guarantees
anonymization of individuals on published datasets [3].

Figure 3. Neighborhood graphs in a social network: (a) Graph for Bob, (b) graph for Alice.

1.2. Challenges

Privacy preservation is widely considered an important topic for data publishing,
and many models are proposed as well as many effective algorithms. However, these
methods cannot be directly applied to social graphs as they are ideally proposed for
relational datasets and graph anonymization is more complicated than relational data [6].
The reasons are listed below:

• To breach an individual’s privacy, the adversary uses a variety of background knowl-
edge. Modeling their background knowledge, capabilities, and types of attacks it
might perform on released social data is a complicated task [11]. The reason is that
every bit of detail on graphs can be used to perform any attack, such as the label
of vertices, no links, etc. Thus, it is very difficult and complicated to find a suitable
privacy model for social networks.

• The relational data contains the list of tuples where each tuple is independent of others.
Applying any anonymization method on the set of rows does not influence other rows
in the relational datasets [12]. The social graph is a correlation of vertices and links,
any change can affect the whole graph structure. So, it is much more challenging
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to choose an appropriate graph anonymization method and maintain the balance
between privacy and utility [13].

• The third issue is related to data utility. Anonymization of graphs is much more
different and complicated than relational datasets. Data loss is evaluated using tuples
in relational datasets, whereas in social graphs it is rather different. The reason is that
social data is a combination of vertices and links. Unlike relational datasets, we cannot
correlate social graphs even if they have the same numbers of vertices and links [14].
Every graph is different in terms of APL, CC, and BW.

1.3. Contribution and Organization

Social network data publishing while maintaining privacy and utility is a challenge
that cannot be solved in one shot. In this paper, the concept of k-NDDP is presented, which
provides defense from identity disclosure that intrudes privacy of individual by discerning
its position on social graph. The key contributions of this paper are following:

• It proposes the concept of k–NDDP(k-Node Degree Differential Privacy) which injects
noise for synthesizing the social graph and defends against identity disclosures.
Then design and implementation of k-NDDP algorithm is done where the degrees
are partitioned into k-anonymized groups such that degree anonymization cost is
minimized and the whole social graph is reconstructed using anonymous degree
sequences. The anonymized graph protects the vertices and their associated links.

• For privacy analysis, it uses the concept of differential privacy to analyze the k-NDDP
in terms of privacy preservation. Furthermore, evaluates the efficiency of k-NDDP on
three real-life datasets. Empirical study indicates that proposed method outputs the
graph which correctly preserves the structural properties of the original graph also
provides strong privacy.

The organization of the paper is as follows. Existing possible methods for social graph
anonymization are described in Section 2. The practical solution of a degree anonymization
method is described in Sections 3 and 4, respectively. The proposed method is examined
empirically using real data-sets in Section 5. Finally, Section 6 concludes this research.

2. Related Work

Social networking sites provide many attractive features to their users. People use
these social sites for different purposes including sharing their data publicly with friends.
Generated social data has huge commercial value as well as also containing sensitive
information that needs to be protected. Social data should be properly anonymized
to maintain the user’s data privacy before publishing. The adversary uses a range of
background information about the target individual to infer its private information [15].
Background knowledge is referred to as information an adversary uses to perform any
attack on a published dataset [16]. Many privacy-preserving techniques are introduced for
social data publishing. These techniques are categorized as Graph Modification, Clustering,
and Differential Privacy based techniques, which are shown in Figure 4. The main objective
of privacy-preserving techniques is to conceal confidential details of individuals in the
published dataset while maintaining its usefulness [17].
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Figure 4. Anonymization techniques for social networks data publishing.

2.1. Graph Modification Techniques

These methods anonymize the social network by modifying its vertices or links. Graph
Modification Method is further categorized as randomization and non-randomization
method. In the randomization method, the whole graph is anonymized randomly by
inserting noise. This technique removes identifiable information of individuals by inserting
or deleting links or vertices [18]. This addition or deletion is made randomly, thus this tech-
nique is called randomization or random perturbation. To change network structure, two
basic link modification techniques are proposed. Rand add/del: this technique randomly
inserts one link and deletes another link from the graph and thus preserves the total no
of links [19,20]. Rand switch: this technique selects two links randomly and makes new
connections by exchanging their vertices [21]. New connections do not exist in the original
graph. Non-randomization techniques require the addition or deletion of links/vertices to
meet some desired conditions [22]. Recent studies on non-randomization techniques prove
that they accomplish a significant level of anonymization while maintaining the original
structure of a graph [23]. Some famous non-randomization techniques are listed below in
Table 1:

• k-anonymization: k-anonymization method modifies the original graph by insert-
ing/deleting links or vertices to obtain certain requirement [24]. If an adversary has
background knowledge of degrees and relationship details about its victim, it tries
to re-identify the victim from the anonymized graph. Different k-anonymity based
anonymization methods differ by the type of adversary’s background knowledge.

• k-degree anonymity: Degree-based anonymization methods provide prevention from
attacks when the adversary uses degree information about the target as background
knowledge to identify its victim from a naive anonymized graph. k-degree anonymity
transforms the original graph into the new modified version by only adding vertices
or links or both [25]. The main objective is to insert the minimum number of vertices
or links to maintain the characteristics of the original graph. Ref. [26] proposed k-
degree-based method, using a dynamic anonymization process. The method in [27]
modifies the original graph into k-degree-based anonymized graph by adding fake
vertices rather than new links.
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• k-neighborhood anonymity: The adversary uses background knowledge of its victim’s
degree and neighbor connections to perform neighborhood attack and k-neighborhood
anonymity is used to provide the defense [28]. Ref. [29] proposed an algorithm
to provide defense from neighborhood attacks by inserting links or vertices in the
original graph until there are k vertices and their subgraphs becomes isomorphic.
Ref. [30] identified an attack called mutual friend attack that occurs due to disclosure
of sensitive link between two vertices. Ref. [31] proposed an algorithm (k-NMF) that
adds extra links into the original graph and ensures that there must be at least k− 1
other links with the same number of mutual friends.

• k-automorphism: The adversary uses background knowledge of a subgraph to identify
the target from a published graph [32]. Ref. [33] proposed a method to prevent
subgraph-based privacy attacks. In Ref. [34], the method modifies the original graph
by providing k identical subgraphs where every vertex is automorphic with other
k− 1 vertices. k-automorphism provides strong security against structural subgraph
attacks [35].

Table 1. Graph anonymization techniques.

Ref. No. Technique Anonymization Strategy Advantages Limitations

[24] k-anonymization Add or deletes links/vertices Protects link identity High algorithm
complexity

[19] Rand add/del Randomly adds or deletes
links/vertices

Maintain the actual
number of links

Not considered any
adversarial attack

[36] Vertex Clustering Vertex clustering
Allow structural
queries from
different domains

Difficult to analyze
local structural details
in the graph

[4] Edge Clustering Vertex generalization Balances utility
and privacy

Execution time
increases with
generalization

[37] Edge Differential
Privacy Link addition or deletion Protect relation

between two vertices
Susceptible to vertex
identification

[38] Node Differential
Privacy Vertex modification Protect vertex and

adjacent links N/A

[25] k-degree anonymity Addition of fake links/vertices

Conserve much of the
characteristics of the
graph. Prevent vertex
identification problem

Unsecured neighbor
connections

[31] k-NMF Fake links addition Protect sensitive links
between vertices

Unsecured neighbor
connections and
Increased runtime

[34] k-automorphism Vertex modification
Strong security against
structural
subgraph attacks

Susceptible to
identity disclosure

[21] Rand switch Switch old links with new links
Preserve spectral
characteristics of
the graph

Not considered any
adversarial attack

[29] k-neighborhood
anonymity Fake vertices and links addition Re-identification attack

protection
Utility loss
(extreme change)

2.2. Generalization Techniques

This technique is also called the clustering-based approach. The main theme of gener-
alization techniques is to group the vertices or links into a cluster and then form a super
vertex [23]. Each super vertex contains merged details of the sub-network. This approach
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makes it difficult to analyze the local structural information of the graph. Ref. [36] pro-
posed an approach for grouping the vertices with similar structural properties, where no of
vertices in each cluster must be ≥ k. Ref. [4] proposed vertex generalization method where
vertices of the graph are grouped as disjoint sets. This approach maximizes data utility.

2.3. DP Based Techniques

Background knowledge is not considered in Differential Privacy [39–42]. As it pro-
vides the guarantee that the adversary will not be able to determine any sensitive infor-
mation about its victim. Differential privacy is interactive and non-interactive. Both ways
protect user’s private information by adding noise on either query results or in actual data.
The common method for noise addition is Laplace distribution [43]. Differential privacy
works on two different datasets, say G1 and G2 both differing on at most one vertex/link.
A basic definition of differential privacy says that the probability of output O by applying
function Al on G1 is at most the same as the probability of output O by applying function
Al on G2 even when both datasets differ by one element.

Pr[Al(G1) = O] ≤ eε × Pr[Al(G2) = O]

Parameter ε should be chosen carefully, as it controls privacy and utility trade-off.
The lesser the value of ε, the more privacy is achieved with lower accuracy, and vice versa [41].
Differential privacy is further categorized into two groups. Node and Edge DP.

• Node Differential Privacy: Node Differential Privacy protects a vertex and its associ-
ated links. In Node Differential Privacy, social graphs G1 and G2 (which are obtained
by adding or removing vertices and their associated links) are said to be vertex neigh-
bors of each other Ref. [44]. Different approaches are developed to realize vertex
differential privacy. Ref. [38] proposed many node differential privacy algorithms and
methods to analyze the accuracy of those algorithms. Ref. [45] proposed a new concept
to achieve vertex differential privacy and discussed some problems to accomplish it.

• Edge Differential Privacy: Edge Differential Privacy only protects connections be-
tween two vertices where two graphs G1 and G2 are link neighbors of each other.
Ref. [46] presented Edge Differential Privacy technique for general subgraphs. Ref. [37]
proposed an Edge DP for the case of spanning trees and triangle problems in a graph.

The main objective of this paper is to publish an anonymized social graph and pro-
tect individuals from identity disclosures. As the adversary uses degree and neighbor
connections information about the target to discern the position of its victim, both need
to be protected or anonymized. To achieve this goal, this paper proposes the approach
k–NDDP, which is the extension of k-NMF [31]. The proposed technique inserts the min-
imum number of dummy links into the original graph before publishing and defends
against identity disclosures.

3. Preliminaries

Our social network graph is an undirected graph G = (V, L), where V represents the
set of (v1, v2, . . . ) and L represents the set of links between the vertices.

3.1. Degree Sequence Partitioning (DSeq)

A social graph, consisting of multiple vertices and links G = (V, L), where vertices
are defined as V = (v1, v2, . . . , vn) and L is the link between them. DSeq is a vector that
contains the degree of all vertices in descending order.

3.2. Degree Anonymization

Given the DSeq of original graph G = (V, L), and anonymization parameter k, con-
struct k-anonymous DSeqa such that degree anonymization cost is minimized.
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3.3. Graph Reconstruction

Given k-anonymous DSeqa, construct anonymized graph Ga(Va, La) such that
|La| ∩ |L| = |L| and graph anonymization cost is minimized.

3.4. Differential Privacy

A randomized algorithm Al satisfies DP for any given graph G1 and its neighboring
graph G2 for any possible output O for Al. Pr(.) is the probability of having the same output.
ε is the privacy budget that controls the Al. Pr[Al(G1) = O] ≤ eε × Pr[Al(G2) = O]

3.5. Node DP

A randomized algorithm Al satisfies DP for any given graph G1 = (V1, L1) and its
neighboring graph G2 = (V2, L2) where V2 = V1 – a and L2 = L1 – (v1, v2) where v1 = a
OR v2 = a for some a ∈ V1.

3.6. Identity Disclosure

For a social graph G = (V, L), it is defined as background knowledge about DoV
and neighbor mutual connections for vertex V. identity disclosure discerns the position of
vertex such that v ∈ Va from Ga.

3.7. Mutual Friend Attack

For a social graph G = (V, L), it is defined as background knowledge of common
connections between two vertices. Common connections between v1 and v2 are their
mutual friends.

3.8. k-NMF

For a social graph G = (V, L), it is defined as common neighbor vertices between two
end vertices. For privacy parameter k, there is at least k–1 number of other links that have
the same NMF value shown in Figure 5.

Figure 5. k-NMF anonymized graph.

4. The Proposed k-NDDP Approach

In this paper, a degree anonymization technique called k-NDDP is proposed for
undirected social graphs. The technique takes input as an original graph G(V, L) and
anonymization parameter k to generate anonymized graph Ga(Va, La). For graph modifi-
cation, it uses link insertion operation, which adds a minimum no of dummy links into
the original graph and minimizes anonymization cost, and preserves structural properties
between G and Ga. The technique consists of three steps and proceed as follows:

1. First, it creates the sequence partitioning (DSeq) of G in descending order and con-
structs new degree sequence partitioning (DSeqa) that is k-anonymous and such that
degree partitioning cost is minimized.

DAcost(DSeqa, DSeq) = Dis(DSeqa − DSeq)



Electronics 2021, 10, 2440 9 of 18

2. Given new degree sequence partitioning DSeqa, it constructs a new anonymized graph
Ga(Va, La) such that |La| ∩ |L| = |L| and graph anonymization cost is minimized.

Gcost = (Ga, G) = |La| − |L|

3. Lastly, it uses the concept of differential privacy to analyze the proposed approach in
terms of privacy protection.

4.1. Proposed Methodology

To prevent identification attacks, different privacy-preserving techniques for social
networks are proposed, but the concept of k-anonymity is widely accepted. This paper
proposes the concept of k-NDDP for degree anonymization of social graphs to provide
defense against identity disclosures. In the proposed solution, the concept of k-anonymity
is extended for vertex degree and it specifically prevents identification attack by adding
dummy links into the original graph. The proposed technique anonymizes the social
graph such that there must be at least k vertices with the same degree or graph topology
as the victim vertex. The first step is datasets cleaning. As undirected and unweighted
social graphs are used for the experiments, there is a possibility of incomplete vertices
available in the graphs, which are removed during the data cleaning process. The next
step is partitioning of degree sequence in descending order and anonymize the sequence
to reconstruct the graph. The proposed k-NDDP anonymization process for social data is
presented in Figure 6.

Figure 6. Overview of proposed k-NDDP approach.
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4.1.1. Degree Sequence Partitioning (DSeq)

The goal of this step is to find candidate vertices and their required number of links
for link insertion operation. Degrees of vertices are arranged in descending order and then
partitioned into different groups shown in Algorithm 1.

Algorithm 1: Degree sequence partitioning
1: DSeq = []
2: for each link(v1, v2) do
3: cnt = DSeq_val(v1, v2)
4: insert cnt in DSeq in descending order
5: end for
6: last_index = 0
7: for x = k to total_links− k do
8: C1 = DSeq [last_index]−DSeq [x]
9: C2 = 0

10: for y = x + 1 to 1 + k do
11: C1 = C1+DSeq [x + 1]−DSeq [x]
12: C2 = C2+DSeq [x]−DSeq [y− 1]
13: end for
14: if C2 < C1 then
15: last_index = x
16: x = x + k
17: else
18: x ++
19: end if
20: end for

For partitioning, the proposed solution uses the greedy algorithm, which first makes
the group of k-highest degree elements and then checks whether to merge the next (k+ 1)th
element into the existing group or start a new group from (k + 1)th element. This decision
depends on two different partitioning costs.

C1(Integration Cost) = [D(k + 1) + D(next k elements)]

C2(New Group) = [D(k elements)]

If C1 is greater than C2, a new group starts from (k + 1)th element. Furthermore,
if C1 is less than C2, (k + 1)th element is merged into the previous group and the new
group starts from (k + 2) element. This algorithm proceeds recursively for the sequence
D[K + 1, n] and terminates after considering all n vertices. For every i element of DSeq
of size n, the greedy algorithm checks other O(k) elements to decide whether to merge
the next element into the previous group or to start a new group. As there is n number of
elements (vertices), so the total running time of this algorithm is equal to O(nk).

4.1.2. Degree Anonymization and Graph Reconstruction

After degree sequence partitioning, the next step is to implement the conditionset
(degree, value) shown in Algorithm 2. All elements of the DSeq have an entry in the
conditionset(), which represents the degree of candidate vertices and their required links for
degree anonymization. Consider E is the element of a group that belongs to DSeq, and CD(E)
is the current degree of that element and TD is the target degree to be achieved (Degree of
the first element). For each non-zero value of all groups in DSeq, we compute [CD(E), TD −
CD(E)] and make an entry as (degree, value) pair in the condition set. After condition
set implementation, we select candidate vertices for link insertion operation. Candidate
selection is an iterative process. In the first iteration, the algorithm chooses the first pair
from conditionset(degree, value) and assigns its degree to SN (starting node) and value to
RL(S) (required links). During the second iteration, the algorithm finds the pair which
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requires the same links as RL(S) such that RL(S) = RL(E). After successful pair selection,
the new (degree, value) pair is assigned to EN (ending node) and RL(E) (required links),
respectively. Once SN and EN are selected, the algorithm selects the optimal vertices
from the graph for new link insertion. In social graphs, there is a possibility of more
than one vertices having the same degrees. To select the optimal vertices for SN and EN ,
the algorithm runs in a BFS manner to preserve the topological characteristics of the graph
and only chooses those candidates that are already connected to TD. After successful
vertices selection, the link is inserted between SN and EN , this way single inserted link
fulfills the requirement of two vertices. New link insertion changes the degrees of candidate
vertices, thus conditionset(degree, value) and DSeq are updated accordingly. The algorithm
runs until every element in DSeq appears at least k times. After the anonymization process,
there might be a possibility for DSeq to contain an element E(DoV), which remains un-
anonymized even after the whole degree anonymization process. In such a scenario, E and
its associated links will be removed from DSeq. Link deletion depends on DSeq, and might
be performed only once.

Algorithm 2: Degree anonymization
1: DSeq implementation
2: while DSeq ! = empty do
3: compute CD(E), TD − CD(E) for each partition
4: create condition_set(degree,value)
5: key← CD(E)
6: value← TD − CD
7: end while
8: while condition_set ! = empty && (SN or EN = null) do
9: if SN = null then

10: choose first pair(degree,value)
11: SN ← key
12: RL(S) ← value
13: if SN = only link then
14: choose SN
15: else
16: choose random SN connected to TD
17: end if
18: else
19: choose pair(degree,value) with same RL(S)
20: EN ← key
21: RL(E) ← value
22: if EN = only link then
23: choose EN
24: else
25: choose random EN connected to TD
26: end if
27: end if
28: end while
29: insert link from SN to EN
30: update pair_list(key,value)
31: update DSeq

This algorithm takes the degree sequence, constructs an anonymized degree sequence,
and outputs the graph with exactly this sequence. It runs iteratively, on each iteration
it chooses one candidate vertex for link insertion. It also maintains the condition set for
candidate vertices and after every addition, this set is updated. For L links, the condition
set has O(L) entries. For choosing SN and EN from the condition set, it takes O(L|V)
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time as it computes required links for each vertex. So, total running time of a proposed
algorithm is O(L2|V).

4.1.3. Privacy Analysis

In this section, the paper focuses on the analysis of the proposed k-NDDP approach
in terms of privacy. The proposed approach modifies the original graph using the graph
modification technique. Furthermore, for an attacker to determine whether the dummy
links already exist or not in the original graph requires some confidence C.

A graph having |V| as the total no of available vertices. It contains at most |L f | links.
Average confidence of adversary for a link to existing in anonymized graph Ga will be
equal to the probability mentioned below, where pa and pd denotes added and deleted
links, respectively.

C =
|L f | − |L|(1− pd + pa)

|L f |

DP is used to measure privacy by comparing the original graph and the published
graph. Both neighboring graphs should have the following relationship for anonymization
algorithm Al to achieve DP.

Pr[Al(G1) = O] ≤ eε × Pr[Al(G2) = O]

This relationship suggests that the probability of a link to exist in GP is not greater
than the probability eε does not exist.

Theorem 1. For an attacker who holds the published graph, we assume that the probability of all
its links existed (or did not exist) in the original graph is not higher than eε times the probability of
all its links not existing (or existing) in the original graph. The value of ε is given by

ε = ln(
|L|.|L f |(1− pd + pa)

|L f |.|L| · pa
+
|L f | − |L|(1− pd + pa)

|L f |
×

(|L f | − |L|)(|L| · pd)

(|L|)(|L f | − |L| − |L| · pa)
)

Proof. Adversary chooses a pair of vertices (a, b). This vertex pair has a link in one of the
two neighboring graphs such that G1((a, b) ∈ L1) contains the link and G2((a, b) /∈ L2)
does not. After anonymization graphs are published, both publishing graphs Gp1 and
Gp2 should have same output. There are two cases for this vertex pair (a, b), which are
((a, b) ∈ Lp) and ((a, b) /∈ Lp) shown in Table 2. First, consider the case when both
published graphs contain a link between (a, b) such that O = (a, b) ∈ Lp

Pr[Al(G1) = O] = Pr[(a, b) ∈ Lp1|(a, b) ∈ L1] (1)

Pr[Al(G2) = O] = Pr[(a, b) ∈ Lp2|(a, b) /∈ L2] (2)

Simplifying Equations (1) and (2)

Pr[(a, b) ∈ Lp1|(a, b) ∈ L1] = Pr(
[(a, b) ∈ Lp1 ∩ (a, b) ∈ L1]

Pr[(a, b) ∈ L1]
) =
|L|(1− pd)

|L|

Pr[(a, b) ∈ Lp2|(a, b) /∈ L2] = Pr(
[(a, b) ∈ Lp2 ∩ (a, b) /∈ L2]

Pr[(a, b) /∈ L2]
) =

|L| · pa

|L f | − |L|

ε1 =
Pr[Al(G1) = O]

Pr[Al(G2) = O]
=

(|L f | − |L|)(1− |L| · pa)

|L| · pa
(3)
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Now, consider the second case when both published graphs do not contain a link
between O = (a, b) /∈ Lp. Similarly, by simplifying Equation (1) and (2)

Pr[Al(G1) = O] = Pr[(a, b) /∈ Lp1|(a, b) ∈ L1] =
|L| · pd
|L|

Pr[Al(G2) = O] = Pr[(a, b) /∈ Lp2|(a, b) /∈ L2] =
|L f | − |L| − |L| · pa

|L f | − |L|

ε2 =
(|L f | − |L|)(|L| · pd

(|L|)(|L f | − |L| − |L| · pa)
(4)

From the probabilities of first and second case shown in Equation (3) and (4), respec-
tively, the average privacy of ε is achieved

ε =
(|L|(1− pd + pa)

|L f |
ε1 +

|L f | − |L|(1− pd + pa)

|L f |
ε2

Hence, it is proved.

ε = ln(
|L| · |L f |(1− pd + pa)

|L f |.|L| · pa
+
|L f | − |L|(1− pd + pa)

|L f |
×

(|L f | − |L|)(|L| · pd)

(|L|)(|L f | − |L| − |L| · pa)
)

Table 2. Links and non-links in G and Gp.

Links in G Non-Links in G Sum

Links in Gp |L|(1− pd) |L| · pa |L|(1− pd + pa)
Non-Links in Gp |L| · pd |L f | − |L| − |L| · pa |L f | − |L|(1− pd + pa)
Sum |L| |L f | − |L| |L f |

5. Experiments

This section assess the working of k-NDDP algorithm on three real datasets to evaluate
its privacy and utility. The utility is evaluated by the topological characteristics of the graph.

5.1. Datasets

To evaluate the utility of the proposed k-NDDP approach three real-world datasets
are utilized. These datasets are undirected social graphs having one link between two
vertices. Links on these social graphs represent friendships or neighbor connections of a
vertex (user). Datasets are available on two different repositories [47,48]. SOCFB-USFCA72
is a social network dataset available at [49]. It is a Facebook extracted dataset containing
58,228 vertices and 214,078 connected links that represent the interaction between vertices.
FEATHER-DEEZER-SOCIAL [50] represents vertices as users from European countries
and links as mutual relationships between them. This dataset contains 28,281 vertices and
92,752 links. FEATHER-LASTFM-SOCIAL [50] is a social network dataset that represents
vertices as users from Asian countries and links as relationships between them. It consists
of 7624 vertices and 27,806 links.

5.2. Evaluation Metrics

The original social graph G = (V, L) is converted into anonymized graph Ga =
(Va, La) by applying the proposed degree anonymization scheme. To evaluate the effective-
ness of the published graph, structural properties of the graph are examined. Structural
properties of the graph include average shortest path length (APL) [51], clustering coeffi-
cient (CC) [52] and betweenness centrality (BW) [53].
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• Average shortest path length: APL measures the efficiency of information that trans-
port through the network. This concept calculates the mean path between two vertices,
which is the average shortest path length of those vertices. APL calculates the mean
path for all possible pairs of network vertices by using this formula.

APL =
1

p(p− 1) ∑
i 6=j

d(n1, n2)

• Clustering coefficient: CC is a measure of the degree of vertices that make closer
clusters with each other. This concept calculates the average clustering coefficient of
all available vertices, which depends on locality

Cn =
2Ln

kn(kn − 1)

The clustering coefficient for the whole graph is the average of the local values Cn.

C =
1
v

m

∑
n=1

Cn

• Betweenness centrality: BW is a measure of centrality of all vertices in the graph
based on their shortest paths. It calculates the shortest path from all vertices that pass
through one specific vertex. For vertex V, it is calculated using this formula.

Gn = ∑
a 6=n 6=b

σab(n)

σab

Matrices listed above are widely used to evaluate the performance of graph publishing
algorithms. The closer the value of the anonymized graph to the original graph, the more
utility is maintained.

5.3. Experimental Evaluation

The utility of the proposed k-NDDP anonymization approach is inspected through the
matrices listed above. The smaller difference between values of original data and achieved
results, the more utility method preserves. Figure 7 represents the results of first experiment
derived from different values of k for CC, APL and BW. For the first experiment, (FEATHER-
DEEZER-SOCIAL) dataset is utilized, which is an undirected social graph. Figure 7a shows
different values of CC for the original and anonymized graph. The constant line is the
representation of the original value. After anonymization, the value of CC increases
with increase of k, but the deviation between original and anonymized values is very
little. The reason for this increase is the proposed methodology. The approach determines
candidate vertices of link insertion, and a single inserted link fulfills the requirement of
two vertices. This process makes density between the vertices and increases the value
of CC. Figure 7b details the APL for the vertices of original and anonymized graphs.
The horizontal constant line represents the APL of the original graph for different values of
k. The value of APL, under the proposed k-NDDP approach, decreases with the increase of
privacy parameter k as algorithm preserves shortest path information. Figure 7c shows
the BW of the anonymized and original graph. The larger the value of BW, the more
vertices dominate the graph. This indicates that the vertices with high BW have more
control over the graph. After anonymization, the value of BW decreases, but the difference
between original and anonymized results is very small. The results of second experiment
for FEATHER-LASTFM-SOCIAL are shown on Table 3.
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Table 3. Properties of k-NDDP anonymized social network dataset (FEATHER-LASTFM-SOCIAL).

k APL CC BW

0 2.65 0.0040 0.015
5 2.64 0.0041 0.014
10 2.63 0.0043 0.013
15 2.62 0.0045 0.012
20 2.60 0.0048 0.011
25 2.60 0.0049 0.010

Figure 7. Comparison of k-NDDP with k-NMF(FEATHER-DEEZER-SOCIAL). (a) CC (b) APL (c) BW.

Now, for last experiment, SOCFB-USFCA72 dataset is utilized and its utility preser-
vation with k-NMF is evaluated. The difference in CC for both approaches is shown in
Figure 8a. After anonymization, the value of CC increases for both approaches. The origi-
nal value of CC is 0.0267, and k-NDDP obtains 0.0272, while k-NMF obtains 0.0275 average
value. Figure 8b represents the result of APL. For every value of k, k-NDDP preserves
shortest path information, thus the value of APL comparatively decreases more in this
approach. The actual value of APL for original dataset is 1.3715, after anonymization
k-NDDP and k-NMF achieves 1.3711 and 1.3709 average value, respectively. BFS traversal
for candidate vertex selection preserves the shortest path between two vertices and shows
similar performance as k-NMF in terms of betweenness centrality shown in Figure 8c,
as there is a negligible change between different values for k for both approaches (0.00056
and 0.00057). These results show that for different values of k, the divergence in CC, BW,
and APL is not more than 0.8%.

Figure 9 represents the running time comparison and change in edges for both ap-
proaches. Anonymization time of k-NDDP is less than k-NMF and inserted links are 60%
less, as compared to k-NMF approach. This experiment concludes that proposed approach
is better in terms of noise addition as it adds fewer dummy links to the graph and performs
well as compared to k-NMF. k-NMF takes O(L2, V2) time to execute the anonymization
algorithm, and the proposed approach takes a total O(L2, V) time to complete. Hence, it
concludes that k-NDDP is more suitable for adding a minimum number of links using
minimum steps with less time complexity. In this way, k-NDDP provides better privacy
protection from identity disclosures while maintaining utility.



Electronics 2021, 10, 2440 16 of 18

Figure 8. Comparison of k-NDDP with k-NMF(SOCFB-USFCA72). (a) CC; (b) APL; (c) BW.

Figure 9. Comparison of k-NDDP with k-NMF(SOCFB-USFCA72). (a) Time; (b) edge change.

6. Conclusions

This paper proposed a novel approach k-NDDP, which is the extension of k-NMF.
k-NDDP is a degree anonymization method that extends the concept of k-anonymity and
differential privacy based on Node DP for vertex degrees. The proposed approach pro-
vides a solution to the problem that reveals the individual behind any vertex of the social
graph and causes identity disclosure. To defend against identity disclosures, the suggested
method inserts the least number of dummy connections into the original graph while
preventing the adversary from identifying the vertices and preserving as much graph
information as possible. This scheme uses BFS traversal for candidate vertex selection
during the link addition process that helps to preserve the maximum structural properties
of the graph. The proposed approach implements a condition set with the key and value
arguments that accumulate the degree and required links for the vertices. A single inserted
link meets the requirements of other vertices during the anonymization process. The exper-
imental evaluations showed the effectiveness of the proposed model in terms of utility, and
privacy analysis proves that the suggested model is secure against identity disclosures.
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