
electronics

Article

Per-Core Power Modeling for Heterogenous SoCs

Ganapati Bhat 1,* , Sumit K. Mandal 2 , Sai T. Manchukonda 3, Sai V. Vadlamudi 3, Ayushi Agarwal 3, Jun Wang 4

and Umit Y. Ogras 2,*

����������
�������

Citation: Bhat, G.; Mandal, S.K.;

Manchukonda, S.T.; Vadlamudi, S.V.;

Agarwal, A.; Wang, J.; Ogras, U.Y.

Per-Core Power Modeling for

Heterogenous SoCs. Electronics 2021,

10, 2428. https://doi.org/10.3390/

electronics10192428

Academic Editor: Ahmed Abu-Siada

Received: 23 August 2021

Accepted: 1 October 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering and Computer Science, Washington State University,
Pullman, WA 99164, USA

2 Department of Electrical and Computer Engineering, University of Wisconsin–Madison,
Madison, WI 53706, USA; skmandal@wisc.edu

3 School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;
smanchuk@asu.edu (S.T.M.); skvadla1@asu.edu (S.V.V.); aagarw53@asu.edu (A.A.)

4 Futerwei Technologies, Santa Clara, CA 95050, USA; jwang@futurewei.com
* Correspondence: ganapati.bhat@wsu.edu (G.B.); uogras@wisc.edu (U.Y.O.); Tel.: +1-509-335-1674 (G.B.)

Abstract: State-of-the-art mobile platforms, such as smartphones and tablets, are powered by hetero-
geneous system-on-chips (SoCs). These SoCs are composed of many processing elements, including
multiple CPU core clusters (e.g., big.LITTLE cores), graphics processing units (GPUs), memory
controllers and other on-chip resources. On the one hand, mobile platforms need to provide a swift
response time for interactive apps and high throughput for graphics-oriented workloads; on the
other hand, the power consumption must be under tight control to prevent high skin temperatures
and energy consumption. Therefore, commercial systems feature a range of mechanisms for dynamic
power and temperature control. However, these techniques rely on simple indicators, such as core
utilization and total power consumption. System architects are typically limited to the total power
consumption, since multiple resources share the same power rail. More importantly, most of the
power rails are not exposed to the input/output pins. To address this challenge, this paper presents a
thorough methodology to model the power consumption of major resources in heterogeneous SoCs.
The proposed models utilize a wide range of performance counters to capture the workload dynamics
accurately. Experimental validation on a Nexus 6P phone, powered by an octa-core Snapdragon
810 SoC, showed that the proposed models can estimate the power consumption within a 10%
error margin.

Keywords: power modeling; heterogeneous system-on-chips; multiprocessors; dynamic power
management

1. Introduction

Mobile platforms have become ubiquitous due to their crucial role in enabling every-
day tasks, such as messaging, calling, gaming, navigation, and web browsing [1]. This
success is primarily due to heterogeneous SoCs, which provide competitive performance
in a mobile form factor [2,3]. Since the mobile form factor rules out active cooling and large
batteries, heterogeneous SoCs have low power consumption (<10 W) and high energy effi-
ciency [4–6]. These requirements are satisfied by integrating general-purpose CPUs, many
specialized processing elements (PEs), and a high-bandwidth interconnection network on
a single die. For example, graphics processing units (GPUs), display processing engines,
and audio processors, have become standard components of state-of-the-art SoCs [2,7–9].
Any specialized function, such as display rendering, is performed in the corresponding
PE, achieving higher performance and lower power consumption than a general-purpose
core. As a result, both the overall system energy efficiency and the power consumption are
improved significantly compared to a system that consists of only CPU cores.

Power consumption has been one of the primary design considerations for more
than a decade [10–12]. Hence, energy-efficient techniques have been widely studied to

Electronics 2021, 10, 2428. https://doi.org/10.3390/electronics10192428 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1085-2189
https://orcid.org/0000-0002-9294-1603
https://doi.org/10.3390/electronics10192428
https://doi.org/10.3390/electronics10192428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192428
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192428?type=check_update&version=2

Electronics 2021, 10, 2428 2 of 30

harness the processing power within available power and thermal budgets [13–18]. With
the proliferation of mobile devices, the criticality of energy efficiency is multiplied. On the
one hand, increasing the computational power, and sensing, storage, and communication
capabilities, opens up a wide range of power-hungry application domains; on the other
hand, battery life rises as one of the major concerns to end-users [19,20]. As a result, power
management techniques crafted specifically for smart mobile devices become necessary.
Although state-of-the-art SoCs have tens of PEs, only a few PEs need to be active in typical
use cases [7,21]. For instance, one CPU core and wireless modem are enough during texting
on a smartphone. Consequently, optimal energy efficiency in smart mobile devices can be
achieved only if the platform components are considered as a whole rather than treating
individual components in isolation [22]. Therefore, the power consumption of major PEs
should be modeled accurately. Then, dynamic thermal and power management (DTPM)
algorithms can utilize these models to control each PE more effectively [11,23–28].

The most power-hungry components of state-of-the-art heterogeneous SoCs change as
a function of the workload [1,29]. For example, big.LITTLE CPU cluster power consump-
tion dominates when running CPU-intensive applications, while GPU power consumption
becomes dominant during the playing of graphics-intensive games. In general, the dom-
inant sources of power consumption are the display, CPU clusters, and GPU. Therefore,
SoC manufacturers implement knobs to control the power states of these devices. For
example, the Nexus 6P phone with a Snapdragon 810 SoC [30], used in the experimental
evaluations, allows for control of the bandwidths of the CPU and GPU memory controllers
using OS drivers. Before making control decisions, the controller has to evaluate the effect
of the control decisions on the system. State-of-the-art power management techniques
can model and analyze CPU and GPU power [27,31–34]. In order to analyze the effect of
changing various control knobs, it is necessary to build the power models for the respective
components. Therefore, this paper models the power consumption of the following major
components of a mobile SoC: (1) the AMOLED display, (2) the big CPU cluster with four
ARM A57 cores, (3) the little CPU cluster with four ARM A53 cores, (4) the Adreno 430
GPU, (5) the CPU memory controller, and (6) the GPU memory controller. The proposed
models are straightforward to implement on a smartphone because they involve linear
equations that can be computed in constant time. The input features required for the
models are available in the Linux kernel through the performance monitoring unit. These
counters are read by the governors at runtime to estimate the power consumption and
make power management decisions. The models are validated by performing extensive
experiments on the Nexus 6P phone.

The novel contributions of this paper are:

• different components which contribute to the total power consumed by the Nexus 6P
phone are identified;

• each component of the power is accurately modeled through linear regression; and,
• obtained models are evaluated extensively to show the efficiency of the proposed

power modeling technique for the Nexus 6P phone.

The rest of this paper is organized as follows: Section 2 describes the proposed
modeling methodology and the tools used in this work, Section 3 presents the main results,
and Section 4 concludes the paper.

2. Materials and Methods
2.1. Overview of the Overall Modeling Methodology

The per-core power consumption modeling methodology adopted in this work is
shown in Figure 1. Since commercial phones do not provide access to individual power rails,
only the total power drawn by the phone can be measured. Therefore, a data acquisition
system (DAQ) was used to measure the total power, following the method described in
Section 2.2. Then, the power consumption of the individual components were modeled,
and subtracted from the total power one-by-one, as outlined in Figure 1.

Electronics 2021, 10, 2428 3 of 30

Figure 1. Overview of the power modeling.

The modeling process started with the display power consumption since it was easier
to isolate from the rest of the components (Section 3.1). After the model for the display
power was computed, it was subtracted from the total power consumption to obtain the
power consumption of the SoC and other parts in the system. The SoC power consumption
consists of the leakage and dynamic components of the PEs. In the power modeling
flow, the leakage power consumption was first modeled by running a light workload.
The dynamic activity was kept fixed and the experiments were repeated at different
temperatures. In this way, the model captures the dependence of leakage power on the
temperature. Then, the leakage power was subtracted from the SoC power consumption to
find the dynamic power consumption. Next, the frequency of the PEs was swept to collect
the power consumption, temperature, and a variety of hardware performance counters, at
each desired frequency. Finally, the dynamic power consumption of each PE was modeled
as a function of the frequency and performance counters. These steps are detailed for
the big core cluster, little core cluster, GPU, CPU memory controller, and GPU memory
controller in Section 3.2 through Section 3.6. The following subsection describes the tools
used in all the power modeling steps.

2.2. Tools Used in This Work

Nexus 6P phone (Huawei, Shenzhen, China): In this work, the power consumption of
the Snapdragon 810 SoC [30] was modeled. The SoC contains four A57 big cores and four
A53 little cores. The chipset also has an Adreno 430 GPU driving a 1440 × 2560 AMOLED
display. The Nexus 6P runs on an Android-7.1. Nougat with a Linux 3.10 kernel. The
Nexus 6P phone was chosen since it uses the Snapdragon 810 processor, and many new
smartphones use the same family processor with similar heterogeneity. Furthermore, the
software source code for the Nexus 6P is freely available, which makes it straightforward
to add instrumentation for performance counters.

To model the system’s power consumption, the total power consumption of the device
needs to be measured. To enable power consumption measurement, firstly, the internal
battery was disconnected without removing it from the phone. Then, an external power
supply was connected to the power supply terminal of the phone using a connector, similar
to the one used by the disconnected battery, as shown in Figure 2 and described next.

Electronics 2021, 10, 2428 4 of 30

Figure 2. Connection of external power supply to the phone.

NI PXIe-1071 data acquisition system: The National Instruments PXIe-1071 data acqui-
sition (DAQ) system was used to perform all the power consumption measurements. A
Labview interface was used to control the measurement of the power consumption from
the host system. The phone was connected to a power supply through a 0.01 Ω shunt
resistor. The DAQ measures the voltage across the shunt resistor at a sampling rate of
1 KHz. The measured voltage was used to calculate the current drawn by the phone. Then,
the current was multiplied by the supply voltage at the phone’s terminal to compute the
power consumption.

Instrumentation of performance data collection: The on-demand governor in the kernel
was instrumented to profile features such as the number of instructions, CPU utilization,
GPU utilization, the number of memory bytes used, the number of memory accesses,
and the number of L2 cache misses. The OS called the instrumented code periodically to
read these counters. The period was set to 50 ms using the sysfs interface to achieve high
granularity without any noticeable overhead. After instrumenting the kernel, the kernel
was re-built and flashed onto the phone. The Android system was not rebuilt since the files
in the Android system were not changed. Additionally, the SimplePerf [35] tool was used
to obtain CPU hardware performance counter information as follows:

$./simpleperf stat -a –csv -e instructions:u,cpu-cycles:u,cache-references:u,cache-misses:u,branch-
misses:u,raw-mem-access:u –interval 50 -o $filename (Command 1)

The first two arguments in command 1 ensure that it continuously gathers the perfor-
mance statistics for all CPUs. The –csv argument lets the tool know that the gathered data
is written into a readable csv file format. Then, the -e argument specifies the counters that
are to be profiled while the application is running. The –interval argument specifies the
interval at which the performance counters are collected.

2.3. Pre-Processing the Raw Power Consumption Measurements

Data collected from the NI-DAQ was subjected to several sources of noise. One of the
major contributors to noise is the main power line. The power line contributes noise at
60 Hz and its harmonics, since the electrical power supply frequency in the United States is
60 Hz. In order to mitigate this noise, the power line noise was filtered through a series of
five notch filters with center frequencies at 60 Hz, 120 Hz, 180 Hz, 240 Hz, and 300 Hz. Each
of these filters has a bandwidth of 4 Hz centered around the respective center frequency. A
bandwidth of 4 Hz was chosen since it is low enough to exclude some frequencies without
excluding other useful frequencies. Then, the low-frequency noise was removed using a
low pass filter with a cutoff frequency of 400 Hz. The cutoff frequency was 400 Hz as the
frequency of power consumption changes was expected to be lower than 400 Hz. This is
for the following reasons:

– Frequency and voltage management governors in smartphones, such as on-demand
and interactive, make frequency and voltage changes every 50 ms. This means that

Electronics 2021, 10, 2428 5 of 30

the change in power consumption due to voltage and frequency levels occurs at about
20 Hz.

– The frequency response in Figure 3a shows that the magnitude of higher frequencies
is much lower than the smaller frequencies. In fact, the box in Figure 3a shows that
the frequency response was concentrated between −50 Hz and 50 Hz.

Figure 3. (a) Frequency domain spectrum of the data before and after filtering. The black rectangle shows the major
component of the power. (b) Time domain representation of the raw power, filtered power, and de-spiked power.

Figure 3 shows a sample power consumption trace, profiled while running a graphics
benchmark on the GPU. Figure 3a plots the frequency domain spectrum of the trace before
and after filtering. It shows that the effect of high frequency noise and power line noise
were significantly reduced. Similarly, Figure 3b shows that, after applying the filter, the
time domain signal exhibited much lower variance in amplitude. However, the filtered
signal still had periodic spikes, which were typically caused by the background activity,
independent of the workload. A 10-point moving-average, despiking filter removed these
spikes, as shown in Figure 3b. In summary, filtering the power consumption traces enabled
effective attenuation of the noise in the power consumption traces.

3. Results
3.1. Display Power Model

The Nexus 6P phone uses an active-matrix organic light-emitting diode (AMOLED)
display with a resolution of 1440 × 2560. The display power consumption PDisplay depends
on the brightness setting and the pixel colors, red (R), green (G), and blue (B), on the current
scene. Since the display uses LED technology, each pixel can be controlled independently.
Therefore, the contribution of a color C is identified using the following equation:

Pr(C) =
∑X

i=1 ∑Y
j=1 Cij

X×Y× 255
, C ∈ {R, G, B} (1)

where 0 ≤ Cij ≤ 255 is the intensity of the color of interest in the ijth pixel, X is the number
of pixels in the horizontal direction, and Y is the number of pixels in the vertical direction.
Pr(C), C ∈ {R, G, B} is normalized with 255 to obtain a probability in the interval [0,1].
The display power is modeled as:

PDisplay = a0 + Br(a1Pr(R) + a2Pr(G) + a3Pr(B)) (2)

where a0, a1, a2, a3 are the unknown coefficients that need to be determined and Br is
the brightness of the display. The first coefficient represents a bias term while the other

Electronics 2021, 10, 2428 6 of 30

coefficients correspond to the respective colors. The dumpsys command in Android is used
to dump the screen and obtain the pixel values at runtime. Since the resolution of the
screen is large, the display is sub-sampled both temporally and spatially. Reading the
display data every second and every 200th pixel is the best trade-off between accuracy
and overhead. Figure 4 demonstrates the effect of brightness and color on the display
power while displaying a solid image of a single color. Power consumption increased with
brightness as expected. Also, it is interesting to note that different colored, red, green, and
blue pixels, did not consume the same amount of power. Blue pixels were more power-
hungry than the other two, as evident from Figure 4. With the help of these measurements,
the unknown coefficients in Equation (2) were obtained using the linear regression method.
Figure 5 shows the actual display power and the power predicted by the model for various
colors. The model predicted the power consumption of the display within 0.1 W of the
actual power consumption. The average error of the display power model when tested on
solid color images was 7.9 %.

Figure 4. Display power variation with brightness and color.

Figure 5. Comparison of actual and predicted display power for different colors.

The proposed model was further validated for the complex image shown in Figure 6.
To evaluate the accuracy of the display power model, the brightness of the display was
varied as shown in Figure 7. The error is lower in Figure 7 than Figure 5 because it shows
the error for test images. That is, the test image is a combination of multiple colors. Hence,
Figure 7 plots the weighted average of errors for each color where the weights correspond
to each color’s proportion in the image. Note that the learned model overestimated the
power consumption of the display with increasing brightness. For example, the error
increased from 10% to 17% when the display brightness increased from 0 to 150. Overall,
the predicted power consumption of the display was within 0.1 W of the actual power
consumption.

Electronics 2021, 10, 2428 7 of 30

Figure 6. The test image.

Figure 7. Comparison of actual and predicted display power for the test image.

3.2. Big Core CPU Cluster

The big core cluster consists of four ARM A57 cores. To ensure that the measured
power consisted of only the big core power, the little core cluster and the GPU were turned
off, while the display brightness was reduced to zero. Furthermore, the device was placed
in airplane mode to turn off the network and WiFi radios. The measured power can be
written as a sum of the big cluster leakage and dynamic power, as well as the power
consumption of other components not related to the SoC (Pother):

Ptotal = Pdyn
A57 + Pleak

A57 + Pother (3)

Ptotal = CdynV2 f + V

(
As

W
L

(
kT
q

)2
e

q(Vgs−Vth)
nkT + Igate

)
+ Pother (4)

where Cdyn is the switching capacitance, V is the operating voltage, f is the operating fre-
quency, As is a technology-dependent constant, L and W are the channel length and width,
respectively, k is Boltzmann’s constant, T is the temperature, q is the elementary charge,
Vgs is the gate-to-source voltage, Vth is the threshold voltage, n is the subthreshold swing
coefficient, and Igate is the gate leakage current. Pother denotes the power consumption of
all other components in the system.

Leakage power model: The leakage current in Equation (4) is simplified by consolidating
the technology-dependent parameters as:

Ptotal = CdynV2 f + V
(

c1T2e
C2
T + Igate

)
+ Pother (5)

where c1 and c2 denote the consolidated parameters for the leakage power. Since the leakage
power varies as a function of temperature, the power consumption at fixed temperatures
was profiled by changing the temperature from 40 ◦C to 60 ◦C in increments of 5 ◦C, using
a furnace. During these experiments, the phone stayed idle to ensure that the temperature

Electronics 2021, 10, 2428 8 of 30

did not increase due to the dynamic power. Power consumption was measured for 20 s at
each temperature while keeping the phone idle. Figure 8 shows the variation in the power
consumption, as the temperature was increased, for three different core configurations. The
data obtained from this experiment was used to estimate the leakage power parameters c1,
c2, and Igate. In addition to the leakage power parameters, the average dynamic power and
Pother components were estimated using the non-linear curve fitting tool. After finding the
unknown parameters, the power consumption was found using Equation (5) as a function
of the temperature.

Figure 8. Power estimation when total power is dominated by leakage of A57 cores.

The red curves in Figure 8 show the results of the estimation using the model. The
proposed model was able to closely follow the measured power consumption. The mean
squared error for all the three core configurations was less than 0.020 W. These values were
small compared to the actual power values which are in the order of one watt. In summary,
the non-linear regression methodology can estimate the leakage power of the A57 cluster
with high accuracy.

Dynamic power model: As the first step to model the dynamic power consumption, the
leakage power estimate was substituted for the leakage power in Equation (5). Likewise, the
Pother component estimated in the leakage power characterization is used in Equation (5).
As a result, the dynamic power of the big core cluster is given as:

Pdyn
A57 = Ptotal − Pleak

A57 − Pother (6)

where the dynamic power component can be further written as

Pdyn
A57 = CdynV2 f (7)

The dynamic capacitance Cdyn is modeled as a function of the hardware performance
counters obtained at runtime. For the big core cluster, the model uses the hardware
counters listed in Table 1. The counters include five hardware performance counters and
four utilizations. Thus, Cdyn is modeled as:

Cdyn =
N

∑
i=1

AiXi 1 ≤ i ≤ N (8)

where Xi (1 ≤ i ≤ 9) are the features and Ai (1 ≤ i ≤ 9) are the coefficients corresponding
to each feature. Least squares regression using this model finds the coefficients that fit the
performance counter data to the reference dynamic capacitance.

Electronics 2021, 10, 2428 9 of 30

Table 1. CPU feature selection table.

Feature Id Performance Counters Feature Id Performance Counters

1 Aggregated Normalized
Instructions 6 Max Utilization—U1

2 CPU Cycles per Instruction 7 2nd highest Utilization—U2
3 L2 References per Instruction 8 3rd highest Utilization—U3
4 L2 Misses per Instruction 9 4th highest Utilization—U4
5 Branch misses per Instruction

Using all the nine performance counters may not give the best fit measured by mean
absolute percentage error (MAPE). Therefore, “subset feature selection” was performed
to find the best set of features. Specifically, subset feature selection takes all possible
combinations of the features and trains a model with each subset of features. A 5-fold
cross-validation during training ensures that the models are robust. After obtaining the
models with each subset of features, the error in Cdyn−error is expressed as:

Cdyn−error = Cdyn−re f erence − Cdyn−estimated (9)

where Cdyn−reference is the reference dynamic capacitance and Cdyn−estimated is the estimate
obtained using the model. Using this error, the mean square error (MSE) and mean absolute
percentage error (MAPE) is:

MAPECdyn = 100×mean

(∣∣∣∣∣ Cdyn−error

Cdyn−re f erence

∣∣∣∣∣
)

(10)

MSE = mean
(

C2
dyn−error

)
(11)

Finally, the subset of features with the lowest MAPE is the final feature set. To derive
the dynamic power model for the big cluster, three frequencies in the system were used,
i.e., 0.38 GHz, 1.24 GHz, and 1.95 GHz. Three CPU-intensive workloads listed in Table 2
were executed on big cores at each of these frequencies. The power consumption and
performance counters were recorded during these experiments. Then, the estimate from
the leakage power model was subtracted from the total power to find the dynamic power
consumption reference. This reference was used for feature selection and fitting the model
in Equation (8) with the best set of features. Figure 9 shows the reference dynamic power
consumption and the dynamic power estimated by the model for all three benchmarks
running at 1.24 GHz. The proposed model closely follows the reference power consumption.
The mean absolute percentage error was only about 6.4%, indicating a very accurate fit.
Table 3 shows a summary of results for all three frequencies. The MAPE was less than
10% for all three frequencies. Moreover, the error was minimum for the highest frequency,
which is most commonly used in intensive workloads.

Table 2. Benchmarks used in dynamic power estimation and their runtime.

Benchmark Runtime (Approximated)

BasicMath 4 s
PCA 10 s
MEL 10 s

Electronics 2021, 10, 2428 10 of 30

Figure 9. Reference and estimated dynamic power consumption for the A57 cluster running at
1.24 GHz.

Table 3. Summary of results for the A57 cluster dynamic power estimation.

Benchmark Core Frequency
(GHz) MAPE RMSE Feature

Selection

PCA + MEL Big 1.96 2.7 0.086 1 2 3 4 5 9 10
Combined 1 Big 1.25 6.4 0.129 1 3 4 5 8 9
Combined 1 Big 0.38 8.8 0.2718 1 3 4 5 8 9 10

1 Combined = BasicMath + PCA + MEL.

The models presented in this section were used at runtime to estimate the power
consumption of the A57 cluster. Table 3 shows that the features selected for each frequency
of operation were not the same. Since using different features for different frequencies can
lead to additional overhead at runtime, the union of features in Table 3 were used. The
summary of results using the union of features in Table 3 is shown in Table 4. The average
error was similar to or better than the error values in Table 3. Consequently, the union of
the features can be used as a single set of features for all the frequencies.

Table 4. Summary of results for the A57 cluster with the union of features.

Benchmark Core Frequency
(GHz) MAPE (Selected) MAPE (Union)

PCA + MEL Big 1.96 2.7 2.67
Combined 1 Big 1.25 6.4 6.4
Combined 1 Big 0.38 8.8 8.8

1 Combined = BasicMath + PCA + MEL.

3.3. Little Core CPU Cluster

The Nexus 6P phone contains a little CPU cluster that consists of four A53 cores. To
estimate the power consumption of the little cluster, the big cores and GPU were turned off.
The rest of the modeling used the same methodology as was used for the big CPU cluster.
Therefore, the results for the little cluster are summarized without repeating the steps of
the methodology.

Electronics 2021, 10, 2428 11 of 30

First, the leakage power parameters for the little core cluster were estimated by
repeating the power measurements using the furnace, while running a light workload
on the little CPU cluster. Using these measurements, the leakage power parameters in
Equation (5) were estimated using non-linear curve fitting. Figure 10 shows the power
measurements at different temperatures for two core configurations. The first plot shows
that the total power consumption increased with temperature as expected. Separation of
the dynamic power from the total power consumption showed that it was almost constant
at all temperatures. This was expected since the phone was idle when performing the
measurements. Finally, the Figure 10c shows the variation in the leakage power as the
temperature of the phone changed. The measured leakage power consumption was used
to identify the leakage power parameters. The learned parameters were substituted in
Equation (5) to compute an estimation of the power consumption. The estimated total
power is plotted using a red line in the Figure 10a. The red curves closely follow each other
which implies that the estimated power approximates the measured power consumption
very well. Next, leakage power was used in the total power model to estimate the dynamic
power consumption of the little core cluster.

Figure 10. (a) Behavior of the total power of the A53 cluster running at 860 MHz as a function of the temperature. The figure
shows both measured and estimated power at two configurations. (b) Behavior of the dynamic power with temperature.
The dynamic power is constant since the processor is idle. (c) Behavior of the leakage power with respect to the temperature.
The leakage power shows an increase with temperature due to the temperature term in Equation (5).

To derive the dynamic power model for the little cluster, the following three frequen-
cies were used, i.e., 0.60 GHz, 1.25 GHz, and 1.55 GHz. Three CPU-intensive workloads
listed in Table 2 were run on little cores at each of these frequencies. Equation (7) shows
the general dynamic power model template. Following a procedure similar to the big CPU
cluster, performance counters were fitted to the measured dynamic power consumption.
Figure 11 shows the reference dynamic power and the estimate of the dynamic power. The
estimate of the dynamic power follows the trends in the reference power. The MAPE for
the estimate was 5.5%, indicating a good fit. A summary of results for all three frequencies
is provided in Table 5. The MAPE was well below 10% for two of the three frequencies.
For the lower frequency, the error was 11%. This is mainly because the effect of noise is
higher at lower frequencies, thus resulting in a lower signal-to-noise ratio. Due to this, it is
difficult to track all the changes in power consumption.

Electronics 2021, 10, 2428 12 of 30

Figure 11. Comparison of measured and estimated dynamic power for the A53 cluster running at
1.24 GHz. Each sample is 50 ms.

Table 5. Summary of results for A53 dynamic power modeling.

Benchmark Core Frequency
(GHz) MAPE RMSE Feature

Selection

Combined 1 Little 1.55 4.80 0.0372 1 2 3 4 5 8
Combined 1 Little 1.25 5.50 0.0439 1 3 4 6 7
Combined 1 Little 0.60 11.40 0.1213 1 2 3 7 8 9

1 Combined = BasicMath + PCA + MEL.

Similar to the big core cluster, the union of features provided a single set of features
for all the frequencies. Table 6 shows the summary of results using the union of features
for the little core cluster. The error was similar to the error as was observed for the selected
features. Therefore, the union of features can be used as a single set of features for the little
core power modeling.

Table 6. Summary of results with union of features.

Benchmark Core Frequency
(GHz) MAPE (Selected) MAPE (Union)

Combined 1 Little 1.55 4.80 4.80
Combined 1 Little 1.25 5.50 5.43
Combined 1 Little 0.60 11.40 11.39

1 Combined = BasicMath + PCA + MEL.

3.4. Adreno 430 GPU Power Model

The Nexus 6P phone is equipped with an Adreno 430 GPU for running graphics
workloads. The overall methodology to model the GPU power consumption is similar to
that for the CPU clusters. Therefore, this section only summarizes the changes required for
the GPU power model.

The first step is modeling the leakage power consumption by running a light workload
at different temperatures. Then, the leakage power model is used to obtain the dynamic
power model for the GPU. The rendering test application is executed on the GPU for
modeling the leakage power consumption of the GPU. The rendering test displays a series

Electronics 2021, 10, 2428 13 of 30

of cubes on the display. The rate at which the cubes are displayed, and the complexity of the
cubes can be controlled by the user. This capability allows controlled experiments for the
GPU power consumption modeling. In general, CPU cores are running when the GPU is
on and executing applications. The little CPU cluster is employed for the GPU experiments
while turning off the big cores. Therefore, while performing GPU power modeling, the
leakage and dynamic power consumptions of the little CPU cluster are subtracted from the
total power. The total power consumption can be decomposed as:

Ptotal = Pdyn,gpu + Pleak,gpu + Pdyn
A53 + Pleak

A53 + Pother (12)

Combining Pdyn
A53 with Pother as P′other ensures that the leakage power modeling for the

GPU is independent of the CPU dynamic power as follows:

Ptotal = Pdyn,gpu + Pleak,gpu + Pleak
A53 + P′other (13)

After expanding the leakage power terms in Equation (13), the total power can be
expressed as:

Ptotal = Pdyn,gpu + Vgpu

(
c1,gpu × T2 e

c2,gpu
T + Igate,gpu

)
+VA53

(
c1,A53 × T2 e

c2,A53
T + Igate,A53

)
+ P′other (14)

In this equation, the leakage power parameters for the A53 cluster are known from
the power modeling discussed earlier. Therefore, this section focuses on estimating the
other unknowns in Equation (14), i.e., Pdyn,gpu, c1,gpu, c2,gpu, Igate,gpu and P′other.

The GPU frequency is known from the Linux kernel, whereas the voltage-frequency
table for the Adreno 430 GPU is not publicly available. Since the relation between the
operating frequency and voltage can be approximated by a linear relation [2], Vgpu is
expressed as Vgpu = a fgpu + b. Consequently, parameters a and b are added to the list of
unknowns in the GPU power model.

To find the unknowns in Equation (14), the phone was placed in a furnace while
running the rendering test benchmark. The temperature was swept from 35 ◦C to 60 ◦C
in increments of 5 ◦C. At each temperature, the frequency of the GPU was swept from
the lowest possible value 180 MHz to the highest possible value 600 MHz. As a result,
36 distinct measurements were obtained for the total power consumption. Figure 12
shows the variation of the power consumption with GPU frequency and temperature. As
expected, an increase in the power with temperature and frequency was seen. These power
measurements were used in non-linear curve fitting to find the unknown parameters.
Table 7 shows the values of the obtained parameters to model leakage power consumption
for the GPU. The root mean squared error for the fit was 0.0233, indicating a perfect fit.

Figure 12. Variation of power with temperature and frequency.

Electronics 2021, 10, 2428 14 of 30

Table 7. Leakage power parameters for the GPU.

Parameter Value Parameter Value

c1,gpu 0.2561 a 0.1496
c2,gpu −3740 b 0.6003

Igate,gpu 8.6 × 10−8 P′other 1.2985
Cdyn,gpu 0.3789

The dynamic power consumption Pdyn,gpu was modeled as a function of the hardware
performance counters listed in Table 8. In addition to the CPU counters, three counters
specific to the GPU were used. These were the GPU capacity, GPU utilization, and the
number of frames rendered in the given interval. The dynamic power consumption of the
GPU can be expressed as:

Pdyn,gpu = Ptotal − Pleak
A53 − Pdyn

A53 − Pleak,gpu − Pother (15)

Table 8. GPU feature selection table.

Feature Id Performance Counters Feature Id Performance Counters

1 GPU Capacity 7 L2 Misses per Instruction
2 GPU Utilization 8 Branch misses per Instruction
3 GPU Frame Count 9 Max Utilization—U1
4 Aggregated Normalized Instructions 10 2nd highest Utilization—U2
5 CPU Cycles per Instruction 11 3rd highest Utilization—U3
6 L2 References per Instruction 12 4th highest Utilization—U4

The Pdyn,gpu is evaluated using the models obtained for Pleak
A53 , Pdyn

A57 and Pleak,gpu. Pother
in Equation (15) is evaluated from P′other estimated during the GPU leakage power modeling.
Specifically, Pother can be evaluated as:

Pother = P′other −mean
(

Pdyn
A53

)
(16)

The dynamic power component can be further expressed as:

Pdyn,gpu = Cdyn,gpuV2 f (17)

To this end, operating voltage is obtained using the operating frequency using param-
eters a and b. Therefore, Cdyn,gpu can be expressed as a function of known parameters:

Cdyn,gpu =
V2

gpu fgpu

Pdyn,gpu
(18)

The dynamic capacitance Cdyn,gpu is modeled as a linear function of the hardware
performance counters listed in Table 8. Thus, Cdyn is modeled as

Cdyn,gpu =
N

∑
i=1

BiYi 1 ≤ i ≤ N (19)

where Yi are the features, Bi are the coefficients for the corresponding features, and N is the
number of counters used in the model. Using the methodology described in Section 3.1,
feature selection was performed to select the best set of features. At the end of the feature
selection process, the set of features that minimized the estimation error were chosen. The
estimated and reference Cdyn,gpu at 600 MHz is shown in Figure 13. The MAPE at this
frequency was 8.82%. This low MAPE shows that the estimated dynamic capacitance
closely follows the reference dynamic capacitance.

Electronics 2021, 10, 2428 15 of 30

Figure 13. The reference and estimated C_(dyn,gpu) at 600 MHz.

Table 9 shows the summary of results for all the frequencies of the GPU. It is observed
that the MAPE was less than 20% for all the frequencies. Due to the high amount of
instantaneous variation in the dynamic capacitance, the MAPE was higher than that for the
CPU models. Therefore, the average of the reference and estimated Cdyn,gpu were compared
over an interval of 1 s. In Table 9, error was less than 5% for all frequencies. Therefore, the
model can predict the average power of an application with high accuracy.

Table 9. Summary of results for the GPU dynamic power model.

Frequency (MHz) MAPE MAPE (One
Second Average)

MAPE (Per Trace
Average) Feature Selection

600 8.82 7.04 4.25 3 4 5 6 8 9 11 12
510 10.90 8.77 4.21 1 2 4 5 6 8 9 11 12
450 13.10 10.95 3.19 2 3 4 5 6 8 9 11 12
390 14.62 11.99 3.71 1 4 5 8 9 11 12
305 18.86 15.31 3.76 3 4 5 6 7 8 9 11 12
180 17.49 11.10 4.00 2 4 5 7 8 9 10 11

Following the methodology used to model CPU power, the union of features was con-
sidered as a single set of features to model the dynamic power consumption of the GPU. The
summary of results using the union of features is also shown in Table 10. The average error
with union of features was similar to or better than the error values with selected features.

Table 10. Summary of results with the union of features for the GPU dynamic power.

Frequency
(MHz)

MAPE MAPE (One Second
Average)

MAPE (Per Trace
Average)

Selected Union Selected Union Selected Union

600 8.82 8.50 7.04 7.00 4.25 4.21
510 10.90 11.00 8.77 8.78 4.21 4.12
450 13.10 12.55 10.95 10.83 3.19 3.32
390 14.62 15.14 11.99 11.77 3.71 3.74
305 18.86 16.99 15.31 15.41 3.76 2.30
180 17.49 19.34 11.10 14.53 4.00 4.44

Electronics 2021, 10, 2428 16 of 30

3.5. CPU Memory Controller

The Nexus 6P phone enables control of the CPU memory controller frequency at
runtime. This makes it a possible control knob for a dynamic power management governor.
Therefore, a power model was built for each available bandwidth of the CPU memory
controller as a function of the hardware counters listed in Table 11. Compared to the
features used for the CPU power modeling, the counters that were not related to the
memory were omitted, such as branch misses per instruction. Instead, two counters
specific to the memory, namely, normalized CPU memory bytes and CPU memory time,
were added. These counters captured the bytes transferred over the memory bus in an
interval and the CPU memory time. These counters help in understanding the activity that
happens over the memory bus.

Table 11. CPU memory controller features.

Feature Id Performance Counters Feature Id Performance Counters

1 Aggregated Normalized Instructions 6 Max Utilization—U1
2 L2 References per Instruction 7 2nd highest Utilization—U2
3 Raw Memory Accesses per Instruction 8 3rd highest Utilization—U3
4 Normalized CPU Memory Bytes 9 4th highest Utilization—U4
5 CPU Memory Time

To model the power consumption of the CPU memory controller, the bandwidth of
the memory controller was swept from its lowest value of 1525 MB/s to 11,863 MB/s, while
running workloads on the little CPU cluster. Specifically, the PCA and stream benchmarks
were executed to model the power consumption of the CPU memory controller. Figure 14
shows the actual power consumption and average runtime of the PCA benchmark for all the
bandwidths. The PCA benchmark is a compute-intensive workload that periodically reads
data from the memory. In contrast, the stream benchmark is a memory-intensive workload
that continuously loads data from the memory. Using these varieties of benchmarks, a
good mix of data for memory-heavy and compute-heavy phases is ensured. The measured
power can be written as a sum of the little cluster leakage and dynamic power, GPU leakage
power, and power consumed by the memory controller, as well as the power consumption
of other components not related to the SoC:

Ptotal = Pleak
A53 + Pdyn

A53 + Pgpu,leak + PMEM−CPU+other (20)

where PMEM−CPU+other is the memory controller power combined with other components
of the SoC. They must be considered together, as visibility into the activity of the other
components of the SoC is not present. The GPU was put in a low power idle state to
ensure that it only had leakage power while performing the CPU memory power controller
characterization.

All the terms in Equation (20) are known, except for PMEM−CPU+other which can be
expressed as:

PMEM−CPU+other = Ptotal − Pleak
A53 − Pdyn

A53 − Pgpu,leak (21)

Similar to the power modelling discussed so far, PMEM−CPU+other is expressed as a
linear combination of features listed in Table 11:

PMEM−CPU+other =
N

∑
i=1

KiZi 1 ≤ i ≤ N (22)

where Zi are the features, Ki are the model coefficients, and N is the number of features
used in the model. Using the methodology described in Section 3.1, feature selection was
performed to select the best set of features, resulting in minimum estimation error. Using the
linear model obtained from Equation (22), the power consumption of the memory controller
was estimated at runtime. Figure 15 shows the estimated and reference PMEM−CPU+other at
11,863 MB/s bandwidth. The MAPE between reference and estimated power consumption

Electronics 2021, 10, 2428 17 of 30

at 11,863 MB/s bandwidth was 2.98%. This shows that the model can predict the memory
controller power with a high accuracy.

Table 12 summarizes the accuracy of the model for each CPU memory bandwidth.
The error between the reference and estimation for an interval of 50 millisecond is less than
6% for all the available memory bandwidths. Following the GPU dynamic power model,
the accuracy of the model was evaluated over 1-s intervals and the entire experiment. It
can be seen that the error was below 5% for all the bandwidths, both for 1-s intervals and
the entire experiment. Finally, the right-most column in the table shows the selection of
features for each bandwidth.

Figure 14. Actual power consumption and average execution time of PCA benchmark for all the
bandwidths.

Figure 15. Comparison of actual and predicted memory power for PCA and Stream benchmarks.

Electronics 2021, 10, 2428 18 of 30

Table 12. Summary of results for the CPU memory controller power model.

Memory BandWidth
(MBps) MAPE MAPE (One

Second Average)
MAPE (Per Trace

Average) Feature Selection

1525 3.95 2.93 2.06 1 2 4 5 9
2288 5.08 3.42 4.08 1 2 4 5 7 9
3509 3.63 2.65 2.89 1 4 5 6 7 9
4066 2.95 1.83 0.36 1 4 5 6 8 9
5126 3.28 2.43 3.08 1 4 5 6 7 8 9
5928 2.94 1.95 2.23 1 4 5 6 7
7904 2.82 2.03 1.25 1 2 3 4 5 6 7 8 9
9887 2.90 1.85 1.65 1 2 4 6 7 8 9

11,863 2.98 1.77 2.16 1 2 4 6

Furthermore, the modeling with the union of features for the CPU memory controller
was repeated. Table 13 shows the summary of results with the union of features. As
expected, the error with the union of features was comparable to or better than the original
feature selection. With the union of features, all three MAPE measured were always below
5% for all memory bandwidths.

Table 13. Summary of results with the union of features for the CPU memory controller.

Memory
Bandwidth

(MBps)

MAPE MAPE (One Second
Average) MAPE (Per Trace Average)

Selected Union Selected Union Selected Union

1525 3.95 3.92 2.93 2.91 2.06 1.97
2288 5.08 5.09 3.42 3.42 4.08 4.1
3509 3.63 3.63 2.65 2.65 2.89 2.89
4066 2.95 2.95 1.83 1.83 0.36 0.36
5126 3.28 3.28 2.43 2.43 3.08 3.08
5928 2.94 2.95 1.95 1.95 2.23 2.25
7904 2.82 2.82 2.03 2.03 1.25 1.25
9887 2.90 2.90 1.85 1.85 1.65 1.65

11,863 2.98 2.96 1.77 1.75 2.16 2.14

3.6. GPU Memory Controller

Next, the power consumed by the GPU memory controller in a Nexus 6P phone was
modeled. To model the power consumption of the GPU memory controller, the counters
listed in Table 14 were used. As for the CPU memory controller power model, the counters
which were not directly related to the memory were omitted. Moreover, the memory
counters related to the CPU were replaced with the memory counters related to the GPU.
That is, normalized GPU memory bytes and GPU memory time replaced normalized CPU
memory bytes and CPU memory time, respectively.

Table 14. GPU memory controller features.

Feature Id Performance Counters Feature Id Performance Counters

1 Aggregated Normalized Instructions 8 Max Utilization—U1
2 CPU Cycles per Instruction 9 2nd highest Utilization—U2
3 Raw Memory Accesses per Instruction 10 3rd highest Utilization—U3
4 Normalized CPU Memory Bytes 11 4th highest Utilization—U4
5 CPU Memory Time 12 GPU Capacity
6 Normalized GPU Memory Bytes 13 GPU Utilization
7 GPU Memory Time 14 Frames Count

The Angry Birds and Candy Crush games were used to model the power consumption
of the GPU memory controller. Each game was played for approximately 30 s while
sweeping the memory bandwidth of the GPU. The little CPU cluster was on when running
the games to provide essential CPU support. Figure 16 compares the power consumption
and frame rate of the Candy Crush application as a function of the GPU memory bandwidth.

Electronics 2021, 10, 2428 19 of 30

The power consumption of the device generally increased as the memory bandwidth
increased. An anomaly at 4174 MBps was noticed where the power consumption showed a
decrease. A similar trend was also seen in the application’s frame rate, which increased with
increasing memory bandwidth. The GPU memory controller power was modeled using
the dataset from the Angry Birds and Candy Crush games. Following the methodology for
the CPU memory controller model, the power consumption of the GPU memory controller
can be expressed as:

PMEM−GPU+other = Ptotal − Pleak
A53 − Pdyn

A53 − Pgpu,leak − Pgpu,dyn − PMEM−CPU (23)

Figure 16. Actual power consumption and execution time of the Candy Crush game for all the GPU
memory bandwidths.

Substituting the A53 leakage power, A53 dynamic power, GPU leakage power, GPU
dynamic power, and CPU memory controller power, in Equation (24) gives PMEM−GPU+other.
In addition, all the terms of PMEM−CPU+other model, except the bias term in the CPU mem-
ory controller power model, provide the value of PMEM−CPU . This is done to ensure that
the power consumption of other components of the SoC is not included twice. The power
consumption obtained from Equation (23) was used as the reference for the GPU mem-
ory controller power. After obtaining the reference, the GPU memory controller power
consumption is modeled as:

PMEM−GPU+other =
N

∑
i=1

LiTi 1 ≤ i ≤ N (24)

where Ti are the features listed in Table 14, Li are the model coefficients, and N is the
number of features used in the model. Using the methodology described in Section 3.1, the
feature selection method selected the best set of features. At the end of the feature selection
process, the set of features that resulted in minimum error was chosen. At runtime, the
model weights and features were used to estimate the GPU memory controller power.

Figure 17 shows the estimated and reference PMEM−GPU+Other at 11,863 MBps band-
width. The average error between the reference and the estimated power was 9.25% in this
case. The accuracy for all available GPU memory bandwidths is summarized in Table 15.
The error was higher than the error for the CPU memory controller power model. The
source of the error can be attributed to the following causes:

Electronics 2021, 10, 2428 20 of 30

• The GPU memory controller is the last component to be modeled so far. Therefore,
the error from all other models are accumulated in the GPU memory controller power
consumption reference.

• The workloads used in GPU memory controller power modelling exhibit a high
variation in the power, making it difficult to follow the reference for each interval.

Table 15. Summary of results for the GPU memory controller power model.

Frequency (MHz) MAPE MAPE (One
Second Average)

MAPE (Per Trace
Average) Feature Selection

762 20.33 17.17 1.19 1 2 3 4 5 8 10 11 12
1525 21.48 17.04 3.58 1 2 3 4 9 11 14
2288 22.90 17.82 5.82 2 3 4 7 8 9 10 14
3509 14.09 10.81 4.71 1 2 7 8 9 10 13 14
4173 14.16 10.50 4.75 2 3 4 6 7 8 10 12 14
5271 13.54 10.50 3.48 2 5 7 12 14
5928 16.47 13.53 0.73 2 7 14
7904 13.58 11.26 0.92 1 2 8 9 10 11 12
9887 10.05 8.42 1.36 1 2 5 8 9 10 12

11,863 9.25 7.24 1.53 2 7 12

Figure 17. Comparison of actual and predicted memory power for the Candy Crush and Angry Birds
games benchmarks.

Additional pre-processing of the feature and power consumption data helps in mitigat-
ing the above issues. Specifically, five iterations of the Angry Birds game were performed
while automating the touches with the FRep app. The automation of touches ensured that
the same workload was run in each iteration. Then, the iterations were aligned to have
the same starting point. The alignment was done by calculating the cross-correlation in
instructions for each iteration. The difference in time for the samples with highest cross-
correlation for each pair provided the delay between the iterations. The delays were then
used to align all iterations to the earliest arriving iteration. Figure 18 shows an example
of the alignment procedure. Figure 18a shows that the instructions in each iteration were
not aligned. Specifically, the fourth iteration was delayed from other iterations. Therefore,
the delay of the fourth iteration from other iterations was calculated. The delay was then
used to shift the fourth iteration such that it aligned with the other iterations, as shown
in Figure 18b. Once the signals were aligned, the average of the feature data and power
consumption of the five iterations was taken. This assisted in reducing the noise in the

Electronics 2021, 10, 2428 21 of 30

power consumption. The data was then used to obtain the power model for the GPU
memory controller. Figure 19 shows the reference power and the estimated power for the
GPU memory controller. The power consumption had a lower number of spikes when
compared to Figure 17, i.e., the reference values in Figure 19 are more reliable. Therefore,
the estimated power consumption closely followed the reference power consumption. The
average error was only approximately 6.48% when calculated at each sample. Table 16
summarizes the results for all bandwidths. The features selected for each bandwidth are
shown in Table 14. The average error for each bandwidth was lower than the error in
Table 15. This demonstrates the effectiveness of the averaging technique for reducing the
noise in the measurements. Table 16 also shows the error for modeling the GPU memory
controller power with the union of features. Similar to the previous power models, the
error was comparable to the chosen set of features. Therefore, the union of features can be
used as a single set of features for the GPU memory controller model.

Figure 18. (a). Instructions for the Angry Bird game app without alignment (b). Instructions for the Angry Bird game app
with alignment of instructions.

Figure 19. Comparison of actual and predicted memory power for the Angry Birds game benchmark.

Electronics 2021, 10, 2428 22 of 30

Table 16. Summary of results with averaging the iterations for the GPU memory controller.

Frequency (MHz)
MAPE MAPE (One Second Average) MAPE (Per Trace Average)

Selected Union Selected Union Selected Union

762 14.00 14.02 10.58 10.63 0 0
1525 14.57 14.88 12.83 13.03 0 0
2288 18.77 17.44 14.65 13.36 0.15 0
3509 14.16 14.32 12.47 12.71 0 0
4173 11.86 11.10 9.95 8.94 0.08 0
5271 6.48 6.19 5.19 4.99 0.01 0
5928 9.42 9.67 7.55 7.68 0.06 0
7904 5.98 6.22 5.01 5.22 0 0
9887 7.08 6.53 5.04 4.77 0 0

11,863 3.67 3.64 2.52 2.56 0.01 0

3.7. Validation of CPU and GPU Power Models

The previous sections developed power models for display, leakage, CPU dynamic,
GPU dynamic, GPU Memory, and CPU Memory. This section describes the validation
of power models for the benchmarks that were not part of the training set. To this end,
the model coefficients for the features listed in Table 17 were generated. This trained
the model for components of the power consumption at the same time, instead of by
sequential training. The trained models were used to estimate the total power of the
device. A leave-one-out analysis at this step ensured that models were applicable to unseen
workloads. Table 18 shows the training set and the test benchmark for the leave-one-
out cross-validation experiments. In each iteration of the experiment, one benchmark
was excluded from the training. The validation results of five benchmarks, BasicMath,
PCA, MEL, FFT, and Spectral, are shown below in Figure 20a–e. The power estimation
for all applications closely matched the reference, except for BasicMath and PCA. Both
BasicMath and PCA showed an offset between the measurement and the estimated power
consumption. The offset occurs when the intercept (constant term) learned by the model
from the training applications does not match the actual offset. Advanced algorithms, such
as recursive least squares and online learning, can constantly update the model parameters
as new data become available to improve the model.

Table 17. CPU feature selection table.

Feature Id Performance Counters Feature Id Performance Counters

1 Normalized Instructions 8 3rd highest Utilization—U3
2 CPU Cycles per Instruction 9 4th highest Utilization—U4
3 L2 References per Instruction 10 Normalized CPU MEM Bytes
4 L2 Misses per Instruction 11 CPU Memory Time
5 Branch misses per Instruction 12 CPU Cycles per MEM bytes
6 Max Utilization—U1 13 L2 References per MEM bytes
7 2nd highest Utilization—U2 14 Raw Memory Accesses per MEM Bytes

Table 18. Benchmarks used for CPU and GPU power validation.

No Training Set Test Benchmark

1 PCA + MEL + FFT + Spectral BasicMath
2 BasicMath + MEL + FFT + Spectral PCA
3 BasicMath + PCA + FFT + Spectral MEL
4 BasicMath + PCA + MEL + Spectral FFT
5 BasicMath + PCA +MEL + FFT Spectral

Electronics 2021, 10, 2428 23 of 30

Figure 20. Comparison of the reference power consumption and the estimated power consumption for (a) BasicMath,
(b) PCA, (c) MEL, (d) FFT, and (e) Spectral benchmarks using leave-one-out analysis.

Table 19 shows the estimation error for each of these benchmarks. It can be seen
that for BasicMath and PCA applications the estimated power had higher MAPE. For
MEL, FFT, and Spectral applications, estimation error was less than 10%. This shows
that the BasicMath and PCA benchmarks are critical in the training set to estimate the
power consumption with minimal error. Therefore, it is necessary to include them in
training scenarios.

Table 19. Summary of results with leave-one-out experiments.

Benchmark Core Frequency (GHz) MAPE (Leave One out)

BasicMath Big 1.25 17.13
PCA Big 1.25 10.2
MEL Big 1.25 3.3
FFT Big 1.25 7.60

Spectral Big 1.25 9.73

3.8. Wi-Fi Power Modeling

Battery life is one of the crucial factors that limits mobile phones today [3]. Wi-Fi acts
as a major power-hungry component of smartphones, accounting for more than 50% of the
total device power budget under typical use. It can also quickly drain the phone’s battery
when transmitting or receiving data at high peak rates. There exist various techniques in
the literature to model Wi-Fi power accurately. The work in [36] describes Wi-Fi power
modeling by monitoring calls to kernel functions dev_queue_xmit() for transmitted data
and netif_rx() for received data. Using data from these functions, the authors in [36] express
the power as:

Pwi f i = m0 + m1 × pr (25)

where pr is the total packet rate (TX + RX) and m0, m1 represent the model parame-
ters. A similar methodology was followed to construct the Wi-Fi power model for the
experimental device.

To construct a model for Wi-Fi power for the Google Nexus 6P phone, the kernel and
Simpleperf [35] tool were instrumented to capture the transmitted/received packet data
rate. Specifically, the kernel was instrumented to count calls to dev_queue_xmit() and
netif_rx(). These counters were then exported to the user space using the sysfs interface.

Electronics 2021, 10, 2428 24 of 30

Then, the Simpleperf tool was modified to capture the Wi-Fi packet data from sysfs.
Figure 21a shows the number of Wi-Fi packet transfers for downloading an application. In
this case, the number of received packets was more than the number of packets transmitted
when downloading an app. Therefore, the total packet rate (pr) was obtained accordingly
and was used as a feature to model Wi-Fi power.

Figure 21. (a). Wi-Fi packet transfer for an application download (b). Wi-Fi packet transfer for
Google Hangouts Call.

The Google Hangouts application was used to model Wi-Fi power. In order to ensure
that there was sufficient Wi-Fi activity, a call was made from the Nexus 6P to another
smartphone. The frequencies and the memory bandwidths of Nexus 6P phone were set
to the configuration shown in Table 20 while performing the experiment. When the call
was initiated, there was an increase in the number of transmitted packets. Once the call
was received, the number of received packets started to increase. Figure 21b compares
TX packets and RX packets when using the Google Hangouts application. The figure
clearly shows that the number of transmitted and received packets increased when the
call was initiated. Therefore, the TX and RX packet data can be used as an indicator of
the Wi-Fi activity. The calls were performed 10 times and the number of TX/RX packets
was recorded. This data, along with other system level and application level features,
were recorded.

Table 20. Platform settings for Wi-Fi power modeling.

Feature Performance Counters

Little Core frequency 1.24 GHz
GPU Frequency 510 MHz
CPU Mem BW 11,863 MBps
GPU Mem BW 11,863 MBps

Of the available features, six were used for the Wi-Fi model listed in Table 21. The
first four features are system-level parameters, while features five and six were obtained
specifically for Wi-Fi power modeling. To model Wi-Fi power consumption, all the little
cores were switched on along with GPU. All the big cores were turned off while modeling
Wi-Fi power. Equation (26) expresses the total power (Ptotal).

Ptotal = Pdyn,gpu + Pleak,gpu + Pdyn,cpu + Pleak,cpu + Pmem,cpu + Pmem,gpu + Pwi f i

Ptotal = Cdyn,gpuV2
gpu fgpu + Vgpu

(
c1,gpu × T2 e

c2,gpu
T + Igate,gpu

)
+

VCPU

(
c1,cpu × T2 e

c2,cpu
T + Igate,cpu

)
+ Cdyn,cpuV2

cpu fcpu + Pmem,cpu + Pmem,gpu + Pwi f i+other

(26)

Electronics 2021, 10, 2428 25 of 30

Table 21. Features used for Wi-Fi power modeling.

Feature Id Performance Counters Feature Id Performance Counters

1 Max Utilization—U1 4 4th highest Utilization—U4
2 2nd highest Utilization—U2 5 Transmitted packets
3 3rd highest Utilization—U3 6 Received packets

c1,cpu, c2,cpu, and Igate,cpu are known from the leakage power model of little cores.
Furthermore, GPU voltage parameters, a and b, were obtained during the GPU power
model construction. Using the previously learned models for the CPU and GPU, the
reference Pwi f i can be obtained from Equation (26). Then, the WiFi power consumption is
expressed as a linear function of the features listed in Table 21.

Pwi f i+other =
N

∑
i=1

HiFi 1 ≤ i ≤ N (27)

where Fi are the features, Hi are the coefficients for the corresponding features, and N is the
number of features used. The linear regression tool in Matlab was used to find the model
parameters. Table 22 shows different values of error which were obtained while training
the model. The maximum error is 25%. This high error for Wi-Fi power models occurs
because the Wi-Fi power is the last component to be modeled. Therefore, the error from all
other models were accumulated in the Wi-Fi power consumption reference. However, the
average error over an interval of 1 s, as well as the average error for the entire application,
was significantly lower. Figure 22 shows the reference and estimated power values of Wi-Fi
for eight iterations. It can be seen that the learned power model is able to follow the trends
in reference power consumption.

Table 22. Training error for WiFi power model.

Error Metric Percentage Error

MAPE 24.90%
MAPE (1 s Avg) 11.45%

MAPE (trace Avg) 6.22%
RMSE 2.32%

Figure 22. Comparison of reference and estimated power for the WiFi power.

Electronics 2021, 10, 2428 26 of 30

The Wi-Fi power model was validated using two approaches. In the first approach, the
phone configuration was kept the same as the configuration used for training the model.
Validation was performed with two sets of data which were not included in training
the model. Figure 23 compares the reference and estimated power consumption for the
two iterations not included in the training. The average error in this case was 12%. This
shows that the model is able to estimate the Wi-Fi power accurately.

Figure 23. Comparison of reference and estimation of the Wi-Fi power.

In the second approach, the Wi-Fi was switched off randomly when the call was in
progress. This means that the Wi-Fi power component will have gone down and will also
have decreased total power. Three iterations of hangout calls were performed where, in
each iteration, the Wi-Fi was switched off in the Nexus 6P phone randomly once the call
was received. As expected, the total power was reduced because it did not have the Wi-Fi
power anymore. Figure 24 shows the change in the total power and the WiFi power when
the WiFi was turned off. The regions indicated by red arrows show the periods when WiFi
was on and the hangouts call was executing normally. As can be seen, the system’s total
power was higher than 5 W in this region. However, as soon as the WiFi was turned off, the
power consumption reduced to about 3 W. A corresponding decrease in the WiFi power
was seen as well (in the red line in the figure). Of note, is that the WiFi power did not go
down to zero, since it included the power consumption of other components of the device
that the proposed power models do not capture. In summary, this experiment showed
that the proposed power models can accurately capture the trends in the device power
consumption.

Electronics 2021, 10, 2428 27 of 30

Figure 24. Comparison of each power component when the WiFi is turned off randomly.

3.9. Summary of All the Component Power Models

This section synthesizes all the models presented in this paper to help readers easily
reference the features, model equations, and accuracy. Specifically, Table 23 shows all
the parameters estimated in this paper, along with their respective features, the model
equations, estimation errors, and the sections in which they were validated. The last
row includes the power consumption of all the remaining components with the WiFi
power consumption, since the WiFi component was the last one modeled. The input
features required for the models are available in the Linux kernel through the performance
monitoring unit. Users can implement the models easily, without significant overhead,
on a smartphone, as they are linear combinations of the features [27]. In summary, these
models provide an effective method to estimate the power of each component.

Table 23. Summary of the estimated parameters and performance of the estimation model.

Parameter Features Equation in the Paper Estimation Error Validated Section

PDisplay Brightness, Proportion of color 2 10–17% Yes Section 3.1

Pleak,A57 Voltage, Temperature 5 <1% Yes Section 3.2

Pdyn,A57 Union of Features in Table 3 7, 8 6% Yes Section 3.2

Pleak,A53 Voltage, Temperature 5 <1% Yes Section 3.3

Pdyn,A53 Union of Features in Table 6 7, 8 7% Yes Section 3.3

Pleak,gpu GPU Voltage, GPU Temperature 14 <1% Yes Section 3.4

Pdyn,gpu Union of Features in Table 9 17,19 4% Yes Section 3.4

PMEM,gpu Union of Features in Table 12 22 2% Yes Section 3.5

PMEM,gpu Union of Features in Table 15 24 10% Yes Section 3.5

Pwifi+other Table 21 27 11% Yes Section 3.6

4. Conclusions and Future Work

This paper proposes a per-core-power modeling methodology and its application to
the Snapdragon 810 Heterogeneous SoC. It presents power consumption models for the
(1) display, (2) big core cluster, (3) little core cluster, (4) GPU, (5) CPU memory controller,
and (6) GPU memory controller. The power models were developed by measuring the

Electronics 2021, 10, 2428 28 of 30

power consumption and collecting performance data, while running representative bench-
marks at varying temperatures and operating frequencies. The proposed models were
able to estimate the total power consumption with only 8% error on average. While the
experimental evaluation is limited to the Nexus 6P phone, the methodology applies to all
smartphones powered by heterogeneous SoCs.

The proposed modeling methodology can be extended to include new smartphone
technologies, such as 5G and future 6G phones. The main additions to the model will
involve characterizing the power consumption of the 5G radio chip. To this end, designers
can follow the methodology outlined for the WiFi power modeling, where the power
consumption is a function of the number of packets transmitted and received. Similarly, 5G
and 6G radios can be modeled, as a function of the number of data packets transmitted or
received and the active time during phone calls. The 5G power-modeling is left for future
work since the Nexus 6P phone does not include 5G radio.

The proposed models can be used to implement power-management drivers. This can
enable the prediction of the impact of power management decisions, such as increasing
the frequency of a given PE at runtime [37,38]. Therefore, these predictions can be used
to manage the power states of all PEs in a coordinated fashion using machine learning, in
contrast to current practices that employ independent power-management drivers.

Author Contributions: Conceptualization, J.W. and U.Y.O.; Methodology, G.B. and U.Y.O.; Software;
validation, S.K.M., S.T.M., S.V.V., and A.A.; Writing—review and editing, all authors; supervision,
U.Y.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available at: https://github.com/gmbhat/per-core-
power.

Acknowledgments: The authors would like to thank Ujjwal Gupta and Manoj Babu for their help in
the early stages of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Esper, K.; Wildermann, S.; Teich, J. A Comparative Evaluation of Latency-Aware Energy Optimization Approaches in Many-Core

Systems. In Proceedings of the Second Workshop on Next Generation Real-Time Embedded Systems, Budapest, Hungary,
20 January 2021.

2. Garg, S.; Marculescu, D.; Marculescu, R. Custom Feedback Control: Enabling Truly Scalable on-Chip Power Management for
MPSoCs. In Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design—ISLPED’10,
Austin, TX, USA, 18–20 August 2010; p. 425.

3. Kim, D.; Jeon, S.; Lee, S.; Cha, H. Always-On Quick Charging for Mobile Devices. In Proceedings of the 2019 IEEE International
Conference on Pervasive Computing and Communications (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 1–10.

4. Qualcom Snapdragon 810 Processor. Available online: https://www.qualcomm.com/products/snapdragon-processors-810
(accessed on 10 September 2021).

5. Kadjo, D.; Ogras, U.; Ayoub, R.; Kishinevsky, M.; Gratz, P. Towards Platform Level Power Management in Mobile Systems. In
Proceedings of the 2014 27th IEEE International System-on-Chip Conference (SOCC), Las Vegas, NV, USA, 2–5 September 2014;
pp. 146–151.

6. Chou, C.-L.; Ogras, U.Y.; Marculescu, R. Energy- and Performance-Aware Incremental Mapping for Networks on Chip With
Multiple Voltage Levels. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2008, 27, 1866–1879. [CrossRef]

7. Carroll, A.; Heiser, G. An Analysis of Power Consumption in a Smartphone. In Proceedings of the USENIX Annual Technical
Conference, Boston, MA, USA, 22–25 June 2010.

8. Choi, W.; Duraisamy, K.; Kim, R.G.; Doppa, J.R.; Pande, P.P.; Marculescu, R.; Marculescu, D. Hybrid Network-on-Chip Architec-
tures for Accelerating Deep Learning Kernels on Heterogeneous Manycore Platforms. In Proceedings of the International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems—CASES’16, Pittsburgh, PA, USA, 1–7 October 2016;
pp. 1–10.

9. Gupta, U.; Patil, C.A.; Bhat, G.; Mishra, P.; Ogras, U.Y. DyPO: Dynamic Pareto-Optimal Configuration Selection for Heterogeneous
MpSoCs. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–20. [CrossRef]

https://github.com/gmbhat/per-core-power
https://github.com/gmbhat/per-core-power
https://www.qualcomm.com/products/snapdragon-processors-810
http://doi.org/10.1109/TCAD.2008.2003301
http://doi.org/10.1145/3126530

Electronics 2021, 10, 2428 29 of 30

10. Rao, K.; Wang, J.; Yalamanchili, S.; Wardi, Y.; Ye, H. Application-Specific Performance-Aware Energy Optimization on Android
Mobile Devices. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA),
Austin, TX, USA, 4–8 February 2017; pp. 169–180.

11. Mandal, S.K.; Bhat, G.; Doppa, J.R.; Pande, P.P.; Ogras, U.Y. An Energy-Aware Online Learning Framework for Resource
Management in Heterogeneous Platforms. ACM Trans. Des. Autom. Electron. Syst. 2020, 25, 1–26. [CrossRef]

12. Rao, R.; Vrudhula, S.; Rakhmatov, D.N. Battery Modeling for Energy-Aware System Design. Computer 2003, 36, 77–87. [CrossRef]
13. Chang, H.-C.; Agrawal, A.; Cameron, K. Energy-Aware Computing for Android Platforms. In Proceedings of the 2011 Interna-

tional Conference on Energy Aware Computing, Istanbul, Turkey, 30 November–2 December 2011; pp. 1–4.
14. Dietrich, B.; Chakraborty, S. Managing Power for Closed-Source Android Os Games by Lightweight Graphics Instrumentation.

In Proceedings of the 2012 11th Annual Workshop on Network and Systems Support for Games (NetGames), Venice, Italy,
22–23 November 2012; pp. 1–3.

15. Falaki, H.; Mahajan, R.; Kandula, S.; Lymberopoulos, D.; Govindan, R.; Estrin, D. Diversity in Smartphone Usage. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services—MobiSys’10, San Francisco, CA, USA,
15–18 June 2010; p. 179.

16. Gupta, U.; Korrapati, S.; Matturu, N.; Ogras, U.Y. A Generic Energy Optimization Framework for Heterogeneous Platforms
Using Scaling Models. Microprocess. Microsyst. 2016, 40, 74–87. [CrossRef]

17. Pallipadi, V.; Starikovskiy, A. The Ondemand Governor. In Proceedings of the Ottowa Linux Symposium, Ottawa, ON, Canada,
19–22 July 2006.

18. Shye, A.; Scholbrock, B.; Memik, G.; Dinda, P.A. Characterizing and Modeling User Activity on Smartphones: Summary.
In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems—
SIGMETRICS’10, New York, NY, USA, 14–18 June 2010; p. 375.

19. Rafiev, A.; Al-Hayanni, M.A.N.; Xia, F.; Shafik, R.; Romanovsky, A.; Yakovlev, A. Speedup and Power Scaling Models for
Heterogeneous Many-Core Systems. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 436–449. [CrossRef]

20. Ranjbar, B.; Nguyen, T.D.A.; Ejlali, A.; Kumar, A. Online Peak Power and Maximum Temperature Management in Multi-Core
Mixed-Criticality Embedded Systems. In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD),
Kallithea, Greece, 28–30 August 2019; pp. 546–553.

21. Bhat, G.; Gumussoy, S.; Ogras, U.Y. Power and Thermal Analysis of Commercial Mobile Platforms: Experiments and Case
Studies. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy,
25–29 March 2019; pp. 144–149.

22. Wang, S.; Pathania, A.; Mitra, T. Neural Network Inference on Mobile SoCs. IEEE Des. Test 2020, 37, 50–57. [CrossRef]
23. Aalsaud, A.; Xia, F.; Rafiev, A.; Shafik, R.; Romanovsky, A.; Yakovlev, A. Low-Complexity Run-Time Management of Concurrent

Workloads for Energy-Efficient Multi-Core Systems. J. Low Power Electron. Appl. 2020, 10, 25. [CrossRef]
24. Advanced Configuration and Power Interface Specification (ACPI). 2013. 5.0a. Available online: https://uefi.org/sites/default/

files/resources/ACPI_Spec_6_3_A_Oct_6_2020.pdf (accessed on 4 October 2021).
25. Bhat, G.; Singla, G.; Unver, A.K.; Ogras, U.Y. Algorithmic Optimization of Thermal and Power Management for Heterogeneous

Mobile Platforms. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2018, 26, 544–557. [CrossRef]
26. Brodowski, D.; Golde, N. Linux CPUFreq–CPUFreq Governors. Available online: https://www.kernel.org/doc/Documentation/

cpu-freq/governors.txt (accessed on 23 August 2021).
27. Gupta, U.; Ayoub, R.; Kishinevsky, M.; Kadjo, D.; Soundararajan, N.; Tursun, U.; Ogras, U.Y. Dynamic Power Budgeting for

Mobile Systems Running Graphics Workloads. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 30–40. [CrossRef]
28. Ogras, U.Y.; Ayoub, R.Z.; Kishinevsky, M.; Kadjo, D. Managing Mobile Platform Power. In Proceedings of the 2013 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 18–21 November 2013; pp. 161–162.
29. Rapp, M.; Amrouch, H.; Wolf, M.; Henkel, J. Machine Learning Techniques to Support Many-Core Resource Management:

Challenges and Opportunities. In Proceedings of the 2019 ACM/IEEE 1st Workshop on Machine Learning for CAD (MLCAD),
Canmore, AB, Canada, 3–4 September 2019; pp. 1–6.

30. Mudge, T. Power: A First-Class Architectural Design Constraint. Computer 2001, 34, 52–58. [CrossRef]
31. Kim, S.; Bin, K.; Ha, S.; Lee, K.; Chong, S. ZTT: Learning-Based DVFS with Zero Thermal Throttling for Mobile Devices.

In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, Virtual Event,
24 June–2 July 2021; pp. 41–53.

32. Mandal, S.K.; Bhat, G.; Patil, C.A.; Doppa, J.R.; Pande, P.P.; Ogras, U.Y. Dynamic Resource Management of Heterogeneous Mobile
Platforms via Imitation Learning. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2842–2854. [CrossRef]

33. Sahin, O.; Thiele, L.; Coskun, A.K. Maestro: Autonomous QoS Management for Mobile Applications Under Thermal Constraints.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 1557–1570. [CrossRef]

34. Shamsa, E.; Kanduri, A.; Rahmani, A.M.; Liljeberg, P. Energy-Performance Co-Management of Mixed-Sensitivity Workloads
on Heterogeneous Multi-Core Systems. In Proceedings of the 26th Asia and South Pacific Design Automation Conference,
Tokyo, Japan, 18–21 January 2021; pp. 421–427.

35. Android Open Source Project. Available online: https://source.android.com (accessed on 4 October 2021).
36. Singh, A.K.; Basireddy, K.R.; Prakash, A.; Merrett, G.V.; Al-Hashimi, B.M. Collaborative Adaptation for Energy-Efficient

Heterogeneous Mobile SoCs. IEEE Trans. Comput. 2020, 69, 185–197. [CrossRef]

http://doi.org/10.1145/3386359
http://doi.org/10.1109/MC.2003.1250886
http://doi.org/10.1016/j.micpro.2015.06.009
http://doi.org/10.1109/TMSCS.2018.2791531
http://doi.org/10.1109/MDAT.2020.2968258
http://doi.org/10.3390/jlpea10030025
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_3_A_Oct_6_2020.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_3_A_Oct_6_2020.pdf
http://doi.org/10.1109/TVLSI.2017.2770163
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://doi.org/10.1109/TMSCS.2017.2683487
http://doi.org/10.1109/2.917539
http://doi.org/10.1109/TVLSI.2019.2926106
http://doi.org/10.1109/TCAD.2018.2855180
https://source.android.com
http://doi.org/10.1109/TC.2019.2943855

Electronics 2021, 10, 2428 30 of 30

37. Tzilis, S.; Trancoso, P.; Sourdis, I. Energy-Efficient Runtime Management of Heterogeneous Multicores Using Online Projection.
ACM Trans. Archit. Code Optim. 2019, 15, 1–26. [CrossRef]

38. Wachter, E.W.; de Bellefroid, C.; Basireddy, K.R.; Singh, A.K.; Al-Hashimi, B.M.; Merrett, G. Predictive Thermal Management for
Energy-Efficient Execution of Concurrent Applications on Heterogeneous Multicores. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 2019, 27, 1404–1415. [CrossRef]

http://doi.org/10.1145/3293446
http://doi.org/10.1109/TVLSI.2019.2896776

	Introduction
	Materials and Methods
	Overview of the Overall Modeling Methodology
	Tools Used in This Work
	Pre-Processing the Raw Power Consumption Measurements

	Results
	Display Power Model
	Big Core CPU Cluster
	Little Core CPU Cluster
	Adreno 430 GPU Power Model
	CPU Memory Controller
	GPU Memory Controller
	Validation of CPU and GPU Power Models
	Wi-Fi Power Modeling
	Summary of All the Component Power Models

	Conclusions and Future Work
	References

