
electronics

Article

Nonlinear Model Predictive Control of Single-Link
Flexible-Joint Robot Using Recurrent Neural Network and
Differential Evolution Optimization

Anlong Zhang 1, Zhiyun Lin 2,* , Bo Wang 1 and Zhimin Han 1

����������
�������

Citation: Zhang, A.; Lin, Z.;

Wang, B.; Han, Z. Nonlinear Model

Predictive Control of Single-Link

Flexible-Joint Robot Using Recurrent

Neural Network and Differential

Evolution Optimization. Electronics

2021, 10, 2426. https://doi.org/

10.3390/electronics10192426

Academic Editors: Moad Kissai,

Bruno Monsuez and Barys Shyrokau

Received: 29 August 2021

Accepted: 2 October 2021

Published: 6 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Artificial Intelligence Institute, School of Automation, Hangzhou Dianzi University,
Hangzhou 310018, China; anlongzhang@hdu.edu.cn (A.Z.); wangbo@hdu.edu.cn (B.W.);
hanzm@hdu.edu.cn (Z.H.)

2 Department of Electrical and Electronic Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

* Correspondence: linzy@sustech.edu.cn

Abstract: A recurrent neural network (RNN) and differential evolution optimization (DEO) based
nonlinear model predictive control (NMPC) technique is proposed for position control of a single-link
flexible-joint (FJ) robot. First, a simple three-layer recurrent neural network with rectified linear units
as an activation function (ReLU-RNN) is employed for approximating the system dynamic model.
Then, using the RNN predictive model and model predictive control (MPC) scheme, an RNN and
DEO based NMPC controller is designed, and the DEO algorithm is used to solve the controller.
Finally, comparing numerical simulation findings demonstrates the efficiency and performance of
the proposed approach. The merit of this method is that not only is the control precision satisfied,
but also the overshoots and the residual vibration are well suppressed.

Keywords: flexible-joint robot; nonlinear model predictive control; differential evolution; recurrent
neural network

1. Introduction

The control of the flexible-joint (FJ) robot has been a major research topic in the field
of control theory and engineering for several decades [1–7]. The FJ robot benefits from the
characteristic of inbuilt compliance that provides low output impedance, shock tolerance,
and accurate force control [8]. Due to its benefits, the FJ robot has been widely used in
many applications where robot interacts with environments or with humans, such as
monopod hopping robots and exoskeletons [9]. However, the FJ robot is an under-actuated
strong coupling nonlinear system [10]. The control of such a complex nonlinear system
is a difficult task. Therefore, the goal of this study is to design a suitable controller for a
single-link FJ robot, which can also be utilized for complicated nonlinear systems.

Model-free methods have been generally employed in the field of FJ robot control. The
earliest influential control approach is the traditional proportional-derivative (PD) method
with gravity compensation [11,12]. Different types of PD controllers have been proposed
because of their simplicity and practicability [13–15]. To deal with the overshoots and
residual vibration, a fuzzy proportional-integral-derivative (PID) controller was proposed
to suppress the elastic torsional vibration [16], and a nonlinear state feedback controller was
employed to suppress the residual vibration of FJ robot [10]. Although these techniques
in the aforementioned references have acquired relatively excellent performance in the FJ
robot control, there are still certain issues requiring attention. For instance, the parame-
ters of model-free controllers must be adjusted according to the requirements of system
performance. The control performance is sensitive to the controller parameters, and these
parameters are complex to adjust. Unlike the model-free method, model predictive control
(MPC) as a primary model-dependent control method is an efficient controller to handle the

Electronics 2021, 10, 2426. https://doi.org/10.3390/electronics10192426 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5523-4467
https://doi.org/10.3390/electronics10192426
https://doi.org/10.3390/electronics10192426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192426
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192426?type=check_update&version=2

Electronics 2021, 10, 2426 2 of 19

performance requirements. For example, in [17,18], the MPC controller has been utilized
for robot manipulator trajectory tracking. For high precision position tracking of the robot
arm, a data-driven MPC method has been proposed which has shown performance im-
provement compared to the PID method [19]. The MPC controller has been performed well
in process control, automotive systems, and robotics due to its advantages of versatility,
robustness, and safety guarantees [20–24]. However, the major challenge in the MPC
method is obtaining an accurate system dynamic model. As we all know, the model of the
FJ robot system is prone to uncertainty disturbances, inaccurate parameters, and unknown
model functions (e.g., the friction model), making MPC implementation difficult. The
neural network (NN) approach has been widely used as a strong tool in dealing with uncer-
tainties and unknown model functions. For instance, the NN method has been employed
to approximate the friction model for implementing friction compensation [25,26], and it
was applied to estimate the unknown model parameters and uncertainties for achieving
adaptive control [27–29]. Nevertheless, to the best of our knowledge, few works use the
NN method to approximate the FJ robot system dynamics.

Recently, the study of merging MPC and NN techniques has increased [30], in which
the NN methods are utilized to deal with the difficulty of modeling system dynamics. For
example, in [31], a deep recurrent neural network (RNN) MPC architecture has been estab-
lished to slice foods. In [32–34], deep NN was used to approximate soft robot dynamics for
implementing MPC. Besides, NN has been utilized to approximate the MPC laws in [35–39].
In robot system, the optimization problem of MPC is still the challenges due to the nonlin-
ear dynamic model and other non-convex constraints [40]. In addition, the robot system
often suffers the deadloack problem, which has been well investigated in [41–43]. A suit-
able method for solving the nonlinear MPC (NMPC) is differential evolution optimization
(DEO). DEO is a heuristic method proposed by [44], which is effective for solving numerical
optimization issues. DEO has been designed as a stochastic parallel direct search method,
and there are many studies on parallel DEO [45–48]. The DEO algorithm has the benefit of
being a global optimization technique that is simple to understand and implement, and
has strong robustness and fewer parameters to be adjusted. Due to its advantages, DEO
has been extensively investigated [49] and successfully applied in diverse fields, including
robot manipulator systems [50], mobile robots [51–53], autonomous cars [54], spectrum
sensing systems [55], and permanent magnet synchronous motor systems [56]. Although
the integrating MPC and NN methods produced good results in robot applications, few
researches are focusing on the position control of the FJ robot. On one hand, the FJ robot
system dynamics are hard to obtain. Contrarily, the optimization process of NMPC is a
nonlinear programming problem, which is tough to solve.

In this study, we present an RNN and DEO based NMPC approach for position control
of a single-link FJ robot. The RNN is employed to approximate the system dynamics, and
the DEO algorithm is applied to solve the NMPC controller. The key contributions of this
research are summarized as follows:

• First, an RNN and DEO based NMPC method is proposed for the position control of a
single-link FJ robot. The merit of this process is that not only is the control precision
satisfied, but also the overshoots and the residual vibration is well suppressed.

• To overcome the difficulty of modeling, a simple three-layer RNN with leaky rectified
linear units as an activation function (ReLU-RNN) is established to approximate the
FJ robot dynamic model with satisfactory precision. Then, according to the RNN
predictive model and MPC approach, an RNN and DEO based NMPC controller is
designed, in which the DEO algorithm is applied to solve the controller.

• Finally, to demonstrate the efficiency and performance of this technique, some nu-
merical simulation comparisons between our method and the PD method and the
differential dynamic programming (DDP) [57] MPC approach have been established.
Numerical simulation findings illustrate that the performance of this technique is
superior to that of the PD and DDP MPC methods.

Electronics 2021, 10, 2426 3 of 19

The remainder of this paper is organized as follows. In Section 2, the dynamic model
of the single-link FJ robot, including the direct-current (DC) motor dynamics is established.
In Section 3, the controller design is indicated. The numerical simulations are displayed in
Section 4. Finally, the conclusion is given in Section 5.

2. Single-Link FJ Robot System Model

In this section, we establish the single-link FJ robot dynamic model with the DC motor
dynamics being considered. The single-link FJ robot system, which can rotate in vertical
plane, is shown in Figure 1.

Figure 1. The architecture of single-link FJ robot system.

The system comprises two parts, as shown in Figure 1. The left part is the motor side,
which includes a motor drive board, a DC motor, and a gear reduction box. The right part
is the link side, which is composed of a massless link and a load. The two sections are
linked by an elastic element, which is modeled as a linear spring. The FJ robot rotates in a
vertical plane with the assumption that the elastic element can only deform in the direction
of joint rotation [4]. The driving torque provided by the DC motor is τm, and the gear
reduction ratio is 1:N. The motor side torque is τ2 = Nτm. The stiffness of the linear spring
is K. The angular position of the motor side is θ2, and the link side angular position is θ1.
When the joint rotates, the joint can deform in the direction of rotation, and the torque can
be represented by τ1(ϕ) = K(θ2 − θ1), where ϕ = θ2 − θ1 denotes the deformation of a
linear spring. θ̇1 and θ̇2 stand for the angular velocity of the link side and the motor side,
respectively. Similarly, θ̈1 and θ̈2 symbolize the angular acceleration of the link side and
the motor side, respectively. For the sake of simplicity, we presume the viscous damping
on the motor side and the link side to be B1(θ̇1) = K f1 θ̇1 and B2(θ̇2) = K f2 θ̇2, where K f1
and K f2 denote the damping coefficient of the motor side and the link side, respectively.
G(θ1) = mglsin(θ1) represents gravity, where m is the quality of the load, g is the gravity
acceleration, and l is the length of the massless link. The rotary inertia of the link side and
the motor side are J1 and J2, respectively. Then, based on the Euler–Lagrangian equations,
the system dynamics is formulated as (1) [58]{

J1θ̈1 + G(θ1) + B1(θ̇1) = τ1(ϕ),

J2θ̈2 + τ1(ϕ) + B2(θ̇2) = τ2.
(1)

Electronics 2021, 10, 2426 4 of 19

Since the motor is employed to actuate the system, the motor dynamics are also
considered to institute the system dynamic model. The motor dynamics are depicted as (2){

τm = Kτ i,
Ri + Li̇ + Ke θ̇m = UV ,

(2)

where Kτ is motor torque coefficient, i denotes motor armature current, R represents arma-
ture circuit resistance, L stands for armature circuit inductance, Ke is back electromotive
coefficient, θ̇m denotes the angular velocity of the motor rotor, and UV symbolizes motor
armature voltage.

The torque produced by the motor is transmitted to the motor side using a gear
reduction box as shown in Figure 1. We suppose that there is no transmission loss. Then,
based on Equation (2), we attain {

τ2 = NKτ i,
θ̇2 = 1

N θ̇m.
(3)

According to the above analysis, combining (1)–(3), the system dynamics including the
motor dynamics can be described as (4)

J1θ̈1 + mglsin(θ1) + K f1(θ̇1) = K(θ2 − θ1),

J2θ̈2 + K(θ2 − θ1) + K f2(θ̇2) = NKτ i,

Ri + Li̇ + NKe θ̇2 = UV .

(4)

Let us define x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, x5 = i, u = UV . Then, the system
dynamics can be formulated by following state-space expression (5) and (6)

Ẋ(t) =

0 1 0 0 0

− K
J1
−K f1

J1
K
J1

0 0

0 0 0 1 0
K
J2

0 − K
J2
−K f2

J2

NKτ
J2

0 0 0 −NKe
L −

R
L

X(t)−

0
mgl
J1

sinx1(t)

0

0

0

+

0

0

0

0
1
L

u(t), (5)

Y(t) = [1, 0, 0, 0, 0]X(t), (6)

where X(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]T denotes the system state vector, and Y(t)
symbolizes the system output. u(t) stands for the control input of the system.

This model contains unmodeled parts, such as an accurate friction model, gear back-
lash, and mechanical transmission efficiency. Besides, precise model parameters are difficult
to obtain. This type of nonlinear system is complex to control as the model is unknown.
Thus, we present an RNN and DEO based NMPC method, which can be utilized for
complicated nonlinear systems.

3. Controller Design
3.1. Nonlinear Model Predictive Control

Based on our system, the fundamental scheme of NMPC is detailed in this subsection.
We utilize the discrete-time nonlinear autoregressive exogenous dynamic model to repre-
sent the system state-space Equation (5), which is capable of predicting future states for
long-time series. At time step k, the state X(k + 1) is predicted by (7)

X(k + 1) = fp(Xk, Uk), (7)

where Xk = [XT(k), XT(k− 1), ..., XT(k− dx + 1)] represents system state time series from
kth time step through k− dx + 1th time step, correspondingly, Uk = [u(k), u(k− 1), ..., u(k−

Electronics 2021, 10, 2426 5 of 19

du + 1)] depicts the control input time series. dx and du stand for the length of time series
of system state and control input, respectively. fp(·) signifies a nonlinear function.

For long-time series prediction, the predicted system state is transmitted into Xk
recurrently, for example (8)

X(k + 2) = fp(Xk+1, Uk+1). (8)

At k + 1th time step predicted system state X(k + 1) is transmitted into Xk, and system
state time series is updated as Xk+1 = [XT(k + 1), XT(k), ..., XT(k − dx + 2)]. Similarly,
exogenous control input is transmitted into Uk and the control input time series is updated
as Uk+1 = [u(k + 1), u(k), ..., u(k− du + 2)]. This formula is not only useful for establishing
NMPC controller but also convenient for approximating the model using NN.

Then, we consider the discrete-time nonlinear system (7) to express the MPC scheme.
Equation (7) including constraints can be rewritten as (9)

X̂(k + 1) = fn(Xk, Uk),

Xk ∈ X , k = 0, 1, ..., N

Uk ∈ U , k = 0, 1, ..., N

(9)

whereX ⊂ <5 symbolizes system state vector constraints, and U ⊂ < denotes control input
constraints. fn(·) stands for the nonlinear function, which is approximated by ReLU-RNN.
N is the prediction horizon.

A nonlinear MPC controller works by minimizing the performance criterion such as (10)

U?(k) = arg min
[u?

0 ,u?
1 ,...,u?

N−1]

J(X(k), U(k)), (10)

where X(k) = [Xk, Xk+1, ..., Xk+N−1] and U(k) = [u0, u1, ..., uN−1] symbolize the system
state information and control input to be optimized, respectively. The cost function is
denoted by J(X(k), U(k)). U?(k) = [u?

0 , u?
1 , ..., u?

N−1] signifies the optimized control input
series. Each state-input pair satisfies Equation (9) with constraints. When the control input
series are optimized, only the first term u?

0 is applied to the system until the next time
step, and the system state measurements are updated at the next time step. Then, the
optimization procedure is repeated at each time step, which runs as a closed-loop.

In the field of robot control, it is very important to realize accurate position control,
speed control and torque control. In practical applications, the accuracy of position control
will directly affect the performance of the robot. When performing position control, the
residual vibration is easy to be inspired due to the existence of elastic elements [10].
Therefore, position control is the most important and more challenging in FJ robot control.
In this study, in order to achieve accurate position control, the position variable is selected
as the control objective of the NMPC controller, so that we design the quadratic cost
function as (11)

J(X(k), U(k)) = α
N−1

∑
j=0

[
x̂1(k + j + 1)− xre f

1 (k + j + 1)
]2

+ β
N−1

∑
j=0

[u(k + j + 1)− u(k + j)]2, (11)

subject to the terminal constraint (12)

X̂(k + N) = 0, (12)

where x̂1(k + j + 1) denotes predicted position state and xre f
1 (k + j + 1) represents the

reference trajectory. u(k + j) stands for the system control input at time step k + j. Due
to the constraints of the control input in the real system, this term is introduced into the
objective function as adjustment. α and β are the penalty coefficients of the performance
criterion and control input, respectively.

Electronics 2021, 10, 2426 6 of 19

We conclude from the above analysis that this technique is flexible as we have the
option to design the cost functions for various objectives. For example, we can execute the
velocity and torque control by simply varying the cost functions. However, implementing
an NMPC controller is rather challenging, and there are two main problems in designing
the controller. The first is how to create an accurate predictive model, and the second is how
to solve the optimization problem successfully. We utilize a ReLU-RNN to approximate
the system dynamic model in Section 3.2 to overcome the difficulty of nonlinear system
modeling. The DEO algorithm, which will be described in Section 3.3 is used to optimize
the control inputs.

3.2. Dynamics Model Approximation Using ReLU-RNN

We approximate the discrete-time dynamic model (7) by utilizing a simple three-layer
ReLU-RNN, which is displayed in Figure 2.

Figure 2. The ReLU-RNN architecture used to approximate system dynamic model.

From Figure 2, the input of the hidden neuron ai,k is computed by (13)

ai,k = W x
i Xk + Wu

i Uk + bi, (13)

where W x
i and Wu

i are the weight vectors of the system state and control input for ith
hidden neuron. bi signifies the bias of ith hidden neuron. The ith hidden neuron output
hi,k is evaluated by (14)

hi,k = δ(ai,k), (14)

where δ(·) represents the nonlinear activation function. We choose the leaky ReLU function
as the nonlinear activation function, selected because it is useful for computing efficiently
and preventing gradients from disappearing. The leaky ReLU function is detailed as (15)

δ(ϑ) =

{
ϑ, if ϑ ≥ 0,

0.01ϑ, if ϑ < 0,
(15)

where ϑ indicates the input variable of leaky ReLU function. Then, the predicted output is
expressed as (16)

x̂j(k + 1) = W o
j hk + bo

j , j = 1, 2, ..., 5, (16)

where W o
j symbolizes the weight vector of jth output neuron concerning hidden layer

neurons, and bo
j is the bias of jth output neuron. hk = [h1,k, h2,k, ..., hq,k], where q is the

Electronics 2021, 10, 2426 7 of 19

number of hidden neurons. Combining (13)–(16), ReLU-RNN is capable of estimating
system dynamic model by (17)

X̂(k + 1) = fn(W , b, Xk, Uk), (17)

where W and b represent the weights and bias of the NN, respectively.
Each batch of training data contains 1000 randomly selected state-input pairs through-

out the training process. The state-input pairs are generated by the simulation of discretized
system model (5). We choose the the mean squared error (MSE) as the loss function, which
is denoted as (18)

`(X̂k, Xk) =
1
N

N

∑
j=1
||X̂(k + j)− X(k + j)||2

=
1
N

N

∑
j=1
|| fn(W , b, Xk+j−1, Uk+j−1)− X(k + j)||2,

(18)

where X̂k = {X̂(k + 1), X̂(k + 2), ..., X̂(k + N)} symbolize the predicted values of system
states. According to (18), the backpropagation method may be used to obtain the weight

gradients `(X̂,X)
∂W and bias gradients `(X̂,X)

∂b . Then, we adopt the Adam algorithm [59], a type
of gradient descent method, to train the network. Using Intel(R) Core(TM) i7-8550U CPU,
the learning rate is set to 1.0× 10−5, and the training process is completed after 50 min.
The parameters of ReLU-RNN are set as follows. dx and du are set to 5. The number of
neurons in the hidden layer is 15, in the input layer is 30, and in the output layer is 5. The
training findings are displayed in Section 4.

3.3. RNN and DEO Based NMPC Controller

In this subsection, we first introduce the DEO algorithm, which is based on the NMPC
technique. Then, the RNN and DEO based NMPC controller is designed in detail.

The standard DEO is commonly indicated as DE/rand/1/bin [44]. A randomly
selected population P consists of NP individuals corresponding to the prediction horizon
of NMPC, each individual is an N-dimensional vector, which is represented by Ui =
[ui,1, ui,2, ..., ui,N]. The Ui corresponds to the control input Uk+N that will be optimized.
The evolutionary generation time in DEO is expressed by G = 0, 1, 2, ..., Gm, where Gm
signifies the highest generation time. At Gth generation, the ith individual of the Gth
generation population is designated as UG

i = [uG
i,1, uG

i,2, ..., uG
i,N] with each element of UG

i
constrained to [uL, uU]. uL and uU are the lower band and upper band of the control
input, respectively. The population will vary with the evolution process, PG stands for
the Gth generation population, and the initial population P0 is randomly generated with
the boundary constraint [uL, uU]. The basic DEO algorithm operation procedure contains
initialization, mutation, crossover, and selection, which are detailed as follows.

Initialization: To establish the initial point of the optimization search, the population
needs to be initialized. Generally, one way to build an initial population is to randomly
select from the values within a given boundary constraint. It is a common assumption that
all populations with random initialization conform to a uniform probability distribution.
Typically, each jth element of the ith individual in the P0 is initialized by (19)

u0
i,j = uL + rand(0, 1) · (uU − uL), (i = 1, 2,, NP, j = 1, 2,, N), (19)

where rand(0, 1) denotes a uniformly distributed random number in [0, 1].
Mutation: For each individual vector UG

i , a mutant vector VG
i = [νG

i,1, νG
i,2, ..., νG

i,N] at
generation G is generated by (20)

VG
i = UG

r1
+ F · (UG

r2
−UG

r3
), r1 6= r2 6= r3 6= i, (i = 1, 2,, NP), (20)

Electronics 2021, 10, 2426 8 of 19

where r1, r2, r3 ∈ {1, 2, 3, ..., NP} represent randomly chosen indices. F ∈ [0, 2] is the zoom
factor of the difference vector (UG

r2
− UG

r3
). If the element νG

i,j of the mutant individual
violates the feasible region boundary of the search space, a simple method to treatment this
problem is to replace the element with a novel one formulated by Equation (19). Another
method is boundary absorption, which is described as (21)

νG
i,j =

{
uL, if νG

i,j < uL,

uU , if νG
i,j > uU ,

(i = 1, 2,, NP, j = 1, 2,, N), (21)

The mainstream mutation strategies are described as follows (22)–(27)

(1) DE/rand/1/bin

VG
i = UG

r1
+ F · (UG

r1
−UG

r2
), r1 6= r2 6= r3 6= i, (22)

(2) DE/rand/2/bin

VG
i = UG

r1
+ F · (UG

r2
−UG

r3
) + F · (UG

r4
−UG

r5
), r1 6= r2 6= r3 6= r4 6= r5 6= i, (23)

(3) DE/best/1/bin
VG

i = UG
best + F · (UG

r1
−UG

r2
), r1 6= r2 6= i, (24)

(4) DE/best/2/bin

VG
i = UG

best + F · (UG
r1
−UG

r2
) + F · (UG

r3
−UG

r4
), r1 6= r2 6= r3 6= r4 6= i, (25)

(5) DE/current-to-best/1/bin

VG
i = UG

i + F · (UG
best −UG

r1
) + F · (UG

r2
−UG

r3
), r1 6= r2 6= r3 6= i, (26)

(6) DE/rand-to-best/1/bin

VG
i = UG

r + F · (UG
best −UG

r1) + F · (UG
r2
−UG

r3
), r1 6= r2 6= r3 6= i, (27)

where r1, r2, r3, r4, r5 ∈ {1, 2, ..., NP} are randomly chosen individual indices. UG
best denotes

the best fitness individual vector of Gth generation.
Crossover: To maintain the diversity of the population, the crossover operation is

introduced. Binomial crossover strategy is most frequently utilized, which is expressed
as (28)

zG
i,j =

{
νG

i,j, if rand(i) ≤ Cr or j = randint(j),

uG
i,j, otherwise,

(28)

where ZG
i = [zi,1, zi,2, ..., zi,N] stands for the trial vector. Cr ∈ [0, 1] is the crossover rate,

which determines how many elements are inherited from the mutant vector. randint(j) is a
randomly generated integer of [1, N], which is used to make sure that at least one element
of the trial vector is inherited from the mutant vector.

Selection: In the selection procedure, the fitness function of the DEO algorithm is
designed according to the control objective. Since our goal is to execute position control of
a single-link FJ robot, the cost function detailed in Equation (11) is designed as the fitness
function (29) of the DEO algorithm.

f (Ui) = α
N−1

∑
j=0

[
x̂1(k + j + 1)− xre f

1 (k + j + 1)
]2

+ β
N−1

∑
j=0

(ui,j+1 − ui,j)
2. (29)

Electronics 2021, 10, 2426 9 of 19

The best individual in current population is selected by calculating the fitness function.
The selection method is represented by (30)

UG+1
i =

{
ZG

i , if f (ZG
i) < f (UG

i),

UG
i , otherwise,

(30)

In this paper, we adopt DE/best/2/bin (25) as the mutation progress of the DEO
algorithm. The adaptive mutation factor is applied to scale the difference vector, which is
described as (31)

F = F0 × 2λ, λ = e1−Gm/(Gm+1−G), (31)

where F0 signifies the initial mutation factor. The adaptive mutation factor is 2F0, which
is a big value at the beginning of the evolution. Then, the diversity of individuals can
be maintained, and it benefits for avoiding premature. In the later evolution period, the
mutation rate is close to F0, the better individual is retained, and the damage of the optimal
solution is avoided. In this approach, the probability of searching for the global optimal
solution is enhanced. The flow chart of the DEO algorithm is shown in Figure 3.

Figure 3. The flow chart of DEO algorithm.

The RNN and DEO based NMPC controller architecture is illustrated in Figure 4. First,
we employ the ReLU-RNN described in Section 3.2 to approximate the system dynamic
model. Then, the ReLU-RNN predictive model is employed for predicting system forward
dynamics, which is capable of integrating into NMPC architecture for designing the NMPC
controller. Finally, the DEO algorithm is utilized to optimize the control inputs, only the
first term u?

0 is applied to the system, and the whole procedure runs as a closed-loop.
Based on the sampled system state information and the control inputs that will be

optimized, the predicted position states x̂1(k + j + 1) will be obtained via the ReLU-RNN
predictive model (17). Then, the fitness function (29) is computed, and the system control
inputs can be optimized via the DEO algorithm. The process of optimization via DEO
algorithm is detailed in Algorithm 1.

Electronics 2021, 10, 2426 10 of 19

Algorithm 1 The optimization process of DEO.

Input:
Individual dimension: N
Maximum evolution generation: G = 0, 1, 2, ..., Gm
Individual lower band: uL
Individual upper band: uU

Output:

The best f (UGm
best), and the best individual UGm

best

1: Initialize parameters: Cr, F0, and NP

2: Randomly initial population: U0 = [U0
1 , U0

2 , ..., U0
NP

]

3: for G = 0 to Gm do

4: Evaluate f (UG
i) and select the best individual UG

i , i = 1, 2, ..., NP

5: Let UG
best ← UG

i

6: Evaluate adaptive mutation factor: F = F0 × 2λ, λ = e1−Gm/(Gm+1−G)

7: for i = 1 to Np do

8: Randomly generate: r1, r2, r3, r4 and r1 6= r2 6= r3 6= r4 6= i

9: VG
i = UG

best + F · (UG
r1
−UG

r2
) + F · (UG

r3
−UG

r4
)

10: Randomly generate randint(j), randint(j) ∈ {1, 2, ..., N}

11: for j = 1 to N do

12: if rand(0, 1) < CR or j = randint(j) then

13: zG
i,j ← νG

i,j

14: else

15: zG
i,j ← uG

i,j

16: end if

17: if zG
i,j ≤ uL then

18: zG
i,j ← uL

19: end if

20: if zG
i,j ≥ uU then

21: zG
i,j ← uU

22: end if

23: end for

24: if f (ZG
i) ≤ f (UG

i) then

25: UG
i ← ZG

i

26: end if

27: end for

28: end for

29: return The best f (UGm
best), and the best individual UGm

best.

Electronics 2021, 10, 2426 11 of 19

Figure 4. The architecture of RNN and DEO based NMPC controller.

A corresponding summary of the RNN and DEO based NMPC scheme can be pre-
sented as follows:

Step1. Obtaining the current system states and the saved history system states in-
formation along with system control inputs from the single-link flexible joint
robot system.

Step2. Based on the system state information, using the ReLU-RNN predictive model
to predict future position states with N time steps.

Step3. According to the predicted system state information and the designed cost
function, using the DEO (Algorithm 1) to solve the NMPC controller.

Step4. Applying the first term (u?
0) of the optimized control inputs to the system until

the next time step.
Step5. Time step proceeds forward one step (k = k + 1). Then, it updates the saved

history system state information, and returns to Step 1.

3.4. Control Stability Analysis

The NMPC is obtained for the plant (9) by minimizing the cost function (11) satisfy
the terminal constraint (12). It is clearly that J(X(k), U(k)) ≥ 0 and J(X(k), U(k)) = 0 only
if U(k) = 0, and J(X(k), U(k)) is decrescent. We assume that X(k) = 0 and U(k) = 0
is an equilibrium condition for the plant: 0 = f (0, 0). The MPC control law is U?(k) =
[u?

0 , u?
1 , ..., u?

N−1]. Thus, the equilibrium point X(k) = 0 and U(k) = 0 is stable, providing
that the optimization problem is feasible and is solved at each time step [23,60,61].

We define J?(X(k), U?(k)) as the optimal value of J(X(k), U?(k)) which corresponds
to the optimal control input U?(k). It is clearly that J?(X(k + 1), U?(k + 1)) ≥ 0, and
J?(X(k), U?(k)) = 0 only if U?(k) = 0. We will show that J(X(k + 1), U?(k + 1)) ≤
J?(X(k), U?(k)), and hence that J?(X(k), U?(k)) is a Lyapunov function for the closed-
loop system.

As usual in stability proofs, we will assume that the ReLU-RNN predicitve model
is perfect, so that the predicted and real state trajectories coincide: X(k + j) = X̂(k + j) if
u(k + j) = u?(k + i).

Let define

J(X(k), U(k)) = min
U

N−1

∑
j=0

G(X(k), U(k)) (32)

Electronics 2021, 10, 2426 12 of 19

where

G(X(k), U(k)) = α
[

x1(k + j + 1)− xre f
1 (k + j + 1)

]2
+ β[u(k + j + 1)− u(k + j)]2 (33)

With this assumption we have

J?(X(k + 1), U(k + 1)) = min
U

N

∑
j=1

G(X(k + j + 1), U(k + j))

= min
U

N

∑
j=1

G(X(k + j), U(k + j− 1))− G(X(k + 1), U(k)) + G(X(k + N + 1), U(k + N))

≤ −G(X(k + 1), U(k)) + J?(X(k), U(k)) + min
U
{G(X(k + N + 1), U(k + N))}.

(34)

We have assumed that the terminal constraint is satisfied, the optimization problem was
assumed to be feasible, so we can make U(k + N) = 0 and stay at X(k) = 0, which gives

min
U
{G(X(k + N + 1), U(k + N))} = 0. (35)

Since G(X(k), U(k)) ≥ 0, we can conclude that J?(X(k + 1), U(k + 1)) ≤ J?(X(k), U(k)).
Thus, J?(X(k), U(k)) is a Lyapunov function, and we conclude by Lyapunov’s theorem
that the equilibrium X(k) = 0, U(k) = 0 is stable.

4. Numerical Simulations

In this section, MATLAB 2019b is employed to create numerical simulations to demon-
strate the effectiveness and performance of our suggested method. To verify the superiority
of this method, the conventional PD and DDP MPC methods were considered compara-
tives. DDP MPC is an NMPC technique that uses DDP to solve the MPC controller. To
achieve a fair comparison, the predictive model and cost function used in DDP MPC were
the same as the RNN and DEO based NMPC method, and the parameters of the controllers
were carefully adjusted.

The model approximated by ReLU-RNN, which has been described in Section 3.1,
was used for designing the NMPC controller. The discretized system dynamic model (5)
was simulated in MATLAB, which is regarded as the real system platform. Table 1 lists the
parameters of the simulated model.

Table 1. The simulation model parameters of single-link FJ robot.

Parameters Values Parameters Values

J1 0.8 kg·m2 R 5.3 Ω
J2 0.1 kg·m2 K f1

2.0
N 200 K f2 2.0
K 70 Nm/rad m 0.3 kg
L 1.4 × 10−5 H l 0.5 m

Kτ 9.3 × 10−3 Nm/A g 9.8 m/s2

Ke 0.1 V/rad/s - -

The MSE (18) was employed to evaluate the performance of the approximated model.
Table 2 shows the model approximation results. The findings revealed that the prediction
precision of the learned model was relatively accurate.

Table 2. The MSE of the ReLU-RNN predictive model.

States x1 (rad) x2 (rad/s) x3 (rad) x4 (rad/s) x5 (A)

MSE 3.14× 10−7 4.76× 10−7 2.60× 10−7 1.44× 10−7 6.25× 10−8

Electronics 2021, 10, 2426 13 of 19

Figure 5 displays the progress of the multi-step prediction of the ReLU-RNN predictive
model. Correspondingly, Figure 6 shows the absolute errors. The figures show that, even
if a forward prediction was 20 time steps, the performance of the ReLU-RNN predictive
model was also satisfied, and it could be used to establish an NMPC controller.

2 4 6 8 10 12 14 16 18 20

0.6

0.8

1

p
o

si
ti

o
n

 (
ra

d
)

2 4 6 8 10 12 14 16 18 20
-2

0

2

v
el

ci
ty

 (
ra

d
/s

)

2 4 6 8 10 12 14 16 18 20

time step

-4

-2

0

2

4

cu
rr

en
t

(A
)

Figure 5. The progress of multi-step prediction.

2 4 6 8 10 12 14 16 18 20

time step

0

2

4

6

8

10

12

14

16

18

20

p
re

d
ic

ti
o

n
 e

rr
o

rs
 v

al
u

e

10
-3

Figure 6. The absolute errors of multi-step prediction.

In the simulation procedure, the time step for the suggested method and DDP MPC
was 20 ms, and the prediction horizon was five time steps. The parameters of the DEO
algorithm are displayed as follows, F0 = 0.5, CR = 0.5, NP = 30, Gm = 200. The control
inputs were constrained in [−24 V, 24 V].

The experimental results proposed by [44,62] have shown that the DEO has good
convergence properties. To demonstrate the convergence of DEO, the cost values of the
optimization process are plotted in Figures 7 and 8. Figure 7 displays the cost values in
evolutionary iteration at each time step. It can be seen that the cost value converged to a
fixed value after 80 iterations. Figure 8 shows the optimized cost values at the target track-
ing process. We can see that the cost values converged to a small value with the increase of
time step, which indicates that the DEO could solve the proposed controller effectively.

Electronics 2021, 10, 2426 14 of 19

20 40 60 80 100 120 140

Iteration

0

200

400

600

800

1000

1200

1400

C
o
st

 V
al

u
e

Time step 1
Time step 2
Time step 3
Time step 4
Time step 5

Figure 7. The cost values of the optimization process at five adjacent time steps.

5 10 15 20 25 30 35 40 45 50
time step

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

co
st

 v
al

u
e

10
5

cost value

Figure 8. The cost values of the optimization process at each time step.

Figures 9 and 10 depicts the tracking performance of different controllers, while Table 3
indicates the state error of different controllers. The findings illustrate that both controllers
could efficiently control the system.

0 5 10 15

time (s)

0

0.2

0.4

0.6

0.8

1

p
o

si
ti

o
n

 (
ra

d
)

PID

DDP MPC

Proposed

Target

Figure 9. The target tracking process of different controllers.

Electronics 2021, 10, 2426 15 of 19

0 5 10 15

time (s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

co
n
tr

o
l

in
p
u
t

(V
)

PID

DDP MPC

Proposed

Figure 10. The control actions of different controllers.

Table 3. Comparison of the state error of different controllers.

Controller Proposed PID DDP MPC

Proposed 0.0037 0.0049 0.0016

Figure 9 indicates that there were some overshoots and residual vibration in the
system response when controlled by the PD and DDP MPC methods. This is due to the
existence of an elastic element in the FJ robot, which led to the overshoots and residual
vibration being easily inspired. Nevertheless, from Figure 9, we can see that the proposed
controller was able to reduce the overshoots and suppress the residual vibration.

Table 3 demonstrates that our controller had a certain degree of precision control,
and the precision was better than the PD controller. The DDP MPC controller achieved
higher precision than our controller, but a closer look at the tracking progress in Figure 9,
shows that the tracking process of our controller was smooth, with few overshoots and
the vibration was well suppressed. Figure 10 depicts the controller actions. The control
signal of the DDP MPC controller fluctuated greatly, the PD controller presented smaller
fluctuations, and the proposed controller had the smallest fluctuations. The fluctuations in
the controller signal had a great influence on the system, potentially reducing the service
life of the robot and even leading to mechanical damage. The influence of controller signal
fluctuations was, to some extent, more essential than control precision. It indicates that our
strategy was more suitable for FJ robot control.

The need for a closed-loop system is important in the presence of external disturbances.
To verify that the proposed controller is robust to external disturbances, we added external
disturbances to the system. Figures 11 and 12 show the system responses with external
disturbances. As can be seen from Figure 11, the system responded quickly and remained
stable. The control performance was also fairly satisfactory. Figure 12 depicts the control
actions, which demonstrates that the proposed controller could be solved by the DEO
efficiently and it could achieve a good robustness against external disturbances.

Electronics 2021, 10, 2426 16 of 19

0.5 1 1.5 2 2.5 3 3.5 4

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
o
si

ti
o
n
 (

ra
d
)

Response

Target

external disturbances

Figure 11. The target tracking process with external disturbances.

0.5 1 1.5 2 2.5 3 3.5 4

time (s)

0

5

10

15

20

25

co
n

tr
o

l
in

p
u

t
(V

)

control input

Figure 12. The control actions with external disturbances.

Based on the above investigation, we conclude that the performance of the RNN and
DEO based NMPC method was better than that of the PD and DDP MPC methods. In
addition, this method achieved a good robustness against external disturbances. The merit
of the proposed method was that not only was the control precision satisfied, but also the
overshoots and residual variation were suppressed well.

5. Conclusions

This work presents an RNN and DEO based NMPC approach for position control of a
single-link FJ robot. First, the system dynamic model has been approximated using a simple
three-layer ReLU-RNN. Then, according to the RNN predictive model and MPC method,
the RNN and DEO based NMPC controller was designed, in which the DEO algorithm was
utilized to optimize the control inputs. Finally, through comparative numerical simulations,
the effectiveness and performance of the proposed technique have been verified. The
simulation findings have shown that the suggested method is superior to that of the PD
and DDP MPC methods, which is capable of minimizing overshoots and suppressing
residual variation with the control precision satisfied.

The parallel DEO can speed up the optimization process because DEO is a stochastic
optimization algorithm that is inherently parallel. In the future, considering the optimiza-
tion solution time, we will evaluate the RNN and parallel DEO based NMPC approach
that can be utilized for implementing real-time NMPC, and it will be further verified

Electronics 2021, 10, 2426 17 of 19

by experiments. In addition, we intend to apply it to multi-degree-of-freedom FJ robot
applications.

Author Contributions: conceptualization, A.Z., Z.L., B.W. and Z.H.; methodology, A.Z.; software,
A.Z.; validation, A.Z., Z.L., B.W. and Z.H.; formal analysis, A.Z.; investigation, A.Z.; resources, A.Z.,
Z.L., B.W. and Z.H.; writing—original draft preparation, A.Z.; writing—review and editing, A.Z.;
visualization, A.Z.; supervision, Z.L., B.W. and Z.H.; project administration, A.Z. and Z.L.; funding
acquisition, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spong, M.W. Adaptive control of flexible joint manipulators. Syst. Control Lett. 1989, 13, 15–21. [CrossRef]
2. Brogliato, B.; Ortega, R.; Lozano, R. Global tracking controllers for flexible-joint manipulators: A comparative study. Automatica

1995, 31, 941–956. [CrossRef]
3. Kim, M.S.; Lee, J.S. Adaptive tracking control of flexible-joint manipulators without overparametrization. J. Robot. Syst. 2004,

21, 369–379. [CrossRef]
4. Huang, A.C.; Chen, Y.C. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans.

Control Syst. Technol. 2004, 12, 770–775. [CrossRef]
5. Ibrir, S.; Xie, W.F.; Su, C.Y. Observer-based control of discrete-time Lipschitzian non-linear systems: Application to one-link

flexible joint robot. Int. J. Control 2005, 78, 385–395. [CrossRef]
6. Akyuz, I.H.; Yolacan, E.; Ertunc, H.M.; Bingul, Z. PID and state feedback control of a single-link flexible joint robot manipulator.

In Proceedings of 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 13–15 April 2011; pp. 409–414.
7. Liu, X.; Yang, C.; Chen, Z.; Wang, M.; Su, C.Y. Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 2018,

275, 73–82. [CrossRef]
8. Yin, W.; Sun, L.; Wang, M.; Liu, J. Nonlinear state feedback position control for flexible joint robot with energy shaping. Robot.

Auton. Syst. 2018, 99, 121–134. [CrossRef]
9. Wang, M.; Sun, L.; Yin, W.; Dong, S.; Liu, J. A novel sliding mode control for series elastic actuator torque tracking with an

extended disturbance observer. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Zhuhai, China, 6–9 December 2015; pp. 2407–2412.

10. Sun, L.; Yin, W.; Wang, M.; Liu, J. Position control for flexible joint robot based on online gravity compensation with vibration
suppression. IEEE Trans. Ind. Electron. 2017, 65, 4840–4848. [CrossRef]

11. Tomei, P. A simple PD controller for robots with elastic joints. IEEE Trans. Automat. Control 1991, 36, 1208–1213. [CrossRef]
12. De Luca, A.; Siciliano, B.; Zollo, L. PD control with on-line gravity compensation for robots with elastic joints: Theory and

experiments. Automatica 2005, 41, 1809–1819. [CrossRef]
13. Alvarez-Ramirez, J.; Cervantes, I. PID regulation of robot manipulators with elastic joints. Asian J. Control 2003, 5, 32–38.

[CrossRef]
14. De Luca, A.; Flacco, F. A PD-type regulator with exact gravity cancellation for robots with flexible joints. In Proceedings of the

2011 International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 317–323.
15. Albu-Schäffer, A.; Petit, C.O.F. Energy shaping control for a class of underactuated euler-lagrange systems. In Proceedings of the

10th IFAC Symposium on Robot Control, Dubrovnik, Croatia, 5–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 45; pp. 567–575.

16. Ju, J.; Zhao, Y.; Zhang, C.; Liu, Y. Vibration suppression of a flexible-joint robot based on parameter identification and fuzzy PID
control. Algorithms 2018, 11, 189. [CrossRef]

17. Tang, Q.; Chu, Z.; Qiang, Y.; Wu, S.; Zhou, Z. Trajectory tracking of robotic manipulators with constraints based on model
predictive control. In Proceedings of the 17th International Conference on Ubiquitous Robots (UR), Kyoto, Japan, 22–26 June
2020; pp. 23–28.

18. Wilson, J.; Charest, M.; Dubay, R. Non-linear model predictive control schemes with application on a 2 link vertical robot
manipulator. Robot. Comput.-Integr. Manuf. 2016, 41, 23–30. [CrossRef]

19. Carron, A.; Arcari, E.; Wermelinger, M.; Hewing, L.; Hutter, M.; Zeilinger, M.N. Data-driven model predictive control for
trajectory tracking with a robotic arm. IEEE Robot. Autom. Lett. 2019, 4, 3758–3765. [CrossRef]

20. Poignet, P.; Gautier, M. Nonlinear model predictive control of a robot manipulator. In Proceedings of the 6th International
Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494), Nagoya, Japan, 30 March–1 April 2000; pp. 401–406.

21. De Nicolao, G.; Magni, L.; Scattolini, R. Robust predictive control of systems with uncertain impulse response. Automatica 1996,
32, 1475–1479. [CrossRef]

22. Magni, L.; Sepulchre, R. Stability margins of nonlinear receding-horizon control via inverse optimality. Syst. Control Lett. 1997,
32, 241–245. [CrossRef]

http://doi.org/10.1016/0167-6911(89)90016-9
http://dx.doi.org/10.1016/0005-1098(94)00172-F
http://dx.doi.org/10.1002/rob.20019
http://dx.doi.org/10.1109/TCST.2004.826968
http://dx.doi.org/10.1080/00207170500101706
http://dx.doi.org/10.1016/j.neucom.2017.05.011
http://dx.doi.org/10.1016/j.robot.2017.10.007
http://dx.doi.org/10.1109/TIE.2017.2772157
http://dx.doi.org/10.1109/9.90238
http://dx.doi.org/10.1016/j.automatica.2005.05.009
http://dx.doi.org/10.1111/j.1934-6093.2003.tb00095.x
http://dx.doi.org/10.3390/a11110189
http://dx.doi.org/10.1016/j.rcim.2016.02.003
http://dx.doi.org/10.1109/LRA.2019.2929987
http://dx.doi.org/10.1016/0005-1098(96)00082-9
http://dx.doi.org/10.1016/S0167-6911(97)00079-0

Electronics 2021, 10, 2426 18 of 19

23. Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O. Constrained model predictive control: Stability and optimality. Automatica
2000, 36, 789–814. [CrossRef]

24. Hewing, L.; Wabersich, K.P.; Menner, M.; Zeilinger, M.N. Learning-based model predictive control: Toward safe learning in
control. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 269–296. [CrossRef]

25. Guo, K.; Pan, Y.; Yu, H. Composite learning robot control with friction compensation: A neural network-based approach. IEEE
Trans. Ind. Electron. 2019, 66, 7841–7851. [CrossRef]

26. Liu, X.; Zhao, F.; Ge, S.S.; Wu, Y.; Mei, X. End-effector force estimation for flexible-joint robots with global friction approximation
using neural networks. IEEE Trans. Ind. Inform. 2019, 15, 1730–1741. [CrossRef]

27. Liu, Y.J.; Li, J.; Tong, S.; Chen, C.L.P. Neural network control-based adaptive learning design for nonlinear systems with full-state
constraints. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1562–1571. [CrossRef] [PubMed]

28. He, W.; Chen, Y.; Yin, Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern.
2016, 46, 620–629. [CrossRef] [PubMed]

29. He, W.; Yan, Z.; Sun, Y.; Ou, Y.; Sun, C. Neural-learning-based control for a constrained robotic manipulator with flexible joints.
IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5993–6003. [CrossRef] [PubMed]

30. Bai, G.; Meng, Y.; Liu, L.; Luo, W.; Gu, Q.; Liu, L. Review and comparison of path tracking based on model predictive control.
Electronics 2019, 8, 1077. [CrossRef]

31. Lenz, I.; Knepper, R.A.; Saxena, A. DeepMPC: Learning deep latent features for model predictive control. In Proceedings of the
Robotics: Science and Systems XI, Rome, Italy, 13–17 July 2015.

32. Gillespie, M.T.; Best, C.M.; Townsend, E.C.; Wingate, D.; Killpack, M.D. Learning nonlinear dynamic models of soft robots for
model predictive control with neural networks. In Proceedings of the 2018 International Conference on Soft Robotics (RoboSoft),
Livorno, Italy, 24–28 Apri 2018; pp. 39–45.

33. Hyatt, P.; Wingate, D.; Killpack, M.D. Model-based control of soft actuators using learned non-linear discrete-time models. Front.
Robot. AI 2019, 6, 22. [CrossRef]

34. Hyatt, P.; Killpack, M.D. Real-time nonlinear model predictive control of robots using a graphics processing unit. IEEE Robot.
Autom. Lett. 2020, 5, 1468–1475. [CrossRef]

35. Li, D.; Li, D. Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time-varying
delays. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2219–2228. [CrossRef]

36. Karg, B.; Lucia, S. Efficient representation and approximation of model predictive control laws via deep learning. IEEE Trans.
Cybern. 2020, 50, 3866–3878. [CrossRef] [PubMed]

37. Thuruthel, T.G.; Falotico, E.; Renda, F.; Laschi, C. Model-based reinforcement learning for closed-loop dynamic control of soft
robotic manipulators. IEEE Trans. Robot. 2018, 35, 124–134. [CrossRef]

38. Hu, Y.; Su, H.; Fu, J.; Karimi, H.R.; Ferrigno, G.; De Momi, E.; Knoll, A. Nonlinear model predictive control for mobile medical
robot using neural optimization. IEEE Trans. Ind. Electron. 2020, 68, 12636–12645. [CrossRef]

39. Cao, Y.; Huang, J.; Xiong, C. Single-layer learning-based predictive control with echo state network for pneumatic-muscle-
actuators-driven exoskeleton. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 80–90. [CrossRef]

40. Kumar, S.S.P.; Tulsyan, A.; Gopaluni, B.; Loewen, P. A deep learning architecture for predictive control. In Proceedings of the
10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM, Shenyang, China, 25–27 July 2018; pp. 512–517.

41. Damasceno, B.C.; Xie, X. Deadlock-free scheduling of manufacturing systems using petri nets and dynamic programming. In
Proceedings of the 14th IFAC World Congress 1999, Beijing, China, 5–9 July 1999; pp. 4870–4875.

42. Fahmy, S.; Balakrishnan, S.; ElMekkawy, T. Deadlock prevention and performance oriented supervision in flexible manufacturing
cells: A hierarchical approach. Robot. Comput.-Integr. Manuf. 2011, 27, 591–603. [CrossRef]

43. Foumani, M.; Gunawan, I.; Smith-Miles, K. Resolution of deadlocks in a robotic cell scheduling problem with post-process
inspection system: Avoidance and recovery scenarios. In Proceedings of the 2015 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), Singapore, 6–9 December 2015; pp. 1107–1111.

44. Storn, R.; Price, K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces.
J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

45. Tasoulis, D.K.; Pavlidis, N.G.; Plagianakos, V.P.; Vrahatis, M.N. Parallel differential evolution. In Proceedings of the 2004
Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 2, pp. 2023–2029.

46. Wang, H.; Rahnamayan, S.; Wu, Z. Parallel differential evolution with self-adapting control parameters and generalized
opposition-based learning for solving high-dimensional optimization problems. J. Parallel Distrib. Comput. 2013, 73, 62–73.
[CrossRef]

47. Pedroso, D.M.; Bonyadi, M.R.; Gallagher, M. Parallel evolutionary algorithm for single and multi-objective optimisation:
Differential evolution and constraints handling. Appl. Soft Comput. 2017, 61, 995–1012. [CrossRef]

48. Zibin, P. Performance analysis and improvement of parallel differential evolution. arXiv 2021, arXiv:2101.06599.
49. Opara, K.R.; Arabas, J. Differential evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [CrossRef]
50. Al-Dabbagh, R.D.; Kinsheel, A.; Mekhilef, S.; Baba, M.S.; Shamshirband, S. System identification and control of robot manipulator

based on fuzzy adaptive differential evolution algorithm. Adv. Eng. Softw. 2014, 78, 60–66. [CrossRef]
51. Zhang, B.; Sun, X.; Liu, S.; Deng, X. Adaptive differential evolution-based receding horizon control design for multi-UAV

formation reconfiguration. Int. J. Control Autom. 2019, 17, 3009–3020. [CrossRef]

http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1146/annurev-control-090419-075625
http://dx.doi.org/10.1109/TIE.2018.2886763
http://dx.doi.org/10.1109/TII.2018.2876724
http://dx.doi.org/10.1109/TNNLS.2015.2508926
http://www.ncbi.nlm.nih.gov/pubmed/26978833
http://dx.doi.org/10.1109/TCYB.2015.2411285
http://www.ncbi.nlm.nih.gov/pubmed/25850098
http://dx.doi.org/10.1109/TNNLS.2018.2803167
http://www.ncbi.nlm.nih.gov/pubmed/29993842
http://dx.doi.org/10.3390/electronics8101077
http://dx.doi.org/10.3389/frobt.2019.00022
http://dx.doi.org/10.1109/LRA.2020.2965393
http://dx.doi.org/10.1109/TSMC.2017.2703921
http://dx.doi.org/10.1109/TCYB.2020.2999556
http://www.ncbi.nlm.nih.gov/pubmed/32574145
http://dx.doi.org/10.1109/TRO.2018.2878318
http://dx.doi.org/10.1109/TIE.2020.3044776
http://dx.doi.org/10.1109/TCDS.2020.2968733
http://dx.doi.org/10.1016/j.rcim.2010.10.006
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.jpdc.2012.02.019
http://dx.doi.org/10.1016/j.asoc.2017.09.006
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1016/j.advengsoft.2014.08.009
http://dx.doi.org/10.1007/s12555-018-0421-2

Electronics 2021, 10, 2426 19 of 19

52. Jhang, J.Y.; Lin, C.J.; Young, K.Y. Cooperative carrying control for multi-evolutionary mobile robots in unknown environments.
Electronics 2019, 8, 298. [CrossRef]

53. Chen, C.H.; Lin, C.J.; Jeng, S.Y.; Lin, H.Y.; Yu, C.Y. Using ultrasonic sensors and a knowledge-based neural fuzzy controller for
mobile robot navigation control. Electronics 2021, 10, 466. [CrossRef]

54. Guo, H.; Cao, D.; Chen, H.; Sun, Z.; Hu, Y. Model predictive path following control for autonomous cars considering a measurable
disturbance: Implementation, testing, and verification. Mech. Syst. Signal Process. 2019, 118, 41–60. [CrossRef]

55. Gul, N.; Kim, S.M.; Ahmed, S.; Khan, M.S.; Kim, J. Differential evolution based machine learning scheme for secure cooperative
spectrum sensing system. Electronics 2021, 10, 1687. [CrossRef]

56. Wei, Y.; Wei, Y.; Sun, Y.; Qi, H.; Li, M. An advanced angular velocity error prediction horizon self-tuning nonlinear model
predictive speed control strategy for PMSM system. Electronics 2021, 10, 1123. [CrossRef]

57. MAYNE, B.D. A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems. Int. J.
Control 1966, 3, 85–95. [CrossRef]

58. Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Number 1; Prentice hall: Englewood Cliffs, NJ, USA, 1991.
59. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 2nd International Conference Learning

Representations (ICLR), Banff, Canada, AB, 14–16 April 2014.
60. Kwon, W.H.; Han, S.H. Receding Horizon Control: Model Predictive Control for State Models; Springer Science & Business Media:

London, UK, 2006.
61. Maciejowski, J.M. Predictive Control: With Constraints; Pearson Education Limited, Prentice Hall: London, UK, 2002.
62. Storn, R. System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 1999, 3, 22–34. [CrossRef]

http://dx.doi.org/10.3390/electronics8030298
http://dx.doi.org/10.3390/electronics10040466
http://dx.doi.org/10.1016/j.ymssp.2018.08.028
http://dx.doi.org/10.3390/electronics10141687
http://dx.doi.org/10.3390/electronics10091123
http://dx.doi.org/10.1080/00207176608921369
http://dx.doi.org/10.1109/4235.752918

	Introduction
	Single-Link FJ Robot System Model
	Controller Design
	Nonlinear Model Predictive Control
	Dynamics Model Approximation Using ReLU-RNN
	RNN and DEO Based NMPC Controller
	Control Stability Analysis

	Numerical Simulations
	Conclusions
	References

