
electronics

Article

Edge Container for Speech Recognition

Lukáš Beňo * , Rudolf Pribiš and Peter Drahoš *

����������
�������

Citation: Beňo, L.; Pribiš, R.; Drahoš,

P. Edge Container for Speech

Recognition. Electronics 2021, 10, 2420.

https://doi.org/10.3390/

electronics10192420

Academic Editor: Prasan

Kumar Sahoo

Received: 30 August 2021

Accepted: 28 September 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
812 19 Bratislava, Slovakia; rudolf.pribis@stuba.sk
* Correspondence: lukas.beno@stuba.sk (L.B.); peter.drahos@stuba.sk (P.D.)

Abstract: Containerization has been mainly used in pure software solutions, but it is gradually
finding its way into the industrial systems. This paper introduces the edge container with artificial
intelligence for speech recognition, which performs the voice control function of the actuator as a part
of the Human Machine Interface (HMI). This work proposes a procedure for creating voice-controlled
applications with modern hardware and software resources. The created architecture integrates
well-known digital technologies such as containerization, cloud, edge computing and a commercial
voice processing tool. This methodology and architecture enable the actual speech recognition and
the voice control on the edge device in the local network, rather than in the cloud, like the majority
of recent solutions. The Linux containers are designed to run without any additional configuration
and setup by the end user. A simple adaptation of voice commands via configuration file may be
considered as an additional contribution of the work. The architecture was verified by experiments
with running containers on different devices, such as PC, Tinker Board 2, Raspberry Pi 3 and 4. The
proposed solution and the practical experiment show how a voice-controlled system can be created,
easily managed and distributed to many devices around the world in a few seconds. All this can
be achieved by simple downloading and running two types of ready-made containers without any
complex installations. The result of this work is a proven stable (network-independent) solution with
data protection and low latency.

Keywords: edge computing; containerization; speech recognition; Azure cloud; ARM64; Docker;
data privacy

1. Introduction

Alexa [1], Siri [2], Cortana [3] and Google Assistant [4] have shown the human–
machine interface of the future. Voice-activated queries have become more widespread
across smart devices, and they have made lives easier, as they are offering convenience
and simplicity. Along with industrial applications and smart homes, voice assistants are
rising in vehicle driver assistance systems (According to Voicebot.ai, 73% of drivers will use
an in-car voice assistant by 2022 [5]). Furthermore, voice assistants have also found their
usage in healthcare and scientific laboratories, and they could also help seniors in their
daily lives at home. The market for voice assistants is growing constantly, and according to
a research report by Market Research Future (MRFR), “Voice Assistant Market–Information
by Technology, Hardware and Application—Forecast till 2025” the market valuation stood
at USD 1.68 billion in 2019 and is projected to reach USD 7.30 billion by 2025 [6].

Most of the solutions transform the human voice to specific commands in the cloud
data centers. Therefore, every time there is a request for voice control, information must
travel through a network to a remote place. Cloud computing can be described as a
client-server architecture. Edge computing can be considered as an “extension” to cloud
computing, as it brings the “computation“ closer to the source of data generation, at the
edge. [7]. Phones, cars, factories, smart devices and cities generate a big volume of data
that consume the network, and in the near future, this load on the network could cause
problems. Big latencies cost Amazon, Google and their customers millions. Amazon found

Electronics 2021, 10, 2420. https://doi.org/10.3390/electronics10192420 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0407-865X
https://doi.org/10.3390/electronics10192420
https://doi.org/10.3390/electronics10192420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192420
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192420?type=check_update&version=1


Electronics 2021, 10, 2420 2 of 20

that every 100 ms of latency cost them 1% in sales [8]. Statista estimates that over 75 billion
Internet of Things (IoT) devices will be connected to the network by 2025 [9].

An important aspect of every solution is also its delivery to the end user. As there are
many devices with different kinds of operating systems, hardware and accessibility, it is
necessary to provide a reliable delivery of the solution, despite the mentioned challenges.
One of the possible options is the usage of Docker and containerization technology, which
deals with these problems. Docker and containerization is probably the most talked-about
infrastructure technology of the past few years, as it is heavily used by most of the big tech
companies such as Amazon, Google, Red Hat, Microsoft and IBM, meaning it is finding its
place in the industrial systems too. Docker and containerization were mainly used in the
cloud infrastructures but now it is trying to build its position in the IoT edge devices. For
this reason, it is essential to show how containerization can work in the local network on
the Edge devices, with a focus on easy usage of containers. As containers can be set up
in a way that an end user does not have to undertake any additional configuration and
installation of dependencies on their own, everything is handled by a specific container.

Data privacy is an aspect that must be considered too, because in the wrong hands,
personal information can be wielded as a powerful tool. The “Cambridge Analytica
scandal” is a perfect example of that kind of misuse [10].

For these reasons, the work proposes a system that combines the advantages of voice
control as a user interface and edge computing focused on data privacy, low latency, easy
management and deployment by using containerization. Containers for speech recognition
are not running in the cloud as usual but directly in the local network of the user on the
edge devices. Containers are designed in a way that a user can download and run them
with minimal effort spent on configuration, installation of dependencies and containers
themselves. Containers can recognize each other in the local network, communicate and
use a connected actuator and microphone, without any interaction from an end user. The
work also brings a methodology for the creation of a speech recognition application and
experimental verification of the proposed architecture.

The main goals and innovations can be formulated to the following points:

• Architecture of speech-controlled solution using edge computing and containerization;
• Solution running in Linux containers with a focus on automatic setup of all required

dependencies and libraries;
• Simple adaptation of voice commands using a configuration file;
• Easy deployment and management of the solution;
• Portability, low latency and data privacy.

The article is organized as follows: Section 2 describes the current state-of-the-art
regarding speech recognition, edge computing vs. cloud computing and a summary of
the containerization concept. Section 3 presents the proposed architecture and designed
methodology of the voice-controlled actuator. Section 4 presents the experimental verifi-
cation of the proposed architecture. In Section 5, the results of the system implemented
according to the proposed methodology and the expected benefits of the proposed archi-
tecture are described. Finally, Section 6 consists of the conclusions of this paper.

2. Background of Speech Recognition, Edge Computing and Containerization

Many recent implementations of voice control are focused on functionality, which can
be offered by the proposed architectures, but they are not focused on specific topics, such
as the processing of data near its source, data privacy, easy deployment and management
of the solution. In a scientific article [11], authors use a conversation agent in the cloud,
so every voice record must be sent remotely to a third-party provider. Furthermore,
they are not dealing with the deployment question. It can be assumed that deployment
and management of the edge devices are undertaken in the old fashion way—manually.
Similarly, in a scientific article [12], it cannot be seen that the work is dealing with the
question of deployment and the processing of data in a local network. Therefore, the study
deals with topics such as speech-to-text libraries, edge computing, containerization, Docker



Electronics 2021, 10, 2420 3 of 20

and necessity of data privacy. Even while using Alexa from Amazon or Siri from Apple on
an iPhone, an internet connection is still needed, otherwise they cannot be used.

2.1. Speech-to-Text Libraries

Speech-to-text libraries create the core of the voice controlling, as they are needed for
a transformation of human speech to text. For these libraries, it is important to have the
capability to support more languages other than just English. They should also have a
certification for data privacies or an option to run them as the container to achieve quick
and easy deployment; in the best case, these containers could run locally on the network.

In Tables 1 and 2, the comparison of well-known speech-to-text libraries is shown, as
they can be used for the transformation of the human voice to plain text, which can be
later used for controlling of mechatronic devices or communication with them. Based on
the comparison, Microsoft Cognitive Speech Service [13] was chosen, as it supports many
programming languages in general. Microsoft Cognitive Speech Service was also chosen
for the reason that it can run locally without a special setup and the container is officially
released by Microsoft.

Table 1. In the following table, the capabilities of well-known speech-text-libraries are described with the focus on the
certifications and language.

Name Multilanguage
Support Certifications Own

Dictionary-Slang
Removal of

Background Noises

Google Cloud Speech Yes Yes * Yes Yes
Microsoft Cognitive Services Speech Yes Yes * Yes Yes

Amazon Transcribe Yes Yes * Yes Yes
System Speech Yes No Yes No

DeepSpeech No No Yes No
Kaldi No No Yes No

Annyang No No Yes No
Voice-commands.js No No Yes No

* Types of certifications: System and organization controls (SOC), The Federal Risk and Authorization Management Program (FedRAMP),
The Payment Card Industry Data Security Standard (PCI DSS), Health Insurance Portability and Accountability Act (HIPAA), Health
Information Technology for Economic and Clinical Health Act (HITECH) and International Organization for Standardization (ISO).

Table 2. In the table, capabilities of well-known speech-to-text libraries are described with the focus on the programming
languages and containerization.

Name Owner Programming
Languages Running in the Cloud Docker

Image-Container *

Google Cloud Speech Google C# (Core), Go, Node.js,
PHP, Ruby ** Yes

No (Necessity to run
the Container in K8s

infrastructure)

Microsoft Cognitive
Speech Service Microsoft

C# (Core), C++,
JavaScript,

Objective-C/Swift **
Yes Yes

Amazon Transcribe Amazon Java SDK, Ruby SDK,
and C++ SDK Yes No

System Speech Microsoft C# (.NET Framework) No No
DeepSpeech Mozilla C, JavaScript and ** No No

Kaldi Kaldi C++ No No
Annyang Annyang JavaScript No No

Voice-commands.js Jimmy Byrum JavaScript No No

* Docker Image-Container is officially provided by the owner of the library, and it has the possibility to run on the edge device with the
basic installation of a Docker engine. Notice ** Supported programming languages: Java, Python, C# (.NET Framework).

Testing was performed with Microsoft Cognitive Speech Service in addition to System
Speech, DeepSpeech and Voice commands.js. Compared to Microsoft Cognitive Speech
Service, the mentioned libraries were difficult to implement, and it was necessary to use



Electronics 2021, 10, 2420 4 of 20

their specific programing language. Furthermore, they do not support the phrase trigger
for an activation of the voice control.

2.2. Edge Computing vs. Cloud Computing

Instead of sending data back and forth, edge computing processes data on the edge
of the networks (Figure 1), which allows faster response times and better connectivity. It
eliminates the need to send data remotely to the cloud and reduces the volumes of data that
must be transferred through the network [14]. Furthermore, edge devices are more secure
than traditional cloud computing, as the processing is performed locally in the private
network [15]. Thanks to the processing of data on the device of their source, data privacy
can be more easily implemented and ensured, as there is no need to send data remotely to
a third-party storage or solution. Even though big tech companies claim that they store
data safely, there is still a possibility that user data can be stolen and misused [10]. An
important aspect of edge computing is also Quality of Service (QoS) in Wireless Local
Area Network (WLAN), why and how QoS can be achieved in WLAN is described in the
scientific article “A survey on 802.11 MAC industrial standards, architecture, security and
supporting emergency traffic: Future directions” [16].

Electronics 2021, 10, x FOR PEER REVIEW 4 of 22 
 

 

Kaldi Kaldi C++ No No 
Annyang Annyang JavaScript No No 

Voice-com-
mands.js Jimmy Byrum JavaScript No No 

* Docker Image-Container is officially provided by the owner of the library, and it has the possibility to run on the edge 
device with the basic installation of a Docker engine. Notice ** Supported programming languages: Java, Python, C# (.NET 
Framework). 

Testing was performed with Microsoft Cognitive Speech Service in addition to Sys-
tem Speech, DeepSpeech and Voice commands.js. Compared to Microsoft Cognitive 
Speech Service, the mentioned libraries were difficult to implement, and it was necessary 
to use their specific programing language. Furthermore, they do not support the phrase 
trigger for an activation of the voice control.  

2.2. Edge Computing vs. Cloud Computing 
Instead of sending data back and forth, edge computing processes data on the edge 

of the networks (Figure 1), which allows faster response times and better connectivity. It 
eliminates the need to send data remotely to the cloud and reduces the volumes of data 
that must be transferred through the network [14]. Furthermore, edge devices are more 
secure than traditional cloud computing, as the processing is performed locally in the pri-
vate network [15]. Thanks to the processing of data on the device of their source, data 
privacy can be more easily implemented and ensured, as there is no need to send data 
remotely to a third-party storage or solution. Even though big tech companies claim that 
they store data safely, there is still a possibility that user data can be stolen and misused 
[10]. An important aspect of edge computing is also Quality of Service (QoS) in Wireless 
Local Area Network (WLAN), why and how QoS can be achieved in WLAN is described 
in the scientific article “A survey on 802.11 MAC industrial standards, architecture, secu-
rity and supporting emergency traffic: Future directions” [16]. 

 
Figure 1. Difference between the cloud and edge computing [17]. 

2.3. Containerization and Docker 
In containerization, the software is packaged together with all its necessary compo-

nents such as libraries, frameworks, configuration and other dependencies so that they 
are isolated in their own “container” (Figure 2). Thanks to containerization, the applica-
tions have the ability to be run and moved in any environment and on any infrastructure. 
Dependency on an underlying operation system and infrastructure is eliminated. This 
makes the container an ideal tool for transporting applications to various platforms and 

Figure 1. Difference between the cloud and edge computing [17].

2.3. Containerization and Docker

In containerization, the software is packaged together with all its necessary compo-
nents such as libraries, frameworks, configuration and other dependencies so that they
are isolated in their own “container” (Figure 2). Thanks to containerization, the applica-
tions have the ability to be run and moved in any environment and on any infrastructure.
Dependency on an underlying operation system and infrastructure is eliminated. This
makes the container an ideal tool for transporting applications to various platforms and
infrastructures. The container is a type of bubble that acts as “a secure environment”,
which keeps the application independent [18].

The difference between a virtual machine (VM) and the container is that the VM is a
virtual computer with its own central processing unit (CPU), memory, network interface,
storage and created physical hardware. Both virtual machines and containers allow the iso-
lation of applications, allowing them to run in various environments. The main differences
are in size, portability, deployment and scalability [19,20]. The containers are so much
smaller, typically megabytes and they do not require to pack anything other than the app
itself and its running environment. Containers are compatible with various newer tech-
nologies such as Continues Integration/Continues Delivery (CI/CD) and DevOps, which
help in reducing complexity and increasing distribution and maintenance efficiency [19].
VMs are intended for traditional and monolithic IT architectures.



Electronics 2021, 10, 2420 5 of 20

Electronics 2021, 10, x FOR PEER REVIEW 5 of 22 
 

 

infrastructures. The container is a type of bubble that acts as “a secure environment”, 
which keeps the application independent [18].  

 
Figure 2. Packing of all dependencies to the container and the following distribution of the container 
to different machines around the world. 

The difference between a virtual machine (VM) and the container is that the VM is a 
virtual computer with its own central processing unit (CPU), memory, network interface, 
storage and created physical hardware. Both virtual machines and containers allow the 
isolation of applications, allowing them to run in various environments. The main differ-
ences are in size, portability, deployment and scalability [19,20]. The containers are so 
much smaller, typically megabytes and they do not require to pack anything other than 
the app itself and its running environment. Containers are compatible with various newer 
technologies such as Continues Integration/ Continues Delivery (CI/CD) and DevOps, 
which help in reducing complexity and increasing distribution and maintenance effi-
ciency [19]. VMs are intended for traditional and monolithic IT architectures. 

Docker is the most known open-source containerization platform that enables the 
packaging of applications into containers in a standardized way [21]. There also exist dif-
ferent providers for containerization, such as Kubernates or Amazon Elastic Container 
Service. These solutions provide more functionality, which is not always necessary, and 
their setup is more complex and resource-consuming. Docker is used in the proposed ar-
chitecture, as it is heavily used by the developers. It has a straightforward setup, and it 
does not require a lot of resources to run.  

3. Designed Architecture and Methodology of the Voice-Controlled Actuator  
The following designed architecture describes the controlling of the actuator by using 

voice commands and the edge device (Figure 3). The transformation of the human voice 
into controlling commands for the actuator is performed directly on the IoT edge device 
or remotely in the cloud Azure. The IoT edge device is connected and managed via the 
cloud Azure. The concept in Figure 3 consists of the following main parts:  

1. IoT Hub and the cloud Azure—contains information about used services from the 
cloud Azure and the IoT Hub running in the cloud Azure. These are used for man-
agement and deployment.  

Figure 2. Packing of all dependencies to the container and the following distribution of the container
to different machines around the world.

Docker is the most known open-source containerization platform that enables the
packaging of applications into containers in a standardized way [21]. There also exist
different providers for containerization, such as Kubernates or Amazon Elastic Container
Service. These solutions provide more functionality, which is not always necessary, and
their setup is more complex and resource-consuming. Docker is used in the proposed
architecture, as it is heavily used by the developers. It has a straightforward setup, and it
does not require a lot of resources to run.

3. Designed Architecture and Methodology of the Voice-Controlled Actuator

The following designed architecture describes the controlling of the actuator by using
voice commands and the edge device (Figure 3). The transformation of the human voice
into controlling commands for the actuator is performed directly on the IoT edge device or
remotely in the cloud Azure. The IoT edge device is connected and managed via the cloud
Azure. The concept in Figure 3 consists of the following main parts:

1. IoT Hub and the cloud Azure—contains information about used services from the
cloud Azure and the IoT Hub running in the cloud Azure. These are used for man-
agement and deployment.

2. IoT edge devices using the runtime Azure IoT edge—describes the two categories of
edge devices and the runtime Azure IoT edge used in the proposed architecture.

3. Containers for the speech control of the actuator running on the IoT edge devices—
describes the functionality of the developed and used Linux containers for the control
of the actuator by speech generated commands and an integrated development
environment, Visual Studio Code. This architecture was created by two types of
Linux containers:

A. Configured container for Azure Speech Recognition service—transformation
of voice to text.

B. Created container for Voice recognition module—controlling of mechatronic
device and processing of voice.



Electronics 2021, 10, 2420 6 of 20

Electronics 2021, 10, x FOR PEER REVIEW 6 of 22 
 

 

2. IoT edge devices using the runtime Azure IoT edge—describes the two categories of 
edge devices and the runtime Azure IoT edge used in the proposed architecture.  

3. Containers for the speech control of the actuator running on the IoT edge devices—
describes the functionality of the developed and used Linux containers for the control 
of the actuator by speech generated commands and an integrated development en-
vironment, Visual Studio Code. This architecture was created by two types of Linux 
containers:  

A. Configured container for Azure Speech Recognition service—transformation of 
voice to text. 

B. Created container for Voice recognition module—controlling of mechatronic de-
vice and processing of voice. 

 
Figure 3. The entire architecture of the controlling of the actuator using voice commands. Figure 3. The entire architecture of the controlling of the actuator using voice commands.

In Figure 4, it is possible to see the sequence diagram of the initialization of the speech-
controlled solution. The initialization of the voice-controlled actuator and the microphone
for speech input is completed, the settings are loaded and the connection to the local edge or
cloud service for the speech recognition (Azure Speech Recognition service) is established.

3.1. IoT Edge Devices Using the Runtime Azure IoT Edge

This chapter deals with the runtime Azure IoT edge [22] and the categorization of IoT
edge devices used in the proposed architecture.



Electronics 2021, 10, 2420 7 of 20

Electronics 2021, 10, x FOR PEER REVIEW 7 of 22 
 

 

In Figure 4, it is possible to see the sequence diagram of the initialization of the 
speech-controlled solution. The initialization of the voice-controlled actuator and the mi-
crophone for speech input is completed, the settings are loaded and the connection to the 
local edge or cloud service for the speech recognition (Azure Speech Recognition service) 
is established. 

 
Figure 4. Sequential steps in the proposed architecture of voice control. 

3.1. IoT Edge Devices Using the runtime Azure IoT Edge  
This chapter deals with the runtime Azure IoT edge [22] and the categorization of 

IoT edge devices used in the proposed architecture.  

3.1.1. The Runtime Azure IoT Edge 
To be able to control an actuator by using voice commands, it is necessary to have a 

device with specialized software that can transform the human voice into text and then 
perform subsequent analysis to create a meaningful command for the actuator. The spe-

Figure 4. Sequential steps in the proposed architecture of voice control.

3.1.1. The Runtime Azure IoT Edge

To be able to control an actuator by using voice commands, it is necessary to have
a device with specialized software that can transform the human voice into text and
then perform subsequent analysis to create a meaningful command for the actuator. The
specialized software Azure IoT edge runtime can allow the edge device to perform the
mentioned transformation directly, and it was chosen because of the usage of Microsoft
Cognitive Speech Service and it fulfills all requirements for edge computing.

The Azure IoT edge runtime is a set of programs that must be installed on the device
to be considered an Azure IoT edge device. The runtime can run on small devices such
as Raspberry Pi 3 [23] and 4 [24], Tinker Board 2 [25], a laptop, or even something bigger,
such as an industrial server. The Azure IoT edge runtime provides [26]:

• Installation, updating of modules and securing that edge modules are always running,
and the latest security updates;

• Communication between the edge modules—acting as a local message broker;
• Reporting the status of edge modules to the cloud for remote monitoring.



Electronics 2021, 10, 2420 8 of 20

Azure IoT edge runtime has three main tasks, and they are handled by three
components—modules running on the IoT edge device [26]:

1. IoT edge agent is one of the modules that creates the Azure IoT edge runtime. The
agent is responsible for instantiating, starting, and running the modules. In the same
way, it is responsible for reporting the status of individual modules to the IoT Hub.
The Azure IoT edge module (in further text abbreviated as module) is the smallest
computing unit deployed and controlled by the IoT edge. The module can contain
Azure services (such as Azure Cognitive Speech Services) or its own project-specific
code. For modules, it is necessary to mention two points [27]:

• Module image—A package of the software that defines a module. Module
images exist as container images and they are stored in a container repository in
the cloud, and module instances are containers on devices (Figure 5).

• Module instance—Specific running module image on the IoT edge device (Figure 5).
Module instances are independent. Both modules have their own identity in the
cloud Azure.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 22 
 

 

cialized software Azure IoT edge runtime can allow the edge device to perform the men-
tioned transformation directly, and it was chosen because of the usage of Microsoft Cog-
nitive Speech Service and it fulfills all requirements for edge computing. 

The Azure IoT edge runtime is a set of programs that must be installed on the device 
to be considered an Azure IoT edge device. The runtime can run on small devices such as 
Raspberry Pi 3 [23] and 4 [24], Tinker Board 2 [25], a laptop, or even something bigger, 
such as an industrial server. The Azure IoT edge runtime provides [26]: 
• Installation, updating of modules and securing that edge modules are always run-

ning, and the latest security updates; 
• Communication between the edge modules—acting as a local message broker; 
• Reporting the status of edge modules to the cloud for remote monitoring. 

Azure IoT edge runtime has three main tasks, and they are handled by three compo-
nents—modules running on the IoT edge device [26]: 
1. IoT edge agent is one of the modules that creates the Azure IoT edge runtime. The 

agent is responsible for instantiating, starting, and running the modules. In the same 
way, it is responsible for reporting the status of individual modules to the IoT Hub. 
The Azure IoT edge module (in further text abbreviated as module) is the smallest 
computing unit deployed and controlled by the IoT edge. The module can contain 
Azure services (such as Azure Cognitive Speech Services) or its own project-specific 
code. For modules, it is necessary to mention two points [27]: 
• Module image—A package of the software that defines a module. Module im-

ages exist as container images and they are stored in a container repository in 
the cloud, and module instances are containers on devices (Figure 5). 

• Module instance—Specific running module image on the IoT edge device (Fig-
ure 5). Module instances are independent. Both modules have their own identity 
in the cloud Azure. 

 
Figure 5. Module’s image and instances. 

2. IoT Edge Hub acts as the local message broker, so it keeps the modules independent. 
Communication between IoT Edge Hub and IoT Hub in the cloud Azure is per-
formed via protocols Message Queuing Telemetry Transport (MQTT) and Advanced 
Message Queuing Protocol (AMQP). Modules need to specify the inputs where they 
listen for the messages and the outputs where they write the messages. Inputs and 
outputs are defined as “routes”: 
• Connection between the VoiceRecognition and Insight module (Figure 6) can be 

defined as: 
From /modules/VoiceRecognition/outputs/VoiceRecognitionOutput 
To BrokenEndpoint(\”/modules/insight/insightInput”) 

Figure 5. Module’s image and instances.

2. IoT Edge Hub acts as the local message broker, so it keeps the modules independent.
Communication between IoT Edge Hub and IoT Hub in the cloud Azure is performed
via protocols Message Queuing Telemetry Transport (MQTT) and Advanced Message
Queuing Protocol (AMQP). Modules need to specify the inputs where they listen for
the messages and the outputs where they write the messages. Inputs and outputs are
defined as “routes”:

• Connection between the VoiceRecognition and Insight module (Figure 6) can be
defined as:

From/modules/VoiceRecognition/outputs/VoiceRecognitionOutput
To BrokenEndpoint(\”/modules/insight/insightInput”)

• Connection between the VoiceRecognition module and IoT Hub in the cloud
Azure (Figure 6) can be defined as:

From/modules/VoiceRecognition/outputs/VoiceRecognitionOutput TO $upstream
3. IoT edge security manager (Figure 7) is the security core that protects the IoT edge

device, and it is responsible for performing the logical operations such as encryption,
decryption, hashing, generation of digital signatures and signature verification. The
IoT edge security daemon starts when the IoT edge device is turned on, and its
responsibility is the initialization of the IoT edge agent. The edge IoT security daemon
provides access to application programming interfaces (APIs) such as [28] (Figure 7):

• Container API—offers an interface for interacting with container systems, such
as Docker and Moby.



Electronics 2021, 10, 2420 9 of 20

• Management API—only the IoT edge agent can access it. It is used to create,
start, stop and remove the modules.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 22 
 

 

• Connection between the VoiceRecognition module and IoT Hub in the cloud 
Azure (Figure 6) can be defined as: 

From /modules/ VoiceRecognition/outputs/VoiceRecognitionOutput TO $upstream 
3. IoT edge security manager (Figure 7) is the security core that protects the IoT edge 

device, and it is responsible for performing the logical operations such as encryption, 
decryption, hashing, generation of digital signatures and signature verification. The 
IoT edge security daemon starts when the IoT edge device is turned on, and its re-
sponsibility is the initialization of the IoT edge agent. The edge IoT security daemon 
provides access to application programming interfaces (APIs) such as [28] (Figure 7): 
• Container API—offers an interface for interacting with container systems, such 

as Docker and Moby. 
• Management API—only the IoT edge agent can access it. It is used to create, 

start, stop and remove the modules. 

 
Figure 6. Routes in IoT Edge Hub deployed on the device. 

 
Figure 7. IoT edge security daemon structure and communication. 

3.1.2. Supported Systems for IoT Edge Runtime 
The IoT edge runtime can run on the following systems [29]: 

• Tier 1 systems—Operation systems officially supported by Microsoft. Microsoft has 
automated tests and provides installation packages for them. The latest version of 
Azure IoT edge supports only the Linux containers. These operating systems include 
Raspberry Pi OS Stretch (ARM32v7) and Ubuntu Server 18.04 (AMD64 and ARM64 
in the Preview version). 

Figure 6. Routes in IoT Edge Hub deployed on the device.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 22 
 

 

• Connection between the VoiceRecognition module and IoT Hub in the cloud 
Azure (Figure 6) can be defined as: 

From /modules/ VoiceRecognition/outputs/VoiceRecognitionOutput TO $upstream 
3. IoT edge security manager (Figure 7) is the security core that protects the IoT edge 

device, and it is responsible for performing the logical operations such as encryption, 
decryption, hashing, generation of digital signatures and signature verification. The 
IoT edge security daemon starts when the IoT edge device is turned on, and its re-
sponsibility is the initialization of the IoT edge agent. The edge IoT security daemon 
provides access to application programming interfaces (APIs) such as [28] (Figure 7): 
• Container API—offers an interface for interacting with container systems, such 

as Docker and Moby. 
• Management API—only the IoT edge agent can access it. It is used to create, 

start, stop and remove the modules. 

 
Figure 6. Routes in IoT Edge Hub deployed on the device. 

 
Figure 7. IoT edge security daemon structure and communication. 

3.1.2. Supported Systems for IoT Edge Runtime 
The IoT edge runtime can run on the following systems [29]: 

• Tier 1 systems—Operation systems officially supported by Microsoft. Microsoft has 
automated tests and provides installation packages for them. The latest version of 
Azure IoT edge supports only the Linux containers. These operating systems include 
Raspberry Pi OS Stretch (ARM32v7) and Ubuntu Server 18.04 (AMD64 and ARM64 
in the Preview version). 

Figure 7. IoT edge security daemon structure and communication.

3.1.2. Supported Systems for IoT Edge Runtime

The IoT edge runtime can run on the following systems [29]:

• Tier 1 systems—Operation systems officially supported by Microsoft. Microsoft has
automated tests and provides installation packages for them. The latest version of
Azure IoT edge supports only the Linux containers. These operating systems include
Raspberry Pi OS Stretch (ARM32v7) and Ubuntu Server 18.04 (AMD64 and ARM64 in
the Preview version).

• Tier 2 systems—can be considered compatible with Azure IoT edge. Testing on these
platforms has been performed at least once but continuous testing is not performed.
Tier 2 systems are CentOS 7.5, Debian 8, 9 and 10, RHEL 7.5, Ubuntu 16.04 and 18.04,
Wind River 8, Yocto and Raspbian Buster 1.

In the implementation of the created architecture, Ubuntu Server 18.04 for ARM64 (In
the preview version) architecture from system Tier 1 is used.

3.1.3. IoT Edge Devices

IoT edge devices in the created architecture were divided into two categories and can
be classified as (Figure 8):

• Category I—Edge device where the actuator and the Bluetooth headphones are con-
nected and it is used for running the Voice recognition module—it can be a device
such as Tinker Board 2, PC, Raspberry Pi 3 or 4.



Electronics 2021, 10, 2420 10 of 20

• Category II—Edge device where Azure Speech Recognition service is running—this
device must be more powerful, as it is used for the transformation of voice to text, and
many devices from Category I can be connected to this device.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 22 
 

 

• Tier 2 systems—can be considered compatible with Azure IoT edge. Testing on these 
platforms has been performed at least once but continuous testing is not performed. 
Tier 2 systems are CentOS 7.5, Debian 8, 9 and 10, RHEL 7.5, Ubuntu 16.04 and 18.04, 
Wind River 8, Yocto and Raspbian Buster 1.  
In the implementation of the created architecture, Ubuntu Server 18.04 for ARM64 

(In the preview version) architecture from system Tier 1 is used. 

3.1.3. IoT Edge Devices  
IoT edge devices in the created architecture were divided into two categories and can 

be classified as (Figure 8): 
• Category I—Edge device where the actuator and the Bluetooth headphones are con-

nected and it is used for running the Voice recognition module—it can be a device 
such as Tinker Board 2, PC, Raspberry Pi 3 or 4. 

• Category II—Edge device where Azure Speech Recognition service is running—this 
device must be more powerful, as it is used for the transformation of voice to text, 
and many devices from Category I can be connected to this device. 

 
Figure 8. Categories for edge devices. 

3.2. IoT Hub and the Cloud Azure 
The cloud Azure is used for the deployment and the configuration of the IoT edge 

device. In the cloud Azure, the IoT Hub (Figure 9) is created, which provides a cloud-
hosted backend solution for the connection of IoT edge devices. In addition, the cloud 
Azure is used for storing Linux container images in Azure Container Registry.  

Figure 8. Categories for edge devices.

3.2. IoT Hub and the Cloud Azure

The cloud Azure is used for the deployment and the configuration of the IoT edge
device. In the cloud Azure, the IoT Hub (Figure 9) is created, which provides a cloud-hosted
backend solution for the connection of IoT edge devices. In addition, the cloud Azure is
used for storing Linux container images in Azure Container Registry.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 9. IoT Hub in the cloud Azure for management and deployment of IoT edge devices. 

Thanks to the IoT Hub in the cloud Azure, IoT edge devices can be easily managed, 
and the following operations can be performed: 
• Monitoring whether the IoT edge device is up and running; 
• Deployment of modules; 
• Checking the health of deployed modules; 
• Launching an update of modules; 
• Connection and authentication of the new devices with the same or modified config-

uration. 
3.3. Containers for the Speech Control of the Actuator Running on the IoT Edge Devices  

For the development of modules, a local development machine with Visual Studio 
Code for easy connection and management of the edge devices was used. The configura-
tion of the IoT edge devices was achieved by using the management portal in the cloud 
Azure. As mentioned, the development machine handles the creation of modules and it 
was used for the development of the proposed Voice recognition module. Azure Speech 
Recognition service is provided officially by Microsoft. The developed Voice recognition 
module performs these tasks (see Figure 4. and Figure 10):  
1. Verification of the system requirements on the IoT edge device for the Azure Speech 

Recognition service. For the transformation of voice into text and better recognition, 
Azure Speech Recognition service with artificial intelligence was used. This service 
can run directly on the IoT edge device or remotely in the cloud Azure. If the Azure 
Speech Recognition service runs locally, it does not need a completely stable internet 
connection. Only every 15 min, the Azure Speech Recognition service must connect 
to the cloud Azure and provide information about the usage.  

Figure 9. IoT Hub in the cloud Azure for management and deployment of IoT edge devices.

Thanks to the IoT Hub in the cloud Azure, IoT edge devices can be easily managed,
and the following operations can be performed:

• Monitoring whether the IoT edge device is up and running;
• Deployment of modules;
• Checking the health of deployed modules;
• Launching an update of modules;
• Connection and authentication of the new devices with the same or modified configuration.



Electronics 2021, 10, 2420 11 of 20

3.3. Containers for the Speech Control of the Actuator Running on the IoT Edge Devices

For the development of modules, a local development machine with Visual Studio
Code for easy connection and management of the edge devices was used. The configuration
of the IoT edge devices was achieved by using the management portal in the cloud Azure.
As mentioned, the development machine handles the creation of modules and it was used
for the development of the proposed Voice recognition module. Azure Speech Recognition
service is provided officially by Microsoft. The developed Voice recognition module
performs these tasks (see Figures 4 and 10):

1. Verification of the system requirements on the IoT edge device for the Azure Speech
Recognition service. For the transformation of voice into text and better recognition,
Azure Speech Recognition service with artificial intelligence was used. This service
can run directly on the IoT edge device or remotely in the cloud Azure. If the Azure
Speech Recognition service runs locally, it does not need a completely stable internet
connection. Only every 15 min, the Azure Speech Recognition service must connect
to the cloud Azure and provide information about the usage.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 10. Pseudocode of voice recognition module. 

As the Azure Speech Recognition service requires significant computational power, 
it is necessary to have the IoT edge device in a local network that is capable of running it. 
That is the reason why two of the IoT edge devices are used in a local network. One IoT 
edge Device (Category II) is only for running the Azure Speech Recognition service as a 
Linux container and the other IoT edge device (Category I) is used for the voice control 
(Figure 8). Many devices (Category I) from a local network can be connected to the edge 
device (Category II) running Azure Speech Recognition service (Figure 11).  

Figure 10. Pseudocode of voice recognition module.



Electronics 2021, 10, 2420 12 of 20

As the Azure Speech Recognition service requires significant computational power, it
is necessary to have the IoT edge device in a local network that is capable of running it.
That is the reason why two of the IoT edge devices are used in a local network. One IoT
edge Device (Category II) is only for running the Azure Speech Recognition service as a
Linux container and the other IoT edge device (Category I) is used for the voice control
(Figure 8). Many devices (Category I) from a local network can be connected to the edge
device (Category II) running Azure Speech Recognition service (Figure 11).

Electronics 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 11. Three ways to connect many edge devices (Category I) on a local network to one single 
IoT edge device (Category II) running the Azure Speech Recognition service. 

The developed Voice recognition module always checks if the endpoint for the Azure 
Speech Recognition service is available in a local network, and based on that, it will try to 
connect to the Azure Speech Recognition service running on the edge device in a local 
network (Option 1—Figure 12) or it will try to connect to the Azure Speech Recognition 
service, which runs remotely in the cloud Azure (Option 2—Figure 12). The endpoint for 
the Azure Speech Recognition service can be configurated in the JavaScript Object Nota-
tion (JSON) file through the hostname or the static local IP address.  

 
Figure 12. Possible location for running the Azure Speech Recognition service. 

Figure 11. Three ways to connect many edge devices (Category I) on a local network to one single
IoT edge device (Category II) running the Azure Speech Recognition service.

The developed Voice recognition module always checks if the endpoint for the Azure
Speech Recognition service is available in a local network, and based on that, it will try
to connect to the Azure Speech Recognition service running on the edge device in a local
network (Option 1—Figure 12) or it will try to connect to the Azure Speech Recognition
service, which runs remotely in the cloud Azure (Option 2—Figure 12). The endpoint for
the Azure Speech Recognition service can be configurated in the JavaScript Object Notation
(JSON) file through the hostname or the static local IP address.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 11. Three ways to connect many edge devices (Category I) on a local network to one single 
IoT edge device (Category II) running the Azure Speech Recognition service. 

The developed Voice recognition module always checks if the endpoint for the Azure 
Speech Recognition service is available in a local network, and based on that, it will try to 
connect to the Azure Speech Recognition service running on the edge device in a local 
network (Option 1—Figure 12) or it will try to connect to the Azure Speech Recognition 
service, which runs remotely in the cloud Azure (Option 2—Figure 12). The endpoint for 
the Azure Speech Recognition service can be configurated in the JavaScript Object Nota-
tion (JSON) file through the hostname or the static local IP address.  

 
Figure 12. Possible location for running the Azure Speech Recognition service. Figure 12. Possible location for running the Azure Speech Recognition service.



Electronics 2021, 10, 2420 13 of 20

If the Azure Speech Recognition service runs as a Linux container on the IoT edge
device, edge computing is performed. Edge computing leads to a better response time
for the transformation of speech to text and no internet connection is required. The
user is informed about every performed step through the console output from the Voice
recognition module. In the console, information is displayed about checking the system
requirements and which type of the Azure Speech Recognition service is used (cloud or
edge option).

2. Configuration and setup of prerequisites for the Linux Voice recognition module—
The created Linux container is prepared to automatically take the USB headset that
is connected to the IoT edge device. It also contains all libraries and configuration,
which are needed to access a microphone from the underlying system. No input is
required from the end user to make the Voice recognition module functional.

3. Transformation of the human voice to actuator commands—Described in Figure 4,
and it consists of three main components:

I. Azure Speech Recognition service—responsible for the transformation of voice
into text. The time for the speech recognition, which is performed remotely in
the cloud Azure, is approximately about 5.9 ms when using an internet con-
nection with the speed of 15 Mbps. When using the Azure Speech Recognition
service on the edge device in a local network, the time of transformation of
voice into text is approximately the same, as the cloud Azure option.

II. Actuator Command Recognizer function—part of the Voice recognition mod-
ule is responsible for the extraction of keywords from the transformed voice
into text and the matching of keywords to specific actuator commands. To
use voice commands, it is always necessary to trigger voice control by using
the phrase “Hey Bennie”—similar to “Hey Alexa” for Amazon, “Hey Siri” for
Apple or “Hey Mercedes” for Mercedes-Benz. The triggering phrase should al-
ways be unique in voice recognition systems. Actuator Command Recognizer
function, meaning the proposed architecture currently supports four voice
commands:

• “Connect to the motor”—Used for connecting to the actuator, signalized
by the Green Led turning on and the Red Led turning off.

• “Disconnect from the motor”—Used for disconnecting from the actuator,
signalized by the Red Led turning on and the Green Led turning off.

• “Turn off everything”—Used to turn off the whole controlled system.
• “Move the motor”—Actuator is going to be moved.

If the command cannot be recognized, the end user is asked to repeat it.
Commands for the controlling of the actuator can be adjusted easily in the JSON

file. There is no need to change them in the source code, and a new word can be easily
added, deleted or modified (in case of an existing one). Voice recognition module is always
trying to match the extracted text from the human voice to a specific word defined in the
JSON commands configuration file. It must always match every word in the JSON file to a
specific command. Imagine that someone would like to “connect to the motor”. In this case,
it is necessary to say something such as: “Hey Bennie, please connect me to the motor” and
the connection to the motor/actuator is going to be established. If it is only “Hey Bennie,
please connect me” the command will not be recognized, as the word “Motor” is missing
in the command. “Hey Bennie” is always mandatory to trigger the communication with
the proposed system. The structure of commands and matching words stored in the JSON
file for the controlling of the actuator is described as:

• Command One

# First matching word,
# Second matching word,
# . . .

• Command Two



Electronics 2021, 10, 2420 14 of 20

# First matching word,
# Second matching word,
# Third matching word,
# . . .

III Controlling of the actuator connected to the IoT edge device—Voice recognition mod-
ule is using predefined general-purpose input/output (GPIO) pins for the controlling
of the actuator to make the solution more universal and flexible. If default PINs
have already been taken, there is a possibility to overwrite the default values with
their own specified values, as the configuration of the PINs is stored in the JSON file.
Configuration in the JSON file can be easily changed by the end user. To apply the
changes, it is enough to only modify the JSON file and restart the system. There is no
need to create or rebuild the program inside the Voice recognition module.

Modules are developed by using the development framework for building cross-
platform apps.NET Core. Modules developed using.NET Core can be deployed on Linux or
Windows containers. The majority of the IoT edge devices use the operating system Linux.

Voice recognition module is a Linux container for the architecture ARM64, and the
container is stored in the Azure Container Registry [30]. The development environment
uses Visual Studio Code, which offers tools for module debugging on the IoT edge devices
(Figure 13), as well as for pushing Docker images to the container registry in the cloud
Azure. Visual Studio Code is also used for deploying and updating modules.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 22 
 

 

o First matching word, 
o Second matching word, 
o Third matching word, 
o … 

III. Controlling of the actuator connected to the IoT edge device—Voice recogni-
tion module is using predefined general-purpose input/output (GPIO) pins for 
the controlling of the actuator to make the solution more universal and flexible. 
If default PINs have already been taken, there is a possibility to overwrite the 
default values with their own specified values, as the configuration of the PINs 
is stored in the JSON file. Configuration in the JSON file can be easily changed 
by the end user. To apply the changes, it is enough to only modify the JSON 
file and restart the system. There is no need to create or rebuild the program 
inside the Voice recognition module. 

Modules are developed by using the development framework for building cross-
platform apps.NET Core. Modules developed using.NET Core can be deployed on Linux 
or Windows containers. The majority of the IoT edge devices use the operating system 
Linux.  

Voice recognition module is a Linux container for the architecture ARM64, and the 
container is stored in the Azure Container Registry [30]. The development environment 
uses Visual Studio Code, which offers tools for module debugging on the IoT edge devices 
(Figure 13), as well as for pushing Docker images to the container registry in the cloud 
Azure. Visual Studio Code is also used for deploying and updating modules. 

 
Figure 13. Visual Studio Code—debugging option. Possibility to see which modules are running on 
the specific devices. PC, Tinker Board 2, Raspberry Pi 3 and 4 are used in the experiment. 

3.4. Methodology of the Implementation  
The methodology for the setup of the proposed and implemented architecture can be 

formulated in the following steps: 
1. Create Azure IoT Hub [31] in the cloud Azure for management and deployment of 

containers on the IoT edge devices. 
2. Create the Azure Speech recognition service in the cloud Azure. The result of this 

action is the endpoint, which is later used for the cloud and edge computing. To per-
form this step, it is required to have a subscription, even though the Azure Speech 
recognition service offers free usage for limited requests for the speech recognition.  

3. Install Ubuntu Server 18.04 [32] and IoT Edge runtime software [33] on the edge de-
vices Category I and II. 

4. Register the IoT edge devices in the Azure IoT Hub [31]. 
5. Configure the IoT edge devices and connect them to the IoT Edge Hub in the cloud 

Azure. 
6. Connect the actuator and the microphone to the IoT edge device from Category I. 

Figure 13. Visual Studio Code—debugging option. Possibility to see which modules are running on
the specific devices. PC, Tinker Board 2, Raspberry Pi 3 and 4 are used in the experiment.

3.4. Methodology of the Implementation

The methodology for the setup of the proposed and implemented architecture can be
formulated in the following steps:

1. Create Azure IoT Hub [31] in the cloud Azure for management and deployment of
containers on the IoT edge devices.

2. Create the Azure Speech recognition service in the cloud Azure. The result of this
action is the endpoint, which is later used for the cloud and edge computing. To
perform this step, it is required to have a subscription, even though the Azure Speech
recognition service offers free usage for limited requests for the speech recognition.

3. Install Ubuntu Server 18.04 [32] and IoT Edge runtime software [33] on the edge
devices Category I and II.

4. Register the IoT edge devices in the Azure IoT Hub [31].
5. Configure the IoT edge devices and connect them to the IoT Edge Hub in the

cloud Azure.
6. Connect the actuator and the microphone to the IoT edge device from Category I.
7. Define a deployment JSON file in the Azure IoT Hub portal with the containers Voice

recognition module (Device from Category I) and Azure Speech recognition service
(Device from Category II)

8. Trigger the deployment of mentioned containers, in other words, modules.



Electronics 2021, 10, 2420 15 of 20

9. Wait for the initialization of the modules and use the system. During the initializa-
tion of the Voice recognition module, necessary configuration steps are performed
automatically to allow connection and usage of the microphone.

10. Deployment of the mentioned modules can be verified through the Azure Iot Hub
portal [31]. In the portal can be seen:

# If the IoT edge devices are online,
# If the deployment of mentioned modules were successful,
# Error message in case an error occurs.

4. Experimental Verification

In terms of the proposed architecture in Figure 3 and the above methodology, the IoT
edge experimental devices were implemented. A part of them can be seen in Figure 14. By
using these devices, all modules were verified in cooperation with each other according to
Figure 4. After establishing a connection to the cloud Azure and a simple installation of
containers (Links to the containers in Section 5), the user can use this modern HMI and
send voice commands to the connected actuator.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 22 
 

 

7. Define a deployment JSON file in the Azure IoT Hub portal with the containers Voice 
recognition module (Device from Category I) and Azure Speech recognition service 
(Device from Category II) 

8. Trigger the deployment of mentioned containers, in other words, modules.  
9. Wait for the initialization of the modules and use the system. During the initialization 

of the Voice recognition module, necessary configuration steps are performed auto-
matically to allow connection and usage of the microphone.  

10. Deployment of the mentioned modules can be verified through the Azure Iot Hub 
portal [31]. In the portal can be seen: 
o If the IoT edge devices are online, 
o If the deployment of mentioned modules were successful, 
o Error message in case an error occurs. 

4. Experimental Verification 
In terms of the proposed architecture in Figure 3 and the above methodology, the IoT 

edge experimental devices were implemented. A part of them can be seen in Figure 14. By 
using these devices, all modules were verified in cooperation with each other according 
to Figure 4. After establishing a connection to the cloud Azure and a simple installation 
of containers (Links to the containers in Section 5), the user can use this modern HMI and 
send voice commands to the connected actuator. 

 
Figure 14. Comparison of time responses between performed speech recognition in the cloud Azure 
and IoT edge devices. 

In Figure 15, the real implementation of the voice control actuator using Bluetooth 
headphones for better comfort and freedom is shown. For the demonstration, the IoT edge 
devices were used from: 
• Category I—PC with 4 GB RAM and processor Intel Core i3-2330M, Thinker Board 

2, Raspberry Pi 3 and 4; 
• Category II—PC with 12 GB RAM and processor Intel Core i7-8850h. 

2.4

2.9

3.4

3.9

4.4

4.9

5.4

5.9

6.4

6.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ti
m

e 
 [m

s]

Attemps

Comparison of time responses between 
performed Speech recognition in the cloud Azure 

and IoT Edge devices

Cloud Raspberry Pi 4 Raspberry Pi 3 Tinker Board 2 PC

Figure 14. Comparison of time responses between performed speech recognition in the cloud Azure
and IoT edge devices.

In Figure 15, the real implementation of the voice control actuator using Bluetooth
headphones for better comfort and freedom is shown. For the demonstration, the IoT edge
devices were used from:

• Category I—PC with 4 GB RAM and processor Intel Core i3-2330M, Thinker Board 2,
Raspberry Pi 3 and 4;

• Category II—PC with 12 GB RAM and processor Intel Core i7-8850h.



Electronics 2021, 10, 2420 16 of 20
Electronics 2021, 10, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 15. Real implementation of the voice control actuator using Bluetooth headphones for better 
comfort and freedom. 

The created architecture (Figure 3) was successfully tested on PC, Tinker Board 2, 
Raspberry Pi 3 and 4 as well. As an operation system for the mentioned IoT edge devices, 
Ubuntu server 18.04 was used. Testing of the experiment was performed in the time 
schedule between morning and evening at 24 °C (4 days, 7 h period). In total, 28 attempts 
were performed by each edge device and the cloud Azure. Based on Figure 14, it can be 
stated that speech control performed by the edge devices has a better latency in compari-
son to using the speech recognition in the cloud Azure. In the performed experiments, the 
response time for the speech recognition performed by the IoT edge devices was around 
2.97 ms. That is approximately 58.37% better than the cloud Azure response time (Figure 
14). However, even if the Azure Speech Recognition service runs in the cloud Azure, the 
response time for voice transformation into text is around 5.9 ms when using an internet 
connection with the speed of 15 Mbps. 

During the verification and testing of the created architecture, an outage of internet 
connection was simulated. The result of this simulation was that speech recognition was 
running stable and without any issues using IoT edge devices. Edge computing was per-
formed in this scenario. The time responses were almost similar to the responses that we 
obtained in Figure 14. 

Distribution and maintenance were verified by remote updating of modules on the 
IoT edge devices by using the IoT Hub portal in the cloud Azure. Updating of modules 
were realized many times during the development phase, as it can be seen in a Docker 
image name of the voicerecognitionmodule:1.7.11. Deployment of modules always went 
smoothly, and it took approximately 1 min using an internet connection with the speed of 
15 Mbps. 

The phrase triggering of the speech control was also verified by using commands 
without the trigger phrase. In this case, commands were not recognized and performed. 
The speech control was triggered only when the phrase “Hey Bennie” was used.  

  

Figure 15. Real implementation of the voice control actuator using Bluetooth headphones for better
comfort and freedom.

The created architecture (Figure 3) was successfully tested on PC, Tinker Board 2,
Raspberry Pi 3 and 4 as well. As an operation system for the mentioned IoT edge devices,
Ubuntu server 18.04 was used. Testing of the experiment was performed in the time sched-
ule between morning and evening at 24 ◦C (4 days, 7 h period). In total, 28 attempts were
performed by each edge device and the cloud Azure. Based on Figure 14, it can be stated
that speech control performed by the edge devices has a better latency in comparison to us-
ing the speech recognition in the cloud Azure. In the performed experiments, the response
time for the speech recognition performed by the IoT edge devices was around 2.97 ms.
That is approximately 58.37% better than the cloud Azure response time (Figure 14). How-
ever, even if the Azure Speech Recognition service runs in the cloud Azure, the response
time for voice transformation into text is around 5.9 ms when using an internet connection
with the speed of 15 Mbps.

During the verification and testing of the created architecture, an outage of internet
connection was simulated. The result of this simulation was that speech recognition was
running stable and without any issues using IoT edge devices. Edge computing was
performed in this scenario. The time responses were almost similar to the responses that
we obtained in Figure 14.

Distribution and maintenance were verified by remote updating of modules on the
IoT edge devices by using the IoT Hub portal in the cloud Azure. Updating of modules
were realized many times during the development phase, as it can be seen in a Docker
image name of the voicerecognitionmodule:1.7.11. Deployment of modules always went
smoothly, and it took approximately 1 min using an internet connection with the speed of
15 Mbps.

The phrase triggering of the speech control was also verified by using commands
without the trigger phrase. In this case, commands were not recognized and performed.
The speech control was triggered only when the phrase “Hey Bennie” was used.



Electronics 2021, 10, 2420 17 of 20

5. Results

The result of the work are functional modules-containers, the system implemented
according to the proposed methodology. The benefits and main goals of the proposed
architecture in comparison to other implantations can be formulated as follows:

1. Stability and low latency—As described in Section 4, the response time is shorter
when the processing is performed by the IoT edge device and not in the cloud Azure.
Speech recognition performed by the IoT edge devices was around 2.97 ms, meaning
an approximately 58.37% better response time than the cloud Azure response time
(Figure 14). Even if the Azure Speech Recognition service runs in the cloud Azure,
the voice transformation into text is around 5.9 ms when using an internet connection
with the speed of 15 Mbps.

As it was shown in the experiment, the container for the Azure Speech Recognition
service can run locally in the network. Many big companies are performing voice control-
ling only via their cloud services, or they require a special local infrastructure setup that
fits their needs. The problem with the internet connection can be seen when using Siri on
iPhone or Alexa from Amazon. If the internet connection is switched off, they cannot be
used. By running the Azure Speech Recognition service locally, we are achieving increased
stability and data privacy.

2. Portability—Developed Voice recognition module can be deployed on Windows or
Linux operating systems thanks to the framework. NET Core. As the Voice recognition
module is a Linux container, it can be reused in other IoT solutions such as AWS IoT
Greengrass [34] or Siemens MindSphere (currently available only for developers) [35].
These solutions use Linux containers as well. The usage of the proposed modules in
the solutions from Amazon or Siemens will require modification of communication
routers, but the core functionality of modules will stay the same. Furthermore, the
usage on the operation system Windows will require a small adaption, the Voice
recognition module would have to be rebuilt as a Windows container.

3. Data privacy—Increased data privacy when running the Azure Speech Recognition
service locally on the IoT edge devices.

4. Distribution and maintenance—The solution can be easily distributed to many other
IoT edge devices in a short time. It is only necessary to have the IoT edge device
that will fulfill the requirements and it is connected to the Azure IoT Hub in the
cloud Azure. Updates of modules are performed remotely by the cloud Azure.
There is no need to have physical access to the devices. Furthermore, migration to
different devices with similar architecture is quick and smooth. The migration from
old Raspberry Pi 3 to 4 was completed approximately in 15 min.

Created modules can be stored and made available on the Azure Marketplace or they
can be stored in the public Docker registry. Thanks to the Azure Marketplace, applications
can reach many developers and customers. IoT Edge modules can be published and run
on many IoT edge devices that support containers.

5. The endpoint for the Azure Speech Recognition service can be easily adjusted in the
JSON file in the Voice recognition module without a code change. The endpoint for
the Azure Speech Recognition service can be a local Hostname, such as “LocalAzure-
SpeechRecognition” or a local static IP address. Furthermore, the commands for
the voice recognition can be easily adjusted in the JSON file in the Voice recognition
module, without code changes, and the same for the PINs configuration. All of the
mentioned adjustments can be performed while the Voice recognition module is up
and running. Containers can be simply pulled and run from the following repositories:

1. Container for the Voice recognition module (designed and created module, the
latest stable version is 1.7.11) for Category I:
Commands: docker pull researchphd.azurecr.io/voicerecognitionmodule:1.7.11-
arm64v8 docker run researchphd.azurecr.io/voicerecognitionmodule:1.7.11-arm64v8



Electronics 2021, 10, 2420 18 of 20

2. Container for the Azure Speech Recognition service (official container from
Microsoft, always the latest version is downloaded) [36]:

docker pull mcr.microsoft.com/azure-cognitive-services/speechservices/speech-to-
text docker run –rm -it -p 5000:5000 –memory 8g –cpus 4 mcr.microsoft.com/azure-cognitive-
services/speechservices/speech-to-text Eula=accept Billing=”CreatedBillingEndpoint”
ApiKey=”CreatedApiKey”

6. Voice recognition module—The created Linux container is prepared to automatically
take the USB headset that is connected to the IoT edge device. It contains all libraries
and the configuration that is needed to access the microphone from the underlying
system. No input is required from the end user to make Voice recognition module
functional. By default, Linux container image does not support the usage of the
microphone from the underlying system; therefore, it was necessary to set up this
functionality in the Voice recognition module. The Voice recognition module is always
running locally as it is responsible for the control of the actuator. As mentioned above,
the module also supports the phrase triggering. The phrase triggering leads to bigger
reliability of the architecture, as the voice control is only performed when desired.

In Table 3, the main differences between the created architecture and the architectures
used in different implementations are described. The mentioned architectures are the
closest to the proposed architecture from the article.

Table 3. Comparison between created architecture and existing architectures.

Speech
Recognition

Performed on the
Edge Device

Containerized
Solution

Easy Update and
Distribution of

Solution to Many
Devices

Multilanguage
Support Phrase Triggering

Created architecture
from the article Yes Yes Yes Yes Yes

Valera Román [11] No No No Yes Yes
Yvanoff-Frenchin [12] No No No Yes Not mentioned

Tahseen Ali [37] Yes No No No Not mentioned
Martinek [38] Yes No No Not mentioned Not mentioned

Benítez-Guijarro [39] No No No Not mentioned Yes
Nasef [40] No No No Yes Not mentioned

Koložvari [41] No No No Yes Not mentioned

Even article [42] does not deal exactly with speech recognition, which can be taken as
proof that edge computing is used and beneficial.

The limitations of the proposed architecture can be listed:

• Dependency on the operation system Linux with the architecture ARM64. Note:
Linux container can be transformed to Windows container. This option requires
recompilation of the Voice recognition module with a proper base image [43].

• Setup of the Azure Speech Recognition service and the IoT Hub in the cloud Azure.
This setup requires knowledge about cognitive services [44] and IoT [31] in the cloud
Azure. Furthermore, in other implementations, it was possible to see the usage of
speech services from the different cloud providers, where it is necessary to set up
these services in the cloud.

6. Conclusions

The popularity of voice control in IoT and Industrial IoT is growing. In the future, most
companies will have to face this challenge. Voice control will be able to help in situations
where physical contact with devices is difficult or even impossible. It also brings a certain
level of comfort to the end users. Voice control has already found its place in smartphones,
where it is already widely used, and it is being slowly adopted in the industry, healthcare



Electronics 2021, 10, 2420 19 of 20

and research laboratories. This article presents a new architecture and methodology of
design and implementation of a modern HMI for the voice control of the actuator. Along
with the voice control of the actuator, the solution can also be reused for the setting and
the confirmation of parameters, restrictions, limits, alarms of various filters and sensors.
The proposed architecture includes a combination of new approaches and modern digital
technologies, container–edge–cloud, artificial intelligence for speech recognition, and its
own software components, which create a complete functional system. This system has
been experimentally validated by running the created containers on four different IoT edge
devices—Thinker Board 2, PC, Raspberry Pi 3 and 4. These new approaches bring benefits
to both the end user and the developer, such as data privacy and good latency by practicing
edge computing, easy deployment thanks to containerization and management by using
the cloud Azure.

Author Contributions: Conceptualization, L.B. and P.D.; methodology, L.B.; software, L.B.; valida-
tion, L.B. and R.P.; writing—original draft preparation, L.B.; writing—review and editing L.B., R.P.
and P.D.; funding acquisition, P.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Slovak Research and Development Agency, grant No.
APVV-17-0190 and the Slovak Cultural Educational Grant Agency, grant No. 039STU-4/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The paper was partially supported by the Slovak Research and Development
Agency, grant No. APVV-17-0190 and the Slovak Cultural Educational Grant Agency, grant No.
039STU-4/2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alexa. Available online: https://developer.amazon.com/en-US/alexa (accessed on 2 June 2021).
2. Siri. Available online: https://www.apple.com/siri/ (accessed on 2 June 2021).
3. Cortana. Available online: https://www.microsoft.com/en-us/cortana (accessed on 2 June 2021).
4. Google Assistant. Available online: https://assistant.google.com (accessed on 2 June 2021).
5. 73% of Drivers Will Use an In-Car Voice Assistant by 2022: Report. Available online: https://voicebot.ai/2019/11/17/73-of-

drivers-will-use-an-in-car-voice-assistant-by-2022-report (accessed on 1 May 2021).
6. Voice Assistant Market Size USD 7.30 Billion by 2025, Registering a 24.32% CAGR—Report by Market Research Future

(MRFR). Available online: https://www.globenewswire.com/en/news-release/2021/06/23/2252069/0/en/Voice-Assistant-
Market-Size-USD-7-30-Billion-by-2025-Registering-a-24-32-CAGR-Report-by-Market-Research-Future-MRFR.html (accessed
on 10 July 2021).

7. From the Cloud to the Edge. Available online: https://rtview.com/from-the-cloud-to-the-edge/ (accessed on 11 July 2021).
8. 100 ms of Latency Cost This Company 1% in Sales. Available online: https://www.presstitan.com/100ms-latency/ (accessed on

15 July 2021).
9. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025. Available online: https://www.statista.

com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 16 July 2021).
10. 10 Reasons Why Privacy Rights Are Important. Available online: https://www.humanrightscareers.com/issues/reasons-why-

privacy-rights-are-important/ (accessed on 20 July 2021).
11. Valera Román, A.; Pato Martínez, D.; Lozano Murciego, Á.; Jiménez-Bravo, D.M.; de Paz, J.F. Voice Assistant Application for

Avoiding Sedentarism in Elderly People Based on IoT Technologies. Electronics 2021, 10, 980. [CrossRef]
12. Yvanoff-Frenchin, C.; Ramos, V.; Belabed, T.; Valderrama, C. Edge Computing Robot Interface for Automatic Elderly Mental

Health Care Based on Voice. Electronics 2020, 9, 419. [CrossRef]
13. Speech. Available online: https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/ (accessed on

30 July 2021).
14. Cloud Computing vs. Edge Computing: Friends or Foes? Available online: https://www.forbes.com/sites/forbestechcouncil/20

20/03/05/cloud-computing-vs-edge-computing-friends-or-foes/ (accessed on 2 August 2021).
15. Cloud vs. Edge. Available online: https://www.redhat.com/en/topics/cloud-computing/cloud-vs-edge (accessed on

2 August 2021).

https://developer.amazon.com/en-US/alexa
https://www.apple.com/siri/
https://www.microsoft.com/en-us/cortana
https://assistant.google.com
https://voicebot.ai/2019/11/17/73-of-drivers-will-use-an-in-car-voice-assistant-by-2022-report
https://voicebot.ai/2019/11/17/73-of-drivers-will-use-an-in-car-voice-assistant-by-2022-report
https://www.globenewswire.com/en/news-release/2021/06/23/2252069/0/en/Voice-Assistant-Market-Size-USD-7-30-Billion-by-2025-Registering-a-24-32-CAGR-Report-by-Market-Research-Future-MRFR.html
https://www.globenewswire.com/en/news-release/2021/06/23/2252069/0/en/Voice-Assistant-Market-Size-USD-7-30-Billion-by-2025-Registering-a-24-32-CAGR-Report-by-Market-Research-Future-MRFR.html
https://rtview.com/from-the-cloud-to-the-edge/
https://www.presstitan.com/100ms-latency/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.humanrightscareers.com/issues/reasons-why-privacy-rights-are-important/
https://www.humanrightscareers.com/issues/reasons-why-privacy-rights-are-important/
http://doi.org/10.3390/electronics10080980
http://doi.org/10.3390/electronics9030419
https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://www.forbes.com/sites/forbestechcouncil/2020/03/05/cloud-computing-vs-edge-computing-friends-or-foes/
https://www.forbes.com/sites/forbestechcouncil/2020/03/05/cloud-computing-vs-edge-computing-friends-or-foes/
https://www.redhat.com/en/topics/cloud-computing/cloud-vs-edge


Electronics 2021, 10, 2420 20 of 20

16. Memon, K.S.; Nisar, K.; Hijazi, M.H.A.; Chowdhry, B.S.; Sodhro, A.H.; Pirbhulal, S.; Rodrigues, J.P.C.J. A survey on 802.11 MAC
industrial standards, architecture, security & supporting emergency traffic: Future directions. J. Ind. Inf. Integr. 2021, 24, 100225.
[CrossRef]

17. Difference between Edge Computing vs. Cloud Computing? Available online: https://www.akira.ai/blog/edge-computing-vs-
cloud-computing/ (accessed on 2 July 2021).

18. What Is Containerization? Available online: https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization
(accessed on 3 August 2021).

19. Zhang, Q.; Liu, L.; Pu, C.; Dou, Q.; Wu, L.; Zhou, W. A Comparative Study of Containers and Virtual Machines in Big Data
Environment. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA,
USA, 2–7 July 2018. Available online: https://arxiv.org/pdf/1807.01842.pdf (accessed on 3 August 2021).

20. Yadav, A.K.; Garg, M.L.; Mehra, R. Docker Containers Versus Virtual Machine-Based Virtualization: Proceedings of IEMIS 2018.
In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2019; Volume 3. [CrossRef]

21. Docker. Available online: https://www.ibm.com/cloud/learn/docker (accessed on 3 August 2021).
22. Azure IoT Edge. Available online: https://azure.microsoft.com/en-us/services/iot-edge (accessed on 27 March 2021).
23. Raspberry Pi 3. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (accessed on

7 September 2021).
24. Raspberry Pi 4. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 7 September 2021).
25. Tinker Board 2. Available online: https://tinker-board.asus.com/product/tinker-board-2.html (accessed on 8 September 2021).
26. Understand the Azure IoT Edge Runtime and Its Architecture. Available online: https://docs.microsoft.com/en-us/azure/iot-

edge/iot-edge-runtime (accessed on 15 April 2021).
27. Understand Azure IoT Edge Modules. Available online: https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-modules

(accessed on 15 April 2021).
28. Azure IoT Edge Security Manager. Available online: https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-security-

manager (accessed on 25 April 2021).
29. Azure IoT Edge Supported Systems. Available online: https://docs.microsoft.com/en-us/azure/iot-edge/support?view=

iotedge-2020-11 (accessed on 25 June 2021).
30. Container Registry. Available online: https://azure.microsoft.com/en-us/services/container-registry/ (accessed on

9 September 2021).
31. Create an IoT Hub Using the Azure Portal. Available online: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-

through-portal (accessed on 25 June 2021).
32. Ubuntu 18.04.5 LTS (Bionic Beaver). Available online: https://releases.ubuntu.com/18.04.5/ (accessed on 25 June 2021).
33. Install or uninstall Azure IoT Edge for Linux. Available online: https://docs.microsoft.com/en-us/azure/iot-edge/how-to-

install-iot-edge?view=iotedge-2020-11 (accessed on 26 June 2021).
34. AWS IoT Greengrass 1.10 Provides Support for Docker Containers and Management of Data Streams. Available online:

https://aws.amazon.com/about-aws/whats-new/2019/11/aws-iot-greengrass-supports-docker-containers-management-
data-streams (accessed on 8 May 2021).

35. Cloud Foundry How Tos—Docker Container in Cloud Foundry. Available online: https://developer.mindsphere.io/paas/
howtos/howtos-docker-in-cloudfoundry.html (accessed on 29 April 2021).

36. Install and Run Docker Containers for the Speech Service APIs. Available online: https://docs.microsoft.com/en-us/azure/
cognitive-services/speech-service/speech-container-howto?tabs=stt%2Ccsharp%2Csimple-format (accessed on 29 July 2021).

37. Tahseen Ali, A.; Abdullah, H.S.; Fadhil, M.N. Voice recognition system using machine learning techniques. Mater. Today Proc.
2021. [CrossRef]

38. Martinek, R.; Vanus, J.; Nedoma, J.; Fridrich, M.; Frnda, J.; Kawala-Sterniuk, A. Voice Communication in Noisy Environments in a
Smart House Using Hybrid LMS+ICA Algorithm. Sensors 2020, 20, 6022. [CrossRef] [PubMed]

39. Benítez-Guijarro, A.; Callejas, Z.; Noguera, M.; Benghazi, K. Coordination of Speech Recognition Devices in Intelligent Environ-
ments with Multiple Responsive Devices. Proceedings 2019, 31, 54. [CrossRef]

40. Nasef, M.; Sauber, A.; Nabil, M. Voice gender recognition under unconstrained environments using self-attention. Appl. Acoust.
2021, 175, 107823. [CrossRef]

41. Koložvari, A.; Stojanović, R.; Zupan, A.; Semenkin, E.; Stanovov, V.; Kofjač, D.; Škraba, A. Speech-recognition cloud harvesting
for improving the navigation of cyber-physical wheelchairs for disabled persons. Microprocess. Microsyst. 2019, 69, 179–187.
[CrossRef]

42. Magsi, H.; Sodhro, A.H.; Al-Rakhami, M.S.; Zahid, N.; Pirbhulal, S.; Wang, L. A Novel Adaptive Battery-Aware Algorithm for
Data Transmission in IoT-Based Healthcare Applications. Electronics 2021, 10, 367. [CrossRef]

43. Create a Base Image. Available online: https://docs.docker.com/develop/develop-images/baseimages/ (accessed on 10
September 2021).

44. Azure Cognitive Services. Available online: https://azure.microsoft.com/en-us/services/cognitive-services/ (accessed on 10
September 2021).

http://doi.org/10.1016/j.jii.2021.100225
https://www.akira.ai/blog/edge-computing-vs-cloud-computing/
https://www.akira.ai/blog/edge-computing-vs-cloud-computing/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization
https://arxiv.org/pdf/1807.01842.pdf
http://doi.org/10.1007/978-981-13-1501-5_12
https://www.ibm.com/cloud/learn/docker
https://azure.microsoft.com/en-us/services/iot-edge
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://tinker-board.asus.com/product/tinker-board-2.html
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-modules
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-security-manager
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-security-manager
https://docs.microsoft.com/en-us/azure/iot-edge/support?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/support?view=iotedge-2020-11
https://azure.microsoft.com/en-us/services/container-registry/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://releases.ubuntu.com/18.04.5/
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge?view=iotedge-2020-11
https://aws.amazon.com/about-aws/whats-new/2019/11/aws-iot-greengrass-supports-docker-containers-management-data-streams
https://aws.amazon.com/about-aws/whats-new/2019/11/aws-iot-greengrass-supports-docker-containers-management-data-streams
https://developer.mindsphere.io/paas/howtos/howtos-docker-in-cloudfoundry.html
https://developer.mindsphere.io/paas/howtos/howtos-docker-in-cloudfoundry.html
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-container-howto?tabs=stt%2Ccsharp%2Csimple-format
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-container-howto?tabs=stt%2Ccsharp%2Csimple-format
http://doi.org/10.1016/j.matpr.2021.04.075
http://doi.org/10.3390/s20216022
http://www.ncbi.nlm.nih.gov/pubmed/33114043
http://doi.org/10.3390/proceedings2019031054
http://doi.org/10.1016/j.apacoust.2020.107823
http://doi.org/10.1016/j.micpro.2019.06.006
http://doi.org/10.3390/electronics10040367
https://docs.docker.com/develop/develop-images/baseimages/
https://azure.microsoft.com/en-us/services/cognitive-services/

	Introduction 
	Background of Speech Recognition, Edge Computing and Containerization 
	Speech-to-Text Libraries 
	Edge Computing vs. Cloud Computing 
	Containerization and Docker 

	Designed Architecture and Methodology of the Voice-Controlled Actuator 
	IoT Edge Devices Using the Runtime Azure IoT Edge 
	The Runtime Azure IoT Edge 
	Supported Systems for IoT Edge Runtime 
	IoT Edge Devices 

	IoT Hub and the Cloud Azure 
	Containers for the Speech Control of the Actuator Running on the IoT Edge Devices 
	Methodology of the Implementation 

	Experimental Verification 
	Results 
	Conclusions 
	References

