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Abstract: Fixed and rotary-wing unmanned aircraft systems (UASs), originally developed for military
purposes, have widely spread in scientific, civilian, commercial, and recreational applications. Among
the most interesting and challenging aspects of small UAS technology are endurance enhancement
and autonomous flight; i.e., mission management and control. This paper proposes a practical method
for estimation of true and calibrated airspeed, Angle of Attack (AOA), and Angle of Sideslip (AOS)
for small unmanned aerial vehicles (UAVs, up to 20 kg mass, 1200 ft altitude above ground level, and
airspeed of up to 100 knots) or light aircraft, for which weight, size, cost, and power-consumption
requirements do not allow solutions used in large airplanes (typically, arrays of multi-hole Pitot
probes). The sensors used in this research were a static and dynamic pressure sensor (“micro-
Pitot tube” MPX2010DP differential pressure sensor) and a 10 degrees of freedom (DoF) inertial
measurement unit (IMU) for attitude determination. Kalman and complementary filtering were
applied for measurement noise removal and data fusion, respectively, achieving global exponential
stability of the estimation error. The methodology was tested using experimental data from a
prototype of the devised sensor suite, in various indoor-acquisition campaigns and laboratory tests
under controlled conditions. AOA and AOS estimates were validated via correlation between the
AOA measured by the micro-Pitot and vertical accelerometer measurements, since lift force can be
modeled as a linear function of AOA in normal flight. The results confirmed the validity of the
proposed approach, which could have interesting applications in energy-harvesting techniques.

Keywords: unmanned aircraft systems (UASs); IMU; pressure sensors; angle-of-attack estimation;
autonomous flight; flight mechanics

1. Introduction

Small unmanned aerial vehicles (UAVs), with maximum gross takeoff mass <10 kg,
normal operating altitude <1200 ft above ground level (AGL) and airspeed <100 knots
according to the U.S. Department of Defense (DoD) classification [1] (p. 12), are an easy-to-
use and economical way to perform tasks that can be fulfilled without human involvement,
or for flights in unconventional missions or constrained space. UAVs can also be an optimal
solution as a test bench for new sensor systems or embedded flight management systems.
When subsystems are integrated to improve characteristics such as estimation of the vehi-
cle’s state vector, autonomy, and guidance, navigation, and control (GNC) capabilities, we
categorize unmanned aircraft systems (UASs) as semiautonomous, remotely operated, and
fully autonomous [2–5]. A UAS comprises several subsystems that include the aircraft, its
payload, the control station(s) (and, often, other remote stations known as ground stations
(GSs)), aircraft launch and recovery subsystems where applicable, support subsystems,
communication subsystems, and transport subsystems. Recent improvements of tech-
nologies such as global navigation satellite systems (GNSSs), inertial measurement units
(IMUs), light detection and ranging systems (LiDAR), microcontrollers, imaging sensors,

Electronics 2021, 10, 2325. https://doi.org/10.3390/electronics10192325 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7581-8224
https://orcid.org/0000-0002-6162-9182
https://orcid.org/0000-0003-3467-8218
https://doi.org/10.3390/electronics10192325
https://doi.org/10.3390/electronics10192325
https://doi.org/10.3390/electronics10192325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192325
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192325?type=check_update&version=3


Electronics 2021, 10, 2325 2 of 20

and micro-electromechanical systems (MEMS) significantly contributed to the progress of
UAS technology and functionalities. UASs must also be considered as part of a local or
global air transport/aviation environment with its rules, regulations, and disciplines [6].

Typically, for real-time trajectory and speed estimation, IMUs are used. Much work
has been published in the field of extrapolation, filtering, and fusion of IMUs and other
sensor data (GPS/GNSS, LiDAR, sonar, etc.) for attitude and velocity estimation [7–11], and
for meteorology and wind estimation for atmospheric energy harvesting [12–17]. For small,
low-cost UAVs, minimization of sensing requirements and expansion of flight envelope,
endurance, and mission capability are priorities. Accurate measurement of airspeed could
be critical to a UAV mission, affecting the safety of the aircraft, and allowing performance
enhancement by specific flight strategies and energy-saving maneuvers (for example, gust
soaring) [18]. Usually, large airplanes are equipped with arrays of multihole Pitot probes,
properly calibrated along the fuselage, that measure wind velocity, angle of attack (AOA,
α), and angle of sideslip (AOS, β), which are variables that contain useful information
about performance and safety in normal and abnormal flight conditions. However, few
papers have considered practical methods for AOA and AOS estimation for small UAVs or
light aircraft, due to the large weight, size, cost, and power consumption of the measuring
devices. Estimates of these parameters can be used for fault detection and changes due to
structural damage or adverse flight conditions that could alter the aerodynamic coefficients
of a UAV, and could also allow precise control of small UAVs in particular maneuvers,
such as vertical landing [19] or high dynamic flight [20]. A comprehensive review of some
methodologies and estimation approaches for typical fixed-wing and rotary-wing UAVs
can be found in [21], in which the authors point out that multihole probes based on pressure
measurements are difficult to calibrate for low-speed, low-altitude flights; optical methods
are unreliable for small UAVs; and potentiometer-based vane probes could be suitable
for applications in mini flyers. In the literature, attempts at estimation without direct
measurements of AOA and AOS in small UAVs, using algebraic methods or multistage
fusion algorithms with linear time-varying models, can also be found [22,23].

The advent of miniaturization has permitted the use of small, low-weight, low-power
sensors, allowing the possibility of installing a Pitot tube on a UAV. This paper, based on a
preliminary design presented by the authors in [24], focuses on trajectory measurement
and control of a mini-UAV using a micro-Pitot tube for speed (true air speed, TAS) and
AOA and AOS estimation. The approach aims to enhance the performance of small UAVs,
constrained by onboard energy due to the aircraft’s limited size, by following specific
flight strategies defined by particular atmospheric formations. In low-level flight, typical
for small UAVs, the turbulence intensity is significantly increased, due to the ground
proximity [12], and wind estimation plays a crucial role in optimizing the onboard en-
ergy consumption, both for fixed-wing and rotary-wing aircraft. Onboard estimation of
AOA and AOS by differential pressure measurements could improve control of critical
roll motions, potentially allowing active control methodologies for stabilization or energy-
harvesting strategies. The sensors used in this research are a differential pressure sensor
and a 10 degrees of freedom (DoF) inertial measurement unit (IMU), both managed by
a microcontroller Arduino for data acquisition and TAS, AOA, and AOS estimation. We
used 1D Kalman filtering to estimate and remove measurement noise, and complementary
filtering was used to provide an estimate of the attitude from IMU acceleration and angular
rate data [25,26]. Indoor sessions were needed for system setup and calibration. Exper-
imental data were collected using a prototype of the system in different test conditions
by the Parthenope Flight Dynamics Laboratory (PFDL) team of the University of Naples
“Parthenope” (Italy). After the characterization of the system, it will be tested in real flight
campaigns using a small UAV (a quadcopter) with a maximum take-off mass (MTOM) of
2 kg/visual line of sight (VLOS). These limitations, considered in [6], guaranteed safety of
flight, and all the related operations were considered not critical.

The paper is structured as follows: after establishing the theoretical framework in
Section 2 (kinematic model, error analysis, and Kalman-filter-based estimation technique),
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in Section 3 the sensors used are characterized. Section 4 reports the experimental activ-
ity (pressure-sensor calibration, estimation of velocity, angle of attack, angle of sideslip,
and attitude), describing the tests performed and analyzing the numerical results. Final
considerations and future work (Section 5) conclude the paper.

2. Theoretical Framework
2.1. Kinematic Model

We begin with the aircraft kinematics [27–29], assuming a rigid-body model, and
referencing Figure 1. Let vB

ac =
(

u v w
)T denote the velocity vector (ground speed,

relative to Earth) in the aircraft’s body coordinate frame (CF), with T denoting transpose.
Let vN

ac =
(

ug vg wg
)T denote the velocity vector with components referred to an

Earth-fixed north–east–down (NED) CF. The UAV kinematics are:

.
u− rv + qw = ax.
v− pw + ru = ay.
w− qu + pv = az

(1)

where a =
(

ax ay az
)T is the acceleration vector, decomposed in the body CF, and

p, q, r are the body-frame angular rates.

Figure 1. Airspeed definition and wind triangle.

The wind velocity vector relative to the Earth, decomposed in the NED CF, is
vN

w =
(

uw vw ww
)T. The relation among the airspeed (velocity with respect to

the surrounding air), the ground speed (velocity with respect to the Earth frame), and the
wind velocity (with respect to the Earth frame) is:

vr= vg − vw (2)

The rotation matrix for moving from the vehicle-carried NED frame to the body
frame, Rb

N, is defined by roll (φ, positive up), pitch (θ, positive right), and yaw (ψ, positive
clockwise) angles [27] (Chap. 2):

Rb
N =

 cos θ cos ψ cos φ sin ψ − sin θ
sin φ sin θ cos ψ− cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ
cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ− sin φ cos ψ cos φ cos θ

 (3)



Electronics 2021, 10, 2325 4 of 20

Therefore, the relative velocity (airspeed) vector vr =
(

ur vr wr
)T in the body

CF is:  ur
vr
wr

 =

 u
v
w

− Rb
N

 uw
vw
ww

 (4)

According to [27], the airspeed vector body-frame components can be expressed in
terms of the airspeed magnitude, angle of attack, and sideslip angle as: ur

vr
wr

= VTAS

 cos α cos β
sin β

sin α cos β

 (5)

The AOA, α, is defined as the angle between the longitudinal (X) axis of the airframe
and the freestream velocity (or relative wind), measured in the Y–Z plane of the body CF,
and is positive when there is uplift (pitch-up), whereas the AOS, β, is measured between
the X-body axis of the airframe and the relative wind velocity vector, and is positive for
wind coming from starboard (right side). Inverting Equation (5), the angles α, β and the
true airspeed VTAS are given by:

α = tan−1
(

wr

ur

)
(6)

β = sin−1
(

vr

VTAS

)
(7)

VTAS =
√

u2
r +v2

r +w2
r (8)

The calibrated airspeed VCAS is derived from [30] (Chap. 3):

VCAS =

√√√√ 1
ρsl

7Psl

(
∆P
Psl

+1
) 2

7
− 1 (9)

where ρsl and Psl are the sea-level standard atmospheric values of air density and pressure,
respectively (Psl = 101.325 kPa, ρsl = 1.225 kg/m3 at 15 ◦C, or 288.15 K [31]), and ∆P is the
measured differential pressure. When Mach numbers are small (less than 0.3), Equation (8)
is related to Equation (9) by:

VCAS = VTAS
√
σ (10)

where σ is the relative density; i.e., the ratio between the actual air density and the standard
air density at sea level. For low-level flights and small velocities (typical of small UAV
mission scenarios), VCAS. can be assumed as equal to VTAS.

2.2. Error Analysis

Assuming statistically independent observations, the variance of the calculated value
of α (Equation (6)), σ2

α, can be evaluated using the special law of propagation of variances
(SLOPOV) [32] (Chapter 6):

σ2
α = σ2

wr

(
ur

u2
r + w2

r

)2
+ σ2

ur

(
−wr

u2
r + w2

r

)2
(11)

where σ2
wr and σ2

ur are the variance of the measured quantities wr and ur, respectively
Equation (11) can be easily rearranged as follows:

σ2
α =

(
1

ur
wr

+ wr
ur

)2[(
σur

ur

)2
+

(
σwr

wr

)2
]

(12)
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As far as σ2
β is concerned, using Equation (7) and the SLOPOV, it can be shown that:

σ2
β =

(
u2

r vr

AB

)2(
σur

ur

)2
+

(
vr A

B

)2(σvr

vr

)2
+

(
vrw2

r
AB

)2(
σwr

wr

)2
(13)

where A =
√

u2
r + w2

r , and B = u2
r + v2

r + w2
r = V2

TAS. Assuming that the vertical winds
are zero (usually correct for a nonturbulent atmosphere), and measuring the sideslip angle
in the X–Y plane of the body CF to maintain independence (i.e., decoupling) between α
and β, then A = ur, B = u2

r + v2
r , and Equation (13) can be expressed in a form similar

to Equation (12):

σ2
β =

(
1

ur
vr

+ vr
ur

)2[(
σur

ur

)2
+

(
σvr

vr

)2
]

(14)

From Equations (12) and (14), it can be seen, by finding the maxima of the functions
1

ur
wr +

wr
ur

and 1
ur
vr +

vr
ur

, that the errors in α and β are maximized when the velocity ratios ur
wr

or wr
ur

(for β, ur
vr

or vr
ur

) are equal to 1, and σ2
α and σ2

β increase as the velocity components
become small; i.e., the vehicle approaches a hovering flight (in which knowledge of AOA
and AOS becomes less important to the control strategy). Figure 2a, as an example, shows
σα in degrees as a function of ur and wr, assuming a typical value of 0.2 m/s for the
standard deviations of the measured velocity components (σur and σwr).

Figure 2. (a) Standard deviation (in degrees) of the AOA, α, as a function of the measured velocity components. (b) Standard
deviation of the calibrated airspeed.

Finally, using Equation (9), the variance of the calibrated airspeed is found to be:

σ2
VCAS

=

 1
ρsl

(
∆P
Psl

+1
)− 5

7

VCAS


2

σ2
∆P (15)

where σ2
∆P is the variance of the differential pressure measurements (σ∆p set to 0.1 kPa; see

Table 2, Section 3). Figure 2b shows the propagated error on VCAS (i.e., σVCAS ) as a function
of ∆P, with operating pressure range of the sensor from 0 to 10 kPa, as from Table 2.
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2.3. Measurement Noise Estimation via Kalman Filtering

We applied Kalman filtering [33] for measurement noise estimation and removal,
using a simple 1D formulation. The measurement process was modeled as:{

xk+1 = Axk + wk
yk = Cxk + vk

(16)

where xk is the k-th measurement; wk is the (Gaussian, zero-mean) model noise with
variance Q (initialized to 0); vk is the (Gaussian, zero-mean) measurement noise, with
variance R, derived from the sensors’ technical datasheet (see Section 3); and A and C are
scalar quantities equal to 1. The (scalar) variance of the estimation error is P.

The predictor–corrector sequence (Kalman filtering) used in our work was imple-
mented in the Arduino Integrated Development Environment (IDE) as a function (KF_nr,
where “nr” stands for “noise removal”) called whenever a new measurement (Data) was
available from the sensor. The equations of the a priori estimation error, the Kalman gain
Kk, the updated estimate x̂k+1|k+1 (with current data yk+1), and the minimum-square a
posteriori estimation error Pk+1|k+1, are, respectively:

Pk+1|k = Pk|k + Q (17)

Kk+1 =
Pk+1|k

Pk+1|k + R
(18)

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − x̂k+1|k

)
(19)

Pk+1|k+1 = Pk+1|k(1− Kk+1) (20)

The Arduino code translated these equations (using the compound addition “+=”) as
shown in Table 1.

Table 1. The 1D Kalman filtering code implemented for measurement noise reduction.

float KF_nr(float Data)
{
P += Q;
K = P/(P+R);
X += K*(Data - X);
P = (1-K)*P;
return X;
}

3. Sensor System

The system used for velocity, AOA, AOS, and attitude estimation is composed of
the following:

• Differential pressure sensor (Freescale Semiconductor MPX2010DP micro-Pitot);
• Static pressure sensor (Bosch Sensortec BMP180);
• IMU (DFRobot 10 DOF MEMS IMU sensor);
• Microcontroller (Arduino Mega 2560).

3.1. Differential Pressure Sensor (MPX2010DP)

Estimating the CAS (Equation (9)) requires evaluation of the dynamic pressure. The
Freescale Semiconductor, Inc. MPX2010DP (Figure 3) silicon piezoresistive pressure sen-
sor [34] provides a very accurate and linear voltage output directly proportional to the
applied differential pressure, in the range of 0–10 kPa.
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Figure 3. The MPX2010DP differential pressure sensor and its schematics. P1 and P2 are the pressure
side and the vacuum side, respectively.

The output voltage of the differential gauge sensor increases with increasing pressure
applied to the positive pressure side (port P1 in Figure 3) relative to the vacuum side (port
P2). The sensor is designed to operate with positive differential pressure applied (P1 > P2).
Table 2 shows some technical specifications at 25 ◦C.

Table 2. The main operating characteristics of the MPX2010DP.

Dimensions, mass 29 × 29 × 18 mm, <20 g

Pressure range, operating temperature 0–10 kPa, -40 ◦C–125 ◦C

Supply voltage, current, power consumption 10 VDC, 6 mA, 60 mW

Temperature compensation 0 ◦C to +85 ◦C

Full-scale span (VFSS) 25 mV

Offset, sensitivity Max ± 1 mV, 2.5 mV/kPa

Offset stability, linearity ±0.5% VFSS, max ± 1% VFSS

Response time (10% to 90%) 1 ms

Warm-up time 20 ms

The sensor housed a single monolithic silicon die with the strain gauge and thin
film resistor network integrated. The chip was laser-trimmed for precise span, offset
calibration, and temperature compensation, allowing optimal linearity, low pressure and
temperature hysteresis (±0.1%VFSS from 0 to 10 kPa and ±0.5%VFSS from −40 ◦C to
125 ◦C, respectively), and an excellent response time. It fulfilled the in-flight requirements.

3.2. Digital Pressure Sensor (BMP180)

The static pressure also was acquired by the BMP180 digital pressure sensor (Figure 4)
in order to obtain redundant measurements and more accurate estimates. The BMP180,
produced by Bosch Sensortec, consists of a piezoresistive sensor, an analog-to-digital
converter, a control unit with E2PROM, and a serial I2C interface, which allowed for easy
system integration by direct connection to commercial microcontrollers [35]. The 16-bit (or
19-bit in high-resolution mode) pressure data, in the range of 300–1100 hPa (from +9000 m
to −500 m related to sea level) and 16-bit temperature data were compensated by the
calibration data stored in the embedded E2PROM. Detailed sensor features are reported
in Table 3.
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Figure 4. The BMP180 digital pressure sensor.

Table 3. Key features of the BMP180.

Dimensions, mass 20 × 25 mm, < 5 g

Supply voltage, power consumption 2.5 VDC (typical), < 2 mW

Supply current @ 1 sample/s, 25 ◦C 5 µA (standard mode), 7 µA (hi-res mode)

Standby current @ 25 ◦C 0.1 µA

Operating temperature −40 ◦C to +85 ◦C

Pressure-sensing range (altitude) 300–1100 hPa (9000 m to −500 m ASL)

Pressure (altitude) resolution Up to 0.03 hPa (0.25 m)

Operating temperature/resolution −40 ◦C to 85 ◦C/0.1 ◦C

RMS noise 3 Pa

Long-term stability (12 months) ±1.0 hPa

3.3. 10 DOF IMU

The DFRobot 10 DOF IMU sensor [36] (Figure 5) is a low-power (10 mW), compact-
size (26x18mm) board, fully compatible with the Arduino microcontroller family, and
integrates an Analog Device 10-bit ADXL345 accelerometer with up to ±16 g dynamic
range, 0.312× 10−5-g sensitivity, and ±40-mg drift [37]; a Honeywell HMC5883L magne-
tometer [38]; a 16-bit ITG-3205 gyro with ±2000◦/s full-scale range, 0.014◦/s sensitivity,
and±1◦/s drift [39]; and a Bosch BMP085 pressure sensor. The IMU is a polysilicon surface
micromachined structure built on top of a silicon wafer. Polysilicon springs suspend the
structure over the surface of the wafer and provide resistance against acceleration forces.

Figure 5. The 10 DOF MEMS IMU.

IMU measurements were used in this research to estimate the acceleration components
and the angular rates in Equation (1), and to check the effectiveness of the micro-Pitot
approach for velocity and attitude determination.

3.4. Microcontroller

The Arduino Mega 2560 board (102 × 53 mm, weight 37 g) is a microcontroller board
based on the ATmega2560. It has 54 digital input/output pins (of which 14 can be used
as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16-MHz crystal
oscillator, a USB connection, a power jack, an ICSP header, and a 5 V voltage supply. The
board has 250-mA current absorption (1.25-W power consumption) when running code
and providing power to external sensors. The board contains everything needed to support
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the microcontroller; simply connecting it to a computer with a USB cable or powering it
with an AC-to-DC adapter or battery allows the board be used and work in an integrated
development environment (IDE) based on the Processing language project.

4. Simulations, Results, and Performance Evaluation

Schematics and a prototype of the acquisition system are shown in Figures 6 and 7,
respectively. The indoor experimental campaigns were performed in the PFDL of the
University of Naples “Parthenope”, Naples, Italy.

Figure 6. Electric scheme of the developed system.

Figure 7. Prototype of the data-acquisition system.

The system was tested using a fan as airflow generator while acquiring the differential
pressures from the MPX2010DP sensor. The sensor’s measurement range is 0–1023 (10 bits).
Data were collected in 3-min acquisitions at a sampling frequency of 10 Hz. A digital
anemometer (Proster PST-TL017 Handheld Anemometer [40]) was used for reference
measurement of the airstream. Table 4 reports some technical specifications of the PST-
TL017 device, shown in Figure 8.

Table 4. Technical data for the PST-TL017.

Power supply, current consumption 3 V CR2032 battery, 3 mA

Operating humidity ≤90% RH

Storage temperature −40 to 60 ◦C (−40 to 140 ◦F)

Weight 50 g

Air velocity resolution and range 0.1 m/s, 0–30 m/s

Air temperature range −10 to +45 ◦C (14–113 ◦F)

Air temperature resolution 0.2 ◦C, 0.36 ◦F

Air temperature accuracy ±2 ◦C, ±3.6 ◦F
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Figure 8. The PST-TL017 anemometer used for the airflow speed check.

4.1. Pressure-Sensor Calibration

To reduce measurement noise, 1D Kalman filtering was applied to the raw data,
postprocessed in the Matlab® software environment; the results are shown in Figure 9.
Preliminarily, for sensor bias estimation, digital pressure data (10-bit strings) were collected
in quiet airflow (vw= 0).

Figure 9. (a) Raw data from the MPX2010DP, with vw= 0. (b) Comparison between the raw data and the
low-pass-filtered data.

The MPX2010DP sensor used the raw Arduino 5 V voltage source, and the output
voltage Vout was amplified by a two-stage differential op-amp circuit with default gains of
101 (first stage) and 6 (second stage), to obtain a signal in the range of 0–5 V. Inherent in
the MPX2010 family of pressure sensors is a zero-pressure offset voltage, typically up to
1 mV. At a 5 V supply voltage, the zero-pressure offset was 0.5 mV, which corresponded to
a 0.39 V offset voltage in the first op-amp stage. This offset was amplified by the second
stage and appeared as a DC offset at Vout with no differential pressure applied. Using the
design considerations described in [41], at zero pressure we expected a theoretical voltage
value after the second gain stage of 2.34 V, and a pressure range of 0–2 kPa. Since the
supply voltage was 5 V, the available signal for the actual pressure was 5− 2.34 = 2.66 V.

When vw = 0, the sensor’s DN (digital number) average output was 477, which
corresponded to Vout= Vbias = 2.33 V (very close to the expected value), according to:

Vout =

(
5

1023

)
DN (21)
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The average bias voltage acquired at vw= 0 (Figure 10), Vbias, was subtracted from
measurements with values of vw 6= 0 to estimate the differential pressure and velocity.

Figure 10. The bias voltage (output at vw = 0).

To convert voltage into differential pressure (∆P, in kPa) and evaluate the velocity
from Equation (9), the following linear relation was applied:

∆P (kPa) =
2 (V out − Vbias)

Vmax − Vbias
(22)

where Vmax = 5 V, Vbias = 2.33 V, and 2 is the full scale of the sensor (2 kPa).

4.2. Indoor Tests—Velocity Estimation

The indoor experiments were performed by mounting the equipment on a test bench
on which the airflow was generated by a domestic fan, placed at 0.5 m from the micro-Pitot
tube. The environmental conditions were: 33% relative humidity at 27 ◦C, collected by
the DHT11 sensor, a low-cost, small-size (12 mm × 15.5 mm, mass < 5 g), low-power
(12.5-mW power consumption when operating at 5 V, 2.5 mA) temperature and humidity
sensor with a calibrated 16-bit digital signal output on a single-wire serial interface, with
a 20–80% relative humidity range (accuracy 5%) and 0–50 ◦C temperature range with
± 2 ◦C accuracy [42].

Three airflow conditions were set as follows:

• Speed 0: 0 m/s (for system calibration);
• Speed 1: 2.5 0.1 m/s (measured by the anemometer);

• Speed 2: randomly varying airflow.

Data were acquired at a 10 Hz sampling rate. Bias estimation and sensor calibration
(Section 4.1) were performed in the “Speed 0” condition. Figures 11 and 12 show the
acquired raw (unfiltered) and filtered data in the “Speed 1” and “Speed 2” (random wind
speed) conditions, respectively. As a check of the effectiveness of the calibration strategy,
the average estimated velocity value in the “Speed 1” test condition (Figure 11) was found
to be 2.56 m/s; this corresponded to a relative error equal to (2.56− 2.5)/2.56 = 2.3%.
Raw data smoothing was performed as shown in Figures 11a and 12a with a moving
average filter (the Matlab function smoothdata) in the time domain, comparable (but not
as effective) to low-pass filtering in the frequency domain, while Figures 11b and 12b show
the effect of 1D KF on the processed data.
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Figure 11. (a) Raw data collection during the “Speed 1” test. (b) Velocity acquisition (raw data vs. KF data) calculated
by Equation (9).

Figure 12. (a) Raw data vs. low-pass-filtered data (DN of sensor measurement). (b) Raw data vs. KF data (calculated
velocity) in test condition “Speed 2”.

4.3. Indoor Tests—AOA, AOS, and Attitude Estimation

AOA and AOS were calculated according to Equations (5) and (6). The entire system
was successively mounted on a movable structure (Figure 13) to simulate various attitude
changes of the UAV during the indoor tests. The following assumptions were made:

• Static data acquisition: the system was fixed and simply surrounded by the constant
airflow coming from the fan;

• Pitot tube aligned with the airframe longitudinal axis: the relative velocity was equal
to the airflow velocity, and from Equation (4): ur

vr
wr

 =

 0
0
0

−Rb
N

 uw
0
0

 (23)
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Figure 13. The prototype mounted on a movable structure to simulate pitch (a), yaw (b), and roll (c) variations.

Several test cases were set up, as shown in Table 5, in which the actual wind velocity
(|vw|) was measured by the digital anemometer, and the controlled (“true”) attitude angles
were selected by using a graduated scale mounted on the structure. For example, in test
case 1, the system was set in a horizontal position, with the X–Y plane parallel to the
ground (yaw, roll, and pitch angles equal to 0◦, calculated by the IMU), and the “true”
wind velocity was set to 7 m/s.

Table 5. The test cases and parameter setup.

Test Case |vw| (m/s) θ (deg) φ (deg) ψ (deg)

1 7 0 0 0
2 7 0 45 0
3 7 0 90 0
4 7 45 0 0
5 7 0 0 45
6 11.5 0 0 0
7 7 Varying Varying Varying

To estimate roll and pitch angles from the IMU, a complementary filter was applied,
fusing accelerometer and gyroscope data, to reduce drift and noise errors [43,44]: φ̂k

θ̂k
ψ̂k

= γ

 φ̂k−1
θ̂k−1
ψ̂k−1

+


.
φk−1.
θk−1.
ψk−1

∆t+(1 − γ)

 φacc,k−1
θacc,k−1

0

 (24)
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where φ̂k, θ̂k, ψ̂k are the estimates of roll, pitch, and yaw angles at the instant k; γ is the

filter coefficient; ω =
[ .
φ

.
θ

.
ψ
]T

is the angular rate vector derived from gyroscopic mea-
surements [45]; and φacc, θacc, are the angles derived from the accelerometer data vector
a. These can be derived from triple-axis tilt calculation, which evaluates the angles φ′

between the gravity vector and the accelerometer’s z-axis (with positive direction opposite
to gravity); θ′ between the horizon (initially coincident with the accelerometer xy-plane)
and the x-axis, coincident with the body longitudinal axis; and ψ′ between the horizon and
the y-axis of the accelerometer [46]:

φ′ = tan−1

(√
a2

x+a2
y

az

)

θ′ = tan−1

(
ax√

a2
y+a2

z

)
ψ′ = tan−1

(
ay√

a2
x+a2

z

) (25)

The roll angle (ax = 0) is given by tan−1 ay/az, and pitch (ay = 0) is given by
tan−1 ax/az. The yaw angle was estimated by simply integrating the gyroscopic yaw rate.
The filter coefficient was determined by:

γ =
τ

τ+ ∆t
(26)

where τ is the time constant of the filter. Figure 14 shows the KF velocity estimation and
the Euler angles with the complementary filter during data collection in static conditions
(test case 1).

Figure 14. (a) The filtered velocity measured by the differential pressure sensor in test case 1. (b) The Euler angles after
complementary filtering (fusion of gyroscope and accelerometer data from the IMU).

Following Equation (4), the relative velocity vr and its components
(

ur vr wr
)T

were evaluated, whereas Equations (6) and (7) were used to estimate the AOA (α) and AOS
(β). Table 6 shows the average values of the estimates and the experimental results for
the seven test cases devised, and Figures 15–17 show the collected data and the estimates
during test conditions 3, 6, and 7, respectively.
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Table 6. Estimates of vr, AOA, and AOS in the seven experimental setups (filtered data).

Test Case vT
r (m/s)

Relative
Error α (deg) β (deg)

1 (−7.14 0.00 0.03) 2.0% −0.26 −0.05

2 (−6.66 0.01 0.42) 4.9% −3.67 −0.08

3 (−6.93 −0.13 0.08) 1.0% −0.55 −0.86

4 (−3.51 −0.21 2.90) 8.5% −39.5 −2.72

5 (−3.17 −4.10 0.03) 4.6% −0.51 −47.1

6 (−10.5 −0.05 0.01) 4.8% −0.06 −0.23

7 (−6.77 −0.01 0.26) 3.4% −1.74 −0.07

Figure 15. The filtered velocity (a) and yaw, pitch, and roll angles (b) during test case 3.

Figure 16. The filtered velocity (a) and filtered Euler angles (b) during test case 6.
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Figure 17. Data collection in dynamic conditions (test case 7, simulation of a roll variation from 0–40◦). (a) filtered velocity,
(b) filtered Euler angles.

A simple statistical analysis was conducted on the estimates of airspeed, AOA,
and AOS to evaluate the system’s performance. Table 7 shows the standard devia-
tions σVCAS , σα, σβ of the estimated values (σα and σβ before and after filtering), while
Figure 18 shows a plot of σα and σβ as a function of the velocity magnitude, together
with the relative least-square fits. The experimental data were in agreement with the
growth in errors as the velocities approached zero, according to the developed error
analysis (Section 2.2).

Table 7. Standard deviations of estimated CAS, AOA, and AOS (raw and filtered data).

Test Case σVCAS (m/s)
σα (deg) σβ (deg)

Raw Filtered Raw Filtered

1 0.32 3.2 0.10 0.10 0.03

2 0.29 5.3 0.32 0.42 0.04

3 0.27 4.0 0.39 0.78 0.50

4 1.41 13 6.1 7.7 0.47

5 0.60 3.3 0.15 1.2 1.1

6 0.35 2.2 0.14 1.1 0.16

7 0.76 1.7 1.66 11 0.06
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Figure 18. The standard deviation of the angle of attack and sideslip vs. magnitude of the relative
velocities: numerical values and least-square fit.

5. Conclusions and Further Work

This paper presented a kinematic model for estimation of airspeed, angle of attack
α, and sideslip angle β for small UAVs equipped with low-cost, off-the-shelf commercial
navigation sensors. The devised system used a miniaturized differential pressure sensor
(micro-Pitot tube) and an IMU for attitude determination, managed by a microcontroller.
The calibration technique used for the pressure sensor returned estimation errors of less
than 3%. The system performance was evaluated using experimental results from indoor
benchmarking tests that emulated some basic dynamics of typical UAV missions. As
shown in Table 6, the relative error that affected airspeed measurements was found to be
less than 9% in all the test scenarios considered, or less than 5% if we excluded test case
4 shown in Table 6, relative to a nonrealistic value of the AOA (which was typically in the
range of −2◦ to 15◦). The estimation errors of α, β, and VCAS were found to be within 1.7◦

(excluding the nonrealistic case α = 45◦), 0.5◦, and 1.4 m/s, respectively, in good agreement
with the theoretical values derived from the law of error propagation, and consistent with
other authors’ work [15,19,20,26]. The proposed approach showed a promising potentiality
for implementation of real-time control laws to increase the flight envelope by exploiting
attitude measurements and direct knowledge of α and β. Using AOA and AOS estimates
as in-flight feedback inputs to the autopilot control loop also could help to improve the
endurance of small aircraft (typically in the range 15–45 min) by implementing specific
flight strategies according to the wind conditions, or even optimizing the trajectory by
gaining power in energy-harvesting techniques. There are, however, some limitations of
the proposed methodology:

• The alignment of the micro-Pitot tube (differential pressure sensor) to the longitudinal
axis of the UAV must be performed very precisely in order to avoid biases in the
estimations of the AOA and AOS. Moreover, the sensor must be located reasonably
far from the rotary wings (considering a quadcopter or a multirotor VTOL UAV) to
avoid turbulent airflow added by the rotors.

• High velocities (>20 m/s) create differential pressure values out of the available sensor
range (0.10 kPa at 10 V supply, 0–2 kPa at 5 V supply). This was not an issue for the
micro-UAV applications devised by the authors (the system will be installed on a
quadcopter with maximum velocity on the order of 10 m/s), but could be a problem
for larger aircraft.

• The mass and size requirements of our system (<150 g, typical dimensions of the boxed
prototype of 120 × 60 × 30 mm) fit typical mini- and micro-UAV payload constraints,
but the power consumption of the system (in the range 1–2W) could significantly
reduce the aircraft’s endurance (which was in the order of 15–30 min for typical small



Electronics 2021, 10, 2325 18 of 20

UAVs). Therefore, careful engineering considerations must be devised to reduce the
impact of the system in terms of flight mission duration.

Future work will involve the realization of a minimum-size, minimum-weight version
of the sensor suite, to be strapdown-mounted on a small UAV with a 2 kg maximum take-
off weight (MTOW); the implementation of outdoor tests in typical flight and atmospheric
conditions; and further developments of the error models and the attitude kinematics,
to improve the accuracy of airflow angle and sideslip estimates in various flight and
wind conditions.
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