
electronics

Article

A Low-Latency, Low-Power FPGA Implementation of ECG
Signal Characterization Using Hermite Polynomials

Madhav P. Desai 1, Gabriel Caffarena 2,* , Ruzica Jevtic 2, David G. Márquez 2 and Abraham Otero 2

����������
�������

Citation: Desai, M.P.; Caffarena, G.;

Jevtic, R.; Márquez, D.G.; Otero, A. A

Low-Latency, Low-Power FPGA

Implementation of ECG Signal

Characterization Using Hermite

Polynomials. Electronics 2021, 10,

2324. https://doi.org/10.3390/

electronics10192324

Academic Editor: Stefano Ricci

Received: 27 July 2021

Accepted: 16 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Indian Institute of Technology (Bombay), Mumbai 400076, India; madhav@ee.iitb.ac.in
2 Department of Information Technologies, University CEU San Pablo, 28003 Madrid, Spain;

ruzica.jevtic@ceu.es (R.J.); david.gonzalez.marquez@gmail.com (D.G.M.); aotero@ceu.es (A.O.)
* Correspondence: gabriel.caffarena@ceu.es

Abstract: Automatic ECG signal characterization is of critical importance in patient monitoring and
diagnosis. This process is computationally intensive, and low-power, online (real-time) solutions to
this problem are of great interest. In this paper, we present a novel, dedicated hardware implementa-
tion of the ECG signal processing chain based on Hermite functions, aiming for real-time processing.
Starting from 12-bit ADC samples of the ECG signal, the hardware implements filtering, peak and
QRS detection, and least-squares Hermite polynomial fit on heartbeats. This hardware module can
be used to compress ECG data or to perform beat classification. The hardware implementation has
been validated on a Field Programmable Gate Array (FPGA). The implementation is generated using
an algorithm-to-hardware compiler tool-chain and the resulting hardware is characterized using
a low-cost off-the-shelf FPGA card. The single-beat best-fit computation latency when using six
Hermite basis polynomials is under 1 s with a throughput of 3 beats/s and with an average power
dissipation around 28 mW, demonstrating true real-time applicability.

Keywords: ECG; real-time; FPGA; HLS; AHIR; Hermite; low power

1. Introduction

Cardiovascular disease is the number one cause of death worldwide [1]. An electro-
cardiogram (ECG) registers the electrical activity of a heart, and it stands as a valuable
diagnostic tool. However, in clinical routines, ECG analysis is performed as a visual inspec-
tion by a cardiologist, which is a tedious task, further aggravated in the case of long-term
ECG. For instance, 24 h of Holter recordings contains around 100,000 heartbeats.

Figure 1 depicts the main components of the ECG, with the most important for
diagnosis being the waves P, Q, R, S and T. The Q, R and S waves are normally studied
together as the QRS complex. The P wave represents the moment when the auricles
contract to send blood to the ventricles, and at the end of the PR segment, the ventricle is
full. During the QRS complex, the ventricle expels their contents and are fully emptied at
the end of the ST segment. The T wave indicates that the heart is at rest.

Developing efficient techniques to automate ECG analysis is instrumental in helping
a cardiologist with their diagnosis. The detection of arrhythmias is of special interest [2].
The QRS complexes of heartbeats can be successfully used to identify most arrhythmia
types [3–5]. The T wave does not contribute to the identification process [6] and the P
wave, even though it provides relevant information about arrhythmias, possesses a low
signal-to-noise ratio (SNR), so it is not reliable [7,8].

ECG analysis starts with the detection and characterization of the beats [9]. The
detection of the QRS complex is carried out with a high accuracy; a 99.7% detection
accuracy was reported in [10]. As for the characterization of the beat, among the different
methods [6,11,12], the use of a function space based on Hermite polynomials has many
advantages [3,10,13]: dimensionality reduction, low noise sensitivity, etc. The ECG samples
are fitted with a linear combination of basis functions, and the coefficients of this linear

Electronics 2021, 10, 2324. https://doi.org/10.3390/electronics10192324 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4427-9579
https://orcid.org/0000-0002-3903-3390
https://orcid.org/0000-0003-4568-2933
https://doi.org/10.3390/electronics10192324
https://doi.org/10.3390/electronics10192324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192324
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192324?type=check_update&version=2

Electronics 2021, 10, 2324 2 of 17

combination are used as features for representing heartbeats. As an example of the resulting
dimension reduction, the 144-sample QRS complex obtained at a rate of 360 sps can be
reasonably characterized with 6 or 7 parameters [14]. Regarding the average classification
error, values as small as 0.34% are reported in [15], thus supporting the development of
new classifiers based on Hermite functions as well as hardware implementations able to
provide high-quality real-time heartbeat analysis.

Figure 1. The main components of an electrocardiogram (author: Hank van Helvete; derivative:
Rehua; source: https://commons.wikimedia.org/wiki/File:EKG_Complex_en.svg; accessed date: 1
September 2021).

One disadvantage of the Hermite representation is that it is computationally demand-
ing. There are some approaches addressing this problem. In [16], graphics processing
units (GPU) are used to accelerate the offline processing of Hermite fitting of heartbeats.
The use of Field-Programmable Gate Array (FPGA) devices is supported in [17]; in this
paper, the results of an FPGA-based implementation aiming at wearable systems are pre-
sented. Reconfigurable devices (i.e., FPGA) allow for developing a custom architecture
that can be adjusted to the different levels of computation performance and energy ef-
ficiency. Moreover, they can be used to prototype a system before being implemented
as an application-specific integrated circuit (i.e., ASIC), which can achieve even better
computation and electrical consumption performance. The developing times required for
both FPGA and ASIC is quite long and complex in comparison with the traditional software
approach (i.e., microprocessor-based or GPU-based), and high-level synthesis (HLS) tools
have thrived in the last few years [18,19]. In this work, the HLS tool AHIR [20–22] has
been used. AHIR is an open-source alternative to proprietary products that allows us to
generate RTL descriptions from C language with reduced development times.

The central contribution of this paper is the design and implementation of a novel
hardware module able to characterize heartbeats in real time by means of Hermite functions.
This module can be used as the input to systems to compress the ECG data as well as to
classifiers. Despite the interest in producing hardware systems for real-time processing
of ECG signals [23–26], to the best of our knowledge, this is the first time that Hermite
function fitting with a complete preprocessing chain is implemented in hardware for ECG
processing. The main contributions of this paper are as follows:

• Novel hardware implementation of full processing chain for real-time ECG characteri-
zation based on Hermite functions;

https://commons.wikimedia.org/wiki/File:EKG_Complex_en.svg

Electronics 2021, 10, 2324 3 of 17

• Introduction to the AHIR HLS tool;
• Implementation of the system in a low-cost FPGA-based board; and
• On-board power consumption measurements.

The paper is organized as follows: Section 2 elaborates on the Hermite fitting of heart-
beats; in Section 3, the AHIR tool is presented; Section 4 describes the system implemented
on an FPGA device; the implementation results are in Section 5, and they are analysed in
Section 6; and, finally, the conclusions are drawn in Section 7.

2. Estimation of the QRS Complex with Hermite Polynomials

As mentioned in Section 1, QRS complexes are employed for arrhythmia detection and
the use of Hermite functions allows us to reduce the number of dimensions involved in the
ECG classification, without sacrificing accuracy [3,10] as well as enabling the transmission
of ECG compressed data [27]. Moreover, Hermite fitting representations are robust in the
presence of noise.

The MIT-BIH arrhythmia database [28] is used as a benchmark in this work. It contains
48 2-channel ECG recordings, sampled at a frequency of 360 Hz and with a duration of
approximately 2000 beats (half an hour). Each beat has been manually annotated by at least
two cardiologists, so it can be used to check the outcome of ECG automatic classification.
The database includes an extended set of arrhythmias, and it has been extensively used in
automatic arrhythmia classification [4,10,29].

Prior to QRS characterization, the ECG signal must be processed to remove the base-
line drift and high-frequency noise [30]. The QRS complexes have a length of 70–100 ms;
therefore, extracting a window of 200 ms around the peak (i.e., R wave) of the beat ensures
that we acquire the complete complex while leaving the T and P waves out. The QRS
window is expanded up to 400 ms by means of zero padding the extremes of the 200-ms
window since the Hermite functions converge to zero in ±∞. Thus, the QRS beat data
used as an input to the Hermite polynomial approximation consists of a 144-sample vector
~x = {x(t)} that can be estimated with a linear combination of N Hermite basis functions
φn by means of coefficients cn (Equation (1)). In this work, we use N = 6, which provides a
good compromise between having a compact representation and having a good accuracy
in the representation of the beat [14].

The aim of the Hermite fitting is to find the approximation to the QRS complex
{x(t)} with the best minimum-mean-square-error (MMSE). The approximation of x(t) is
expressed as

x̂(t) =
N−1

∑
n=0

cn(σ)φn(t, σ), (1)

with
φn(t, σ) =

1√
σ2nn!

√
π

e−t2/2σ2
Hn(t/σ) (2)

where Hn(t/σ) is the nth Hermite polynomial. The Hermite polynomials can be computed
recursively as

H0(x) = 1 (3)

H1(x) = 2x (4)

Hn(x) = 2x · Hn−1(x)− 2(n− 1)Hn−2(x) (5)

The parameter σ is a time-scaling factor in the polynomials that adjusts the width of
the Hermite functions to the one of the actual QRS complexes. The maximum value of σ
for a given order n is studied in [3].

Give σ, the orthogonality of the Hermite basis function allows us to find the optimal
coefficient—those that minimize the square error—as

Electronics 2021, 10, 2324 4 of 17

cn(σ) = ∑
t

x(t) · φn(t, σ) (6)

In order to find the best fit, the MMSE approximation for each σ is obtained, and the
one with the smallest value is kept. As a result, each heartbeat is represented by a set
composed of the best σ and the corresponding fit coefficients~c = {cn(σ)} (n ∈ [0, N − 1])
and it is possible to use only these parameters to perform the morphological classification
of the heartbeats [3,29]. Figure 2 depicts the effect of increasing the number of Hermite
function in the beat estimation. Figure 2a shows the original beat (in black) and the
estimation with N ∈ {6, 12, 24}. It can be seen that, as long as the value of N is increased,
the estimation captures the variations of the heartbeat in more detail. Figure 2b shows the
decreasing trend of the minimum square error (MSE) for each estimation.

(a)

(b)

Figure 2. Effect of polynomial order in the quality of the estimation of one heartbeat (N ∈ {6, 12, 24}):
(a) original heartbeat and different estimations; (b) MSE.

Electronics 2021, 10, 2324 5 of 17

3. From Algorithm-to-Hardware Using AHIRV2, a C-2-VHDL Compiler

The AHIRV2 compiler tool-chain [20–22] provides a pathway from a C-program to ac-
tual synthesizable hardware. The tool-chain takes a description of an algorithm (described
in C) and produces a VHDL logic circuit description that is equivalent to the algorithm.

The AHIRV2 compiler starts with a C program and produces VHDL. The clang
2.8 compiler (www.clang.org; accessed on 1 September 2021) acts as the C front-end and is
used to emit LLVM byte-code (www.llvm.org), which is then converted to VHDL using the
following transformations:

1. The LLVM byte-code is translated into an internal intermediate format, which is
itself a static-single assignment centric control-flow language (named Aa), which
allows for the description of parallelism using fork-joined structures as well as
arbitrary branching;

2. The Aa description is translated to a virtual circuit (the model is described in the
next subsection). During this translation, the following major optimizations are
performed: declared storage objects are partitioned into disjoint memory spaces using
pointer reference analysis, and dependency analysis is used to generate appropriate
sequencing of operations in order to maximize the parallelism. Inner loops in the Aa
code are pipelined so that multiple iterations of a loop can be executed concurrently;

3. The virtual circuit is then translated to VHDL. At this point, decisions about operator
sharing are taken. Concurrency analysis is used to determine if a shared hardware
unit needs arbitration. Optimizations related to clock-frequency maximization are
also carried out here. The generated VHDL uses a pre-designed library of useful
operators ranging from multiplexors and arbiters to pipelined floating point arith-
metic units (arbitrary precision arithmetic is supported, and in particular, there is full
support for IEEE-754 single precision and double precision add/multiply with all
rounding modes).

3.1. An Illustration of the Virtual Circuit Generated by the AHIRV2 Compiler

The virtual circuit generated by the AHIRV2 compiler consists of three cooperating
components: the control path, the data path and the storage system [21,22].

To illustrate the model, we consider a simple example.

float a[1024], b[1024];
float dotp = 0.0;
for(i=0; i < 1024; i++)
{
dotp += a[i]*b[i];
}

The AHIRV2 tool-chain transforms this program to produce a virtual circuit, which
is depicted in Figure 3. The virtual circuit is then translated to synthesizable VHDL. The
virtual circuit consists of three components independent parts, namely the data path, the
storage subsystem and the control path.

3.1.1. The Data Path

The data path is a directed hyper-graph with nodes being operations and arcs being
nets (shown as ovals). Each net has at most one operation that drives it. Furthermore,
most operations have a split protocol handshake with the control path: two pairs of re-
quest/acknowledge associations (∗sr/∗sa for sampling the inputs and ∗cr/∗ca for updating
the outputs). The operation samples its inputs upon receiving the sr request symbol and
acknowledges the completion of this action by emitting the sa acknowledge symbol. After
receiving the cr symbol, the operation updates its output net using the newly computed
value. The sequencing is as follows:

www.clang.org
www.llvm.org

Electronics 2021, 10, 2324 6 of 17

sr -> sa -> cr -> ca

Note that an operation can be re-triggered while an earlier edition of the operation is
in progress (this is important if the operation is implemented using a pipelined operator).

Some data-path operations (such as the multiplexor shown on the top and the decision
operation shown at the bottom left in Figure 3) follow a simpler protocol. The multiplexor
has a pair of requests and a single acknowledge, with the condition that at most one of the
requests can be received at any time instant. The input corresponding to the request is then
sampled and stored in the output net of the multiplexor. The decision operation has a single
request and two acknowledges. Upon receipt of the request symbol, the decision operation
checks its input net and emits one of the two acknowledges depending on whether the
input is zero or nonzero.

entry

exit

LB

LAINCR

FMUL

FADD

1023

CMP

EQ

0 0.0

I ndotP

dotP

nI

a*b

a

b

pr0pr1

lasr

lacr

lbsr

lbcr

iasr

iacr

msr

mcr

asr

p1a p0a

lasa

laca

lbsa

lbca

iasa

iaca

msa

mca

asa

aca

btaken

bnottaken

p1a p0a

iasa

iaca

lasa

laca

pr0pr1 pr1

iasr

iacr

lasr

lacr

lbsr

lbcr
lbsa

lbca

msr
msa

mcr
mca

asr
asa

aca

acr
acr

csr

csa

csr

ccr
csa

cca

cca

ccr

Control
Petri−net

Data−path

brr

brr

bnottaken

btaken

memory

memory
to b[]

to a[]

Figure 3. Control data storage virtual circuit model.

In Figure 3, the following data-path operations are instantiated:

mI, mdotP multiplexors for I, dotP.
INCR increment for I++
LA load for a[I]
LB load for b[I]
FMUL multiply for p=a[I]*b[I]
FADD add for dotP += a*b
CMP EQ compare for COND=(I==1023)
D decision COND?

Note that the data path only shows the operations and their interconnection. When
the data path is implemented as hardware, multiple operations may be mapped to a single
operator depending on cost/performance trade-offs. In this case, multiplexing logic is
introduced in the hardware. These decisions and manipulations are performed in the
compiler stage, which is responsible for transforming the virtual circuit to VHDL.

3.1.2. Storage Subsystem

The load and store operations in the data path are associated with memory subsystems.
In general, there can be multiple disjoint memory subsystems inferred by the compiler. In
this particular case, the arrays a[] and b[] are mapped to disjoint memories, due to which

Electronics 2021, 10, 2324 7 of 17

the two loads are allowed to proceed in parallel (the relaxed consistency model is enforced).
In order to maintain the relaxed consistency model, the memory subsystems are designed
to use a time-stamping scheme, which guarantees first-come-first-served access to the same
memory location.

3.1.3. Control Path

The control path in the virtual circuit encodes all of the sequencing that is necessary
for correct operation of the assembly. The control path (shown on the left in Figure 3) is
modelled as a Petri-net with a unique entry point and a unique exit point. The Petri-net is
constructed using a set of production rules, which guarantee liveness and safeness [21].
Transitions in the Petri-net are associated with output symbols to the data-path (these can
be described by the regular expressions ∗sr and ∗cr) and input symbols from the data path
(these are of the form ∗sa and ∗ca). The ∗sr symbols instruct an element in the data path to
sample its inputs and the ∗cr symbols instruct an element in the data path to update its
outputs (all outputs of data path elements are registered). The ∗sa and ∗ca symbols are
acknowledgements from the data path, which indicate that the corresponding requests
have been served.

The following classes of dependencies are encoded in the control Petri-net:

• Read-after-write (RAW): If the result of operator A is used as an input to operator B,
the sr symbol to B can be emitted only after the ca symbol from A has been received;

• Write-after-read (WAR): If B writes to a net in which the value needs to have been
used by A earlier, for example, as in

a = (b+c) -- operation A reads c
c = (p*q) -- operation B writes to c

where there is a WAR dependency through c, then the cr request to B can be issued
only after the sa acknowledge from A has been received;

• Load–Store ordering: If P, Q are load/store operations to the same memory subsystem,
and if at least one of P, Q is a store, and if P is supposed to happen before Q, then the sr
request to Q must be emitted only after the sa acknowledge from Q has been received.
The memory subsystem itself guarantees that requests finish in the same order that
they were initiated. This takes care of WAR, RAW and WAW memory dependencies.

The control path in Figure 3 shows the sequencing generated by these rules. When
pipelining an inner loop, the execution of an operation in a particular iteration is enabled
as soon as its dependencies on results from previous iterations are satisfied.

4. Implementation of the System

The analysis of an ECG signal received from a sensor goes through the following steps:

1. Initial signal filtering to remove noise and drift;
2. ECG beat recognition and identification of the QRS complex;
3. ECG beat feature extraction: this can be performed in various ways. We look at the

use of Hermite polynomials for the same;
4. ECG classification: based on the beat features, classify the beat as normal or anoma-

lous. This last step is not part of the current work.

We have implemented a signal chain that integrates the first three steps in the list
above. Our main contribution is that we have built a custom hardware implementation of
the entire signal flow up to Hermite classification, and demonstrated that sophisticated
low power, real time ECG analysis is possible in hardware and that high level algorithm to
hardware design techniques offer a practical pathway to such realizations.

The incoming ECG signal is assumed to be generated by an 11-bit ADC with a
sampling rate of 360 Hz. For all experiments described in this report, we used 11-bit

Electronics 2021, 10, 2324 8 of 17

sampled data from the MIT arrhythmia reference database [28]. The initial signal processing
such as the band-pass filter characteristics and the algorithm for QRS detection have been
well studied in the literature [30]. The use of Hermite polynomials to extract features from
the ECG signal has also been studied extensively [3,10,29].

The entire signal chain is illustrated in Figure 4. In our implementation, the signal
chain is divided into two stages. The first stage (the front-end) is responsible for the signal
filtering and the QRS peak detection. The second stage takes the identified beats and
calculates a best Hermite-polynomial fit for the identified beat. We illustrate this division
in Figure 5. All the elements of the signal chain are explained in Sections 4.1 and 4.2.
Section 4.3 elaborates on the final system architecture included the signal chain as well as
the control block and communications interfaces.

LP

Filter

HP

Filter

Deriv

Window

Average

Moving

qrs

Detect
inner

products

best

MSE

Output
Stage

input data

360Hz

best sigma

hermite

polynomial

coefficients.

Bandpass center 17Hz, BW=15Hz.

NOTE: filter is programable,

FIR max 128 taps.
moving average

window is programmable

max 64.

QRS peak

filter threshold

is fixed

number of Hermite polynomials

and number of sigma values are

parameters.

Figure 4. Complete signal chain of the system.

ADC data
QRS

peak

location

Hermite

coefficients

Stage 1: filtering and QRS det. Stage 2: Hermite fit.

Band

Pass

Filter

QRS

detection

algorithm

get

beat

Hermite

fit

min. sq.

error

Sample Buffer Filtered

Figure 5. Detail of the two stages composing the system.

4.1. Algorithmic Description of the First Stage

The first stage is responsible for the filtering and QRS peak detection, and the sequence
followed is shown in Listing 1.

4.1.1. The Band-Pass Filter

The bandpass filter used is a 99-tap FIR filter with 16-bit taps. The pass-band is
set between 6 Hz and 28 Hz. The stop-band attenuation is chosen to be −40 dB. We
acknowledge the use of an online filter design tool (http://t-filter.engineerjs.com) [31].

http://t-filter.engineerjs.com

Electronics 2021, 10, 2324 9 of 17

The band pass filter is programmable and can have a maximum of 128 16-bit taps. The
implementation of the band-pass filter is shown in Listing 2.

Listing 1. First stage algorithm.

void controllerDaemon ()
{
initializer();
uint32_t sample_index = 0;
while(1)
{
int32_t sample = getAdcSample();
int32_t filtered_sample =
applyBandPassFilter(sample);
// filtered results pushed into buffer (for use by Hermite
// fitter)
pushIntoFilteredResultBuffer(sample_index, filtered_sample);

int32_t derivative_sample =
applyDerivativeFilter(filtered_sample);
int32_t moving_average_sample =
applyMovingAverageFilter(derivative_sample);

int32_t qrs_peak =
applyQrsDetector(sample_index, moving_average_sample);

if(qrs_peak >= 0)
{
// correction by subtracting insertion delay.
corrected_qrs_peak = qrs_peak - inserted_qrs_delay;
sendToSecondStage(corrected_qrs_peak);
}
sample_index++;
}
}

Listing 2. The band-pass filter.

int32_t applyBandPassFilter(int32_t sample)
{
pushSample(wp, band_pass_filter);
int32_t ret_val = dotProduct(band_pass_filter);
return(ret_val);
}

4.1.2. The QRS Detection Algorithm

The QRS detection algorithm is implemented in three stages:

1. The band-pass filter outputs are sent through a derivative filter. This acts as a high
pass filter that identifies the regions of rapid change (including the QRS complex);

2. The output of the derivative filter is rectified and integrated using a moving average
filter with 32 taps. The strong peaks of the sequence generated by this moving average
filter are expected be in correspondence with the peaks of the QRS complex;

Electronics 2021, 10, 2324 10 of 17

3. The output of the moving average filter is analysed by a threshold crossing state
machine that attempts to identify the center peaks of the QRS complex.

The threshold crossing state machine is illustrated in Figure 6.
For the sake of brevity, we do not present the entire C code of the finite state machine.

However, a summary of the C code is shown in Listing 3. The algorithm gives the position
of the QRS peak, and the heartbeat for further analysis consists of 144 samples centered at
this peak.

RESET

look

for peak

peak

found

Half

peak

found

Stay here

while climbing

crossed a peak?

wait for 72 samples

to ensure no higher peak lost half

the value

wait for

72 samples

200ms

past peak?

Record peak value, index

Figure 6. QRS detection finite state machine.

Listing 3. QRS peak detection FSM code outline.

// single step of the QRS peak detection FSM.
int32_t applyQrsDetector(uint32_t time_step, int32_t sample)
{
int ret_val = -1;
switch(qrs_state.fsm_state) {
// depending on state, determine status
// and change state..
case RESET:
....
case LOOKINGFORPEAK:
.....
break;
case PROVISIONALPEAKFOUND:
.....
break;
case HALFPEAKFOUND:
.....
break;
default:
break;
}
return(ret_val);
}

Electronics 2021, 10, 2324 11 of 17

4.2. The Second Stage: Calculation of Hermite Polynomial Fits

The first stage in the signal chain provides a QRS peak and a detected heartbeat (post
band-pass filtering). Suppose

x = {x(k)}143
0

is the detected beat. The Hermite polynomial basis set consists of the first six Hermite
polynomials and a scale factor σ. The value of σ ranges between a minimum value of 1/120
and 1/90 and is discretized into 10 values. Denote the Hermite polynomial with order N
and scale-factor σ as hN(σ) = {hN(σ, k)}143

0 . We calculate the dot products

cσu ,N =
143

∑
k=0

x(k)× hN(σu, k)

as N varies from 1 to 6 and σu varies as described above. The dot products are computed
using single precision IEEE floating point arithmetic. The Hermite polynomial values are
precomputed and stored in the hardware as tables.

The best fit is determined by the value of the scale factor σu, which minimizes the
mean square error

‖ x −
N−1

∑
j=0

cσ,j × hj(σ) ‖2

This value of σ and the corresponding coefficients cσ,j are the features of the beat
extracted by the Hermite fit. These values are used for further characterization of the beat
as normal or anomalous [10,29].

The algorithm used for the second stage is shown in Listing 4.

Listing 4. Second stage.

void hermiteFitterDaemon()
{
uint32_t beat_index = 0;
while(1)
{
// get the current beat from
// the filtered sample buffer.
getCurrentBeat();

// compute all the inner products.
ComputeInnerProducts();

// find the best fit.
computeMSE();

// report the best fit.
sendBestFitToOutput();
}
}

4.3. System Architecture

The system architecture follows the two stage approach described at the beginning of
the section. The architecture is depicted in Figure 7.

A UART is used to configure the system by downloading the pre-calculated Hermite
polynomials, the filter coefficients, and some configuration parameters. In this case, there

Electronics 2021, 10, 2324 12 of 17

are sixty distinct Hermite polynomials, each with 144 samples, with each sample being
coded in single precision IEEE floating point format (4 bytes per sample).

After the initial configuration, ECG samples are streamed to the hardware, and fit
coefficients are extracted for every detected beat. The peak throughput and total latency in
the signal chain are characterized.

Controller

Hermite

Polynomial

store (precomputed)

Bandpass

filter

filter taps

filtered sample

buffer

QRS

detector
Best Hermite

Fit calculator

config.

input

(configuration + ADC data)

UART

interface
output

FPGA

Figure 7. System Architecture.

5. Results

The Xilinx Artix 7 series FPGA xc7a35tcpg236 (Xilinx, San Jose, CA, USA) was used as
the platform for the hardware implementation. In particular, we used the BASYS-3 FPGA
board from Digilent (Pullman, WA, USA) [32]. For synthesis, we used the Xilinx Vivado
2019.4 tools. The block diagram of the test setup is shown in Figure 8. In this setup, the host
computer first uses the UART to download the Hermite polynomial tables and the filter
coefficients to the system. After this is performed, ADC samples are streamed to the FPGA
over the UART at a baud rate of 115,200. The post Hermite fits and QRS peak locations are
monitored by an application on the host computer. It must be stressed that AHIR allows
for simulation of the system by using benchmarks written in C. During the simulation, it is
possible to select if the simulation is using the compiled C files or if the hardware functions
are simulated by means of an HDL simulator (i.e., GHDL). In both cases, the input vectors
are read from files and the output vectors are stored also in files, so it is possible to check
the correctness of the hardware implementation.

For the overall system, we present the

• The hardware utilization;
• The latency through the signal chain;
• The throughput through the signal chain;
• The power dissipation in the system due to the computation activity; and
• The reconstructed waveforms from the calculated Hermite polynomial fits.

Electronics 2021, 10, 2324 13 of 17

Host computer

Basys3 card

USB

uart

ecg core

Rx

Tx

50MHz

ECG core operates at 50MHz.

Send

Receive

baud rate

115200

Figure 8. Test setup using the BASYS-3 FPGA card.

The summary of resource utilization is shown in Table 1. For these particular FPGA
devices, the limiting factors are the look-up tables (LUT). Thus, devices with more logic
resources are required if the order of the polynomial is to be increased.

Table 1. FPGA resource utilization.

Resource Quantity Utilization

LUTs 19,663 94.8%
Flip-flops 23,813 57.24%

RAM 50 KB 40.0%
DSP blocks 21 23.33%

To measure the latency in the entire signal chain, we timed the difference between
the entry of the first byte of an ECG sample and the exit of the last byte of the Hermite
characterization for the corresponding beat. For the throughput, we observed the maximum
rate at which beat data could be supplied to the system. For a clock of 50 MHz, the latency
and throughputs obtained were 0.82 s and 3 beats/s.

To characterize the power consumption, we observed the difference between the
idle current drawn by the FPGA when it was quiescent (unprogrammed) and the current
drawn by the FPGA during full speed (maximum throughput) operation. We use the
power measurement setup presented in Figure 9.

Basys 3 board features a jumper JP2 that is used as power source select and is located
at the entrance of the power supply. It selects whether power supply comes from the USB
cable or External power supply. In this work, we use USB power supply of 5 V. We add a
shunt resistance over this jumper and use differential probe to measure the voltage over
the shunt. Since the resistance is in series with the power supply, we are able to obtain
the current that goes to the board from the power supply. By knowing the input voltage
and input current, we obtain the power consumed by the board. The resistance value is
chosen to ensure the correct functionality of the power supply regulators located on the
Basys 3 board, as explained next.

Electronics 2021, 10, 2324 14 of 17

Figure 9. Power measurement setup.

Voltage regulator circuits create the required 3.3 V, 1.8 V and 1 V from the main
power supply [32]. A power supply of 1 V is used for an FPGA core; 1.8 V is used for an
auxiliary FPGA supply and RAM memory; and 3.3 V is used for IO pins, USB connection,
clocks, Flash, etc. Based on typical and maximum current values for each of these supplies,
listed in [32], we compute an approximate value for the shunt resistance. According
to our estimates, the peak current values for the design should not exceed 80mA, and
current demand on the other two supplies should not be extreme either. As a result, when
maximum typical current values for the 1.8 V and 3.3 V (150 mA and 1.5 A, respectively)
and 80 mA for the 1 V supply are assumed, an approximate value for the resistance is
0.52 Ω. We use 0.47 Ω for our measurements as a value that is close to the estimated one.

Since we are interested in the current consumed by the design only, we first measure
the current when the FPGA is programmed and the application is running, i.e., data are
sent and received. The measured current is 170.96 mA on average. Then, we subtract
the current measured when the FPGA is programmed, but without any data traffic, that
becomes 165.36 mA. By subtracting this current, we eliminate the current consumed by
other parts of the board as well as the FPGA static current. Consequently, the proposed
design consumes 5.6 mA on average. When this current is multiplied by the 5 V input
voltage, it results in 28 mW of approximated FPGA dynamic power.

The results are summarized in Table 2. The obtained latency and throughput fits
real-time requirements, and the power consumption is low.

Table 2. FPGA implementation metrics.

Latency 0.82 s
Throughput 3 beats per s

Power 28 mW

6. Discussion

The hardware implementation of automatic ECG analysis systems is essential for
ambulant monitorization of patients, and there are several examples in the literature
for both ASIC [23,24] and FPGA [25,26] implementations. However, to the best of our
knowledge, there are no hardware implementations of ECG signal processors that apply the
Hermite fit for beat compression or classifications. For example, the work in [26] describes

Electronics 2021, 10, 2324 15 of 17

the implementation of another technique called Empirical Mode Decomposition applied
to ECG signals in a Spartan 3E FPGA but does not report power, performance and area
metrics. As for the detection performance, the overall accuracy reported is 94.8%, while
with Hermite functions, it is possible to achieve 96.66%. The work in [25] is a HW/SW
co-design where the QRS complex extraction is implemented in an FPGA and is based on
geometrical properties of a two-dimensional phase-space portrait of the ECG signal, while
the beat classification is performed by Open Source ECG analysis software. The data are
read from and written to the on-board DDR memory, while the data proposed in this work
are sent and received by UART, corresponding to a more realistic case, since it could be
easily replaced by an ADC interface. Additionally, the pre-processing and pre-partition are
performed on the software in [25], so a fair comparison with this work would be difficult
to achieve. The authors reported a premature ventricular detection of 92.36%, while with
Hermite functions, it is possible to reach 96.86%.

Preliminary results of the proposed design were presented in [17]. Only the Hermite
fit process was tackled in our previous work, so the pre-processing chain was neglected.
A peak power consumption of 3 W was reported in contrast with the averaged power of
28 mW achieved in the current design. This new version of the circuit can be used to feed
a hardware block to perform data compression or classification in real-time with a low
power consumption.

The reported performance metrics are promising. The latency is close to a second,
which is suitable given that heart rates are commonly between 1 and 2 beats/s; thus,
the results of the first beat characterization appear after 1 or 2 beats. The throughput is
around 3 beats/s, which covers heart rates of 180 beats/min, which is an extreme situation
for a person. Finally, the power consumption is around 30 mW, which is a low value
for an FPGA.

Summarizing, the results yield that the system is capable of real-time and low-
power processing.

7. Conclusions

In this paper, we presented the design of an FPGA-based system able to perform
real-time ECG characterization through Hermite polynomials. The AHIR HLS tool was
used to perform the development and testing. The system was successfully implemented
on a low-cost board with a latency of less than 1 s, a throughput of 3 beats/s and a power
consumption around 28 mW. Hence, we demonstrated that complex low power, real-time
ECG analysis is possible through high-level synthesis.

The current design can be easily modified and extended due to the flexibility provided
by the AHIR set of tools. On one hand, the number of polynomials used in the estimation
(i.e., N) can be increased to improve the accuracy of the estimations. Moreover, a clustering
block to help in the classification process can be added [10]. In any case, it is clear that a
bigger FPGA device is necessary. Additionally, the throughput can be increased to consider
higher heart rates, which involves increasing parallelism and, therefore, increasing the
resources demand. All of these new ideas can be easily designed and tested with the HLS
approach provided by AHIR.

Author Contributions: M.P.D., G.C., D.G.M. and A.O., design of the signal processing algorithms.
M.P.D., G.C. and R.J., conceptualization, implementation and testing of the research. All authors
developed the methodology. M.P.D., G.C. and R.J. discussed the basic structure of the manuscript,
drafted its main parts, and reviewed and edited the draft. All authors have read and agreed to the
published version of the manuscript.

Funding: This research has been partially funded by the Spanish Ministry of Science, Innovation and
Universities through project RTI2018-095324-B-I00.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 2324 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
ECG Electrocardiogram
FIR Finite Impulse Reponse
FPGA Field-Programmable Gate Array
GPU Graphics Processing Units
HLS High-Level Synthesis
LUT Look-Up Table
MSE Mean Square Error
MMSE Minimum Mean Square Error
QRS Complex composed of the waves Q, R and S of the ECG
RAW Read After Write
SNR Signal-to-Noise Ratio
WAR Write after Read

References
1. Roth, G.; Mensah, G.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action. J. Am.

Coll. Cardiol. 2020, 76, 2980–2981. [CrossRef]
2. Kiranyaz, S.; Ince, T.; Pulkkinen, J.; Gabbouj, M. Personalized long-term ECG classification: A systematic approach. Exp. Syst.

Appl. 2011, 38, 3220–3226. [CrossRef]
3. Lagerholm, M.; Carsten, P.; Braccini, B.; Edenbr, L.; Sörnmo, L. Clustering ECG complexes using Hermite functions and

self-organizing maps. IEEE Trans. Biomed. Eng. 2000, 47, 838–848. [CrossRef]
4. de Chazal, P.; O’Dwyer, M.; Reilly, R. Automatic classification of heartbeats using ECG morphology and heartbeat interval

features. IEEE Trans. Biomed. Eng. 2004, 51, 1196–1206. [CrossRef] [PubMed]
5. Yochum, M.; Renaud, C.; Jacquir, S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed.

Signal Process. Control 2016, 25, 46–52. [CrossRef]
6. Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Elsevier: Amsterdam,

The Netherlands, 2005.
7. Swan, M. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. J. Sens.

Actuator Netw. 2012, 1, 217–253. [CrossRef]
8. Villegas, A.; McEneaney, D.; Escalona, O. Arm-ECG Wireless Sensor System for Wearable Long-Term Surveillance of Heart

Arrhythmias. Electronics 2019, 8, 1300. [CrossRef]
9. Martis, R.; Acharya, U.; Adeli, H. Current methods in electrocardiogram characterization. Comput. Biol. Med. 2020, 48, 133–149.

[CrossRef] [PubMed]
10. Márquez, D.; Otero, A.; García, C.; Presedo, J. A study on the representation of QRS complexes with the optimumnumber of

Hermite function. Biomed. Signal Process. Control 2015, 22, 11–18. [CrossRef]
11. Young, T.; Huggins, W. On the representation of electrocardiograms. IEEE Trans. Biomed. Electron. 1963, 10, 86–95.
12. Homaeinezhad, M.; Erfanianmoshiri-Nejad, M.; Naseri, H. A correlation analysis-based detection and delineation of ECG

characteristic events using template waveforms extracted by ensemble averaging of clustered heart cycles. Comput. Biol. Med.
2014, 44, 66–75. [CrossRef]

13. Laguna, P.; Jané, R.; Olmos, S.; Thakor, N.; Rix, H.; Caminal, P. Adaptive estimationof QRS complex wave features of ECG
signal by the Hermite model. Med. Biol. Eng. Comput. 1996, 34, 58–68. [CrossRef]

14. Márquez, D.G.; Otero, A.; Félix, P.; García, C.A. On the Accuracy of Representing Heartbeats with Hermite Basis Functions. In
Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS 2013), Barcelona,
Spain, 11–14 February 2013; pp. 338–341.

15. Márquez, D.G.; Félix, P.; García, C.A.; Tejedor, J.; Fred, A.L.; Otero, A. Positive and Negative Evidence Accumulation Clustering
for Sensor Fusion: An Application to Heartbeat Clustering. Sensors 2019, 19, 4635. [CrossRef] [PubMed]

16. Gil, A.; Márquez, D.; Caffarena, G.; Iriarte, A.; Otero, A. GPU-Based Acceleration of ECG Characterization Using High-Order
Hermite Polynomials. Curr. Bioinform. 2016, 11, 430–439. [CrossRef]

17. Lakhotia, K.; Caffarena, G.; Gil, A.; Márquez, D.; Abraham, O.; Desai, M. Low-Power, Low-Latency Hermite Polynomial
Characterization of Heartbeats Using a Field-Programmable Gate Array. In Proceedings of the International Work-Conference
on Bioinformatics and Biomedical Engineering, Granada, Spain, 7–9 April 2014; pp. 266–276.

18. Xilinx. Vitis High-Level Synthesis. 2021. Available online: https://www.xilinx.com/products/design-tools/vivado/high-
level-design.html (accessed on 10 July 2021).

19. Intel. Intel HLS Compiler. 2021. Available online: https://www.intel.la/content/www/xl/es/software/programmable/
quartus-prime/hls-compiler.html (accessed on 10 July 2021).

http://doi.org/10.1016/j.jacc.2020.11.021
http://dx.doi.org/10.1016/j.eswa.2010.09.010
http://dx.doi.org/10.1109/10.846677
http://dx.doi.org/10.1109/TBME.2004.827359
http://www.ncbi.nlm.nih.gov/pubmed/15248536
http://dx.doi.org/10.1016/j.bspc.2015.10.011
http://dx.doi.org/10.3390/jsan1030217
http://dx.doi.org/10.3390/electronics8111300
http://dx.doi.org/10.1016/j.compbiomed.2014.02.012
http://www.ncbi.nlm.nih.gov/pubmed/24681634
http://dx.doi.org/10.1016/j.bspc.2015.06.006
http://dx.doi.org/10.1016/j.compbiomed.2013.10.024
http://dx.doi.org/10.1007/BF02637023
http://dx.doi.org/10.3390/s19214635
http://www.ncbi.nlm.nih.gov/pubmed/31653110
http://dx.doi.org/10.2174/1574893611666160212235711
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html
https://www.intel.la/content/www/xl/es/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.la/content/www/xl/es/software/programmable/quartus-prime/hls-compiler.html

Electronics 2021, 10, 2324 17 of 17

20. Sahasrabuddhe, S. A Competitive Pathway from High-Level Programs to Hardware. Ph.D. Thesis, IIT Bombay, Bombay,
India, 2009.

21. Sahasrabudhe, S.D.; Subramanian, S.; Ghosh, K.; Arya, K.; Desai, M.P. A C-to-RTL flow as an energy efficient alternative to
the use of embedded processors in digital systems. In Proceedings of the 2010 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, Lille, France, 1–3 September 2010; pp. 147–154.

22. Rinta-Aho, T.; Karlstedt, M.; Desai, M. The ClickToNetFPGA Tool-chain. In Proceedings of the USENIX ATC-2012, Boston, MA,
USA, 13–15 June 2012; USENIX Association: Berkeley CA, USA, 2012.

23. Chen, Z.; Luo, J.; Lin, K.; Wu, J.; Zhu, T.; Xiang, X.; Meng, J. An Energy-Efficient ECG Processor with Weak-Strong Hybrid
Classifier for Arrhythmia Detection. IEEE Trans. Circ. Syst. II Express Briefs 2018, 65, 948–952. [CrossRef]

24. Wu, J.; Li, F.; Chen, Z.; Pu, Y.; Zhan, M. A Neural Network-Based ECG Classification Processor with Exploitation of Heartbeat
Similarity. IEEE Access 2019, 7, 172774–172782. [CrossRef]

25. Cvikl, M.; Zemva, A. FPGA-oriented HW/SW implementation of ECG beat detection and classification algorithm. Digit. Signal
Process. 2010, 20, 238–248. [CrossRef]

26. Kumari, L.R.; Sai, Y.P.; Balaji, N.; Viswada, K. FPGA Based Arrhythmia Detection. Procedia Comput. Sci. 2015, 57, 970–979.
[CrossRef]

27. Sandryhaila, A.; Saba, S.; Puschel, M.; Kovacevic, J. Efficient Compression of QRS Complexes Using Hermite Expansion. IEEE
Trans. Signal Process. 2012, 60, 947–955. [CrossRef]

28. Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [CrossRef]
[PubMed]

29. Tejedor, J.; Marquez, D.G.; Garcia, C.A.; Otero, A. A Tandem Feature Extraction Approach for Arrhythmia Identification.
Electronics 2021, 10, 976. [CrossRef]

30. Bronzino, J.D. (Ed.) Medical Devices and Systems: Biomedical Engineering Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA,
2007; 1400p.

31. MobilECG Laboratories Kft. T-filter Design Tool. 2021. Available online: http://t-filter.engineerjs.com/ (accessed on
30 June 2021).

32. Digilent. Basys-3 Reference Manual. 2021. Available online: https://reference.digilentinc.com/programmable-logic/basys-3/
reference-manual (accessed on 10 July 2021).

http://dx.doi.org/10.1109/TCSII.2017.2747596
http://dx.doi.org/10.1109/ACCESS.2019.2956179
http://dx.doi.org/10.1016/j.dsp.2009.05.008
http://dx.doi.org/10.1016/j.procs.2015.07.495
http://dx.doi.org/10.1109/TSP.2011.2173336
http://dx.doi.org/10.1109/51.932724
http://www.ncbi.nlm.nih.gov/pubmed/11446209
http://dx.doi.org/10.3390/electronics10080976
http://t-filter.engineerjs.com/
https://reference.digilentinc.com/programmable-logic/basys-3/reference-manual
https://reference.digilentinc.com/programmable-logic/basys-3/reference-manual

	Introduction
	Estimation of the QRS Complex with Hermite Polynomials
	From Algorithm-to-Hardware Using AHIRV2, a C-2-VHDL Compiler
	An Illustration of the Virtual Circuit Generated by the AHIRV2 Compiler
	The Data Path
	Storage Subsystem
	Control Path

	Implementation of the System
	Algorithmic Description of the First Stage
	The Band-Pass Filter
	The QRS Detection Algorithm

	The Second Stage: Calculation of Hermite Polynomial Fits
	System Architecture

	Results
	Discussion
	Conclusions
	References

