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Abstract: Multi-object tracking (MOT) is a significant and widespread research field in image pro-
cessing and computer vision. The goal of the MOT task consists in predicting the complete tracklets
of multiple objects in a video sequence. There are usually many challenges that degrade the per-
formance of the algorithm in the tracking process, such as occlusion and similar objects. However,
the existing MOT algorithms based on the tracking-by-detection paradigm struggle to accurately
predict the location of the objects that they fail to track in complex scenes, leading to tracking per-
formance decay, such as an increase in the number of ID switches and tracking drifts. To tackle
those difficulties, in this study, we design a motion prediction strategy for predicting the location
of occluded objects. Since the occluded objects may be legible in earlier frames, we utilize the speed
and location of the objects in the past frames to predict the possible location of the occluded objects.
In addition, to improve the tracking speed and further enhance the tracking robustness, we utilize
efficient YOLOv4-tiny to produce the detections in the proposed algorithm. By using YOLOv4-tiny,
the tracking speed of our proposed method improved significantly. The experimental results on two
widely used public datasets show that our proposed approach has obvious advantages in tracking
accuracy and speed compared with other comparison algorithms. Compared to the Deep SORT
baseline, our proposed method has a significant improvement in tracking performance.

Keywords: multi-object tracking; data association; multi-object detection; YOLOv4-tiny;

motion prediction

1. Introduction

Multi-object tracking (MOT), which aims to assign and maintain a unique ID to
each object of interest in a video sequence while predicting the location of all objects,
is an essential branch of computer vision tasks. MOT has a vital theoretical research
significance and application value. An MOT system with well-behaved performance plays
a critical part in visual security monitoring systems, vehicle visual navigation systems,
human-computer interaction, etc. [1]. However, as shown in Figure 1, there are many
challenges in the actual tracking scenarios that will lead to tracking performance decay;,
including the interaction between objects, occlusions, the high similarity between different
objects, interference of the background, etc. Under these challenges, undesirable errors such
as bounding box drift and ID switches are prone to occur, resulting in tracking performance
decay. Therefore, this paper aims to propose a robust MOT algorithm in complex scenes.
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Figure 1. Examples of challenges. (a) Interaction between objects. (b) Similar objects. (c) Occlusion. (d) Interference

of background.

nput video

In recent years, lots of MOT methods appeared to perform the MOT task. Among
them, owing to the rapid development of object detection, the tracking-by-detection (TBD)
paradigm has shown excellent performance and is the most commonly used framework [2].
As shown in Figure 2, the TBD paradigm consists of a detector and a data association
procedure. First, the detector is used to locate all objects of interest from the video sequence.
Then, the feature information of each object is extracted in the data association process,
and the same objects are associated according to the metrics (e.g., appearance feature and
motion feature) defined on the feature. Finally, by associating the same object in different
video frames, a continuously updated tracklet set is formed. Obviously, in this TBD
paradigm, the performance of the detector and the data association algorithm jointly
determine the tracking accuracy and robustness. Undesirable detection results may lead to
bounding box drift and low tracking precision. Meanwhile, the performance of the data
association has a great impact on some vital metrics such as the number of ID switches,
tracklet segmentation, etc. In addition, both the detector and the data association greatly
influence the inference speed of the MOT system.

Object detection

Tlrackléwt‘s

etections

Figure 2. The basic framework of tracking-by-detection.

Therefore, we utilize YOLOv4-tiny as the detector to improve the detection accuracy
and speed. Moreover, we design a motion prediction strategy to predict the location
of the lost objects. Specifically, it utilizes the location and velocity information of the lost
objects in the past frames to estimate the location and velocity of the objects in the current
frame. By adding this model, our method enhances the ability to retrieve the original ID
when the lost objects reappear in the subsequent video frames. Through the motion pre-
diction approach, our algorithm reduces the number of ID switches and tracklet segments
effectively.

The main contributions of this work are as follows:

1. We utilize the YOLOv4-tiny in the TBD paradigm to improve the tracking accuracy
and speed of our model.

2. We design a motion prediction strategy to predict the location of lost objects, effec-
tively reducing the number of ID switches and tracklet segments.

3. We compare our approach with state-of-the-art methods and analyze the effects
of introducing the YOLOv4-tiny and the motion prediction strategy with the MOT-15
and MOT-16 datasets.
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The remainder of this paper is structured as follows. Section 2 introduces the related
works and highlights of the previous studies. In Section 3, we describe the main compo-
nents of the proposed method. Section 4 evaluates the proposed method and compares it
with state-of-the-art methods in two public datasets. Section 5 concludes this paper.

2. Related Works

In recent years, the tracking-by-detection paradigm has been the most extensively
used in the MOT task. The main component of this paradigm can be divided into object
detection and data association. This section describes the works and achievements of object
detection and data association in the past.

2.1. Object Detection Approaches

The deep learning-based object detection approaches can be divided into two-stage meth-
ods and one-stage methods. The two-stage methods first generate a series of candidate regions
that may contain objects and then classify each region and perform the bounding box regres-
sion according to the features of each candidate region. Meanwhile, the one-stage methods
skip the step of candidate regions generation and utilize a convolutional neural network (CNN)
directly to regress the location and classification of all objects of the whole image.

In 2014, Girshick et al. [3] proposed the R-CNN, which replaced the classic DPM [4]
with an absolute advantage on the PASCAL VOC dataset [5]. In addition, it was the first
deep learning-based object detection approach. However, it had the disadvantages of low
detection accuracy and high computational cost. To reduce the computational overhead,
He et al. [6] proposed the SPP-Net. Different from the R-CNN sending candidate regions
into the CNN in turn, the SPP-Net directly produced the feature map of the entire im-
age and then divided the features of each candidate region. Compared with the R-CNN,
the SPP-Net's biggest contribution was the significant improvement in training and in-
ference speed. However, compared to the R-CNN, the detection accuracy of the SPP-Net
did not show an obvious advantage. Based on the SPP-Net, Girshick et al. [7] proposed
Fast R-CNN, which used a multi-task loss function and directly trained the CNN for clas-
sification and regression on two branches. Although the Fast R-CNN reached a higher
detection accuracy, it took two seconds to detect an image on a CPU. Therefore, Ren et al. [8]
improved the Fast R-CNN and proposed the Faster R-CNN. The Faster R-CNN designed
a region proposal network (RPN) to share full-image convolution features with the detec-
tion network. The design of shared features not only improved the region proposal quality
but also decreased the computing cost. As a result, the Faster R-CNN achieved 5 frames
per second (FPS) on a K40 GPU, ranked first on the PASCAL VOC dataset [5]. In particular,
it is the first detection method that realized end-to-end training. Since then, most two-stage
methods have been based on the Faster R-CNN. Although the two-stage approach has
made great progress, it is difficult to achieve real-time detection speed.

In 2015, Redmon et al. [9] proposed efficient YOLO, which realized real-time object
detection. Different from the two-stage methods, the YOLO did not design the initial
stage of generating candidate regions but completed the regression and classification
of all objects at once. The detection speed of the YOLO reached 45 FPS on a Titan X
GPU. However, the detection accuracy of the YOLO is worse than the Fast R-CNN. Based
on the YOLO, Liu et al. [10] proposed SSD, which trained the network to predict objects at
different scales on feature layers at different depths. The detection speed of the SSD can
be comparable to the YOLO, and the accuracy can match the Faster R-CNN. Although
the SSD predicted with multi-layer feature maps, the ability to detect small objects had
not been significantly improved. In 2017, Redmon et al. [11] upgraded the original YOLO
and proposed the YOLOvV2, which utilized the Darknet-19 as the backbone network to
extract object features. Meanwhile, k-means clustering was used to calculate the best
anchor sizes. Compared with the YOLO, the YOLOv2 improves the detection accuracy and
speed. Lin et al. [12] designed a new loss function, Focal Loss, and proposed RetinaNet that
utilized the ResNet as the backbone network to improve the detection accuracy of one-stage
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methods. In addition, the RetinaNet applied the feature pyramid network structure, achiev-
ing better detection accuracy compared to the Faster R-CNN on the MS COCO dataset [13].
After that, Redmon et al. [14] proposed the YOLOv3, which utilized the Darknet-53 as
the backbone network. Additionally, it replaced the softmax classifiers with the multiple
logistic regression classifier so that the model can be applied to classification tasks with
the intersection between classes. Further, the YOLOV3 set different anchors on three fea-
ture maps of different sizes to predict objects at different scales. The YOLOv3 achieved
an excellent balance between detection accuracy and speed and played an essential role
in the industry.

In summary, the one-stage and two-stage methods have their own advantages. The two-
stage approach is relatively more accurate. In contrast, the speed of the one-stage method is
generally faster, and it is easier to achieve the real-time requirements in practical applications.

2.2. Data Association Approaches

In early studies, multi-hypothesis tracking (MHT) [15] utilized the deep feature ex-
tracted by the AlexNet [16]. The MHT retained multiple association assumptions and
constructed a hypothesis tree to select the best assumption as the tracking results by
calculating confidence. Based on the MHT, Kim et al. [17] proposed MHT-DAM, which
used a multi-output regularized least square method to reduce the dimension of the
4093-dimensional deep feature. Compared with MHT, the tracking accuracy of MHT-DAM
was significantly improved. However, the tracking speed of the MHT-DAM is only 0.7 FPS.
In addition, to deal with the uncertainty in association conditions, Reid et al. proposed
the joint probabilistic data association (JPDA) [18], which considered all possible candidate
detection results. The tracklets were updated by a weighted combination of all feasible
candidate detections. In 2015, Rezatofighi et al. [19] proposed a novel solution to find
the m-best solutions to an integer linear program based on JPDA. The experimental results
showed that the JPDA (g achieved high tracking accuracy in the application of MOT with
noise interference and occlusion. In addition, the tracking speed of the JPDA 1y is ten times
faster than that of the JPDA. However, the classic multi-object tracking algorithms extracted
less information about objects, so handling various challenges in complex tracking scenes
remains difficult.

Due to the powerful feature extraction capability of CNN, the deep learning-based
MOT methods can extract appearance features, motion, and interaction information from
large amounts of data. Compared with the classic algorithms, deep learning-based meth-
ods usually achieve a higher tracking accuracy and robustness. A robust data association
method needs an accurate representation of the object state. In 2019, Han et al. [20]
designed a scale estimation strategy for multi-channel feature fusion to characterize the ap-
pearance features of objects and proposed DSCF. Meanwhile, the DSCF fused the color
names (CNs), HOG, and gray features to improve the tracking robustness. In addition,
it estimated the scale of objects based on the correlation filter and then utilized the ap-
pearance feature to perform the data association. However, the DSCF cannot deal with
multiple similar objects, such as vehicles and pedestrians. Therefore, most algorithms
combine appearance features with motion information for data association to distinguish
multiple objects with similar appearances. By using an ensemble learning algorithm to
learn tracklet features online, Bae et al. [21] proposed confidence multi-object tracking
(CMOT), which utilized the incremental linear discriminant analysis learning model to
learn the appearance of objects and combine the similarity between the tracklet and the de-
tection. As a result, the CMOT achieved a high tracking accuracy with a speed of 5 FPS
on a 3.07 GHz CPU. Xiang et al. [22] regarded the generation and termination of tracklets
as state transitions in the Markov decision process (MDP). They utilized the reinforcement
learning algorithm to learn the correlation of data. The experimental results showed that
the MDP outperformed the state-of-the-art methods on the MOT-15 dataset [23]. Wojke
et al. [24] extracted the deep feature that described the appearance differences between
different objects more accurately through a CNN network and proposed the Deep SORT.
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As a result, Deep SORT was able to track under a large number of occlusions. After that,
Chen et al. [25] proposed the MOTDT, which introduced a tracklet scoring mechanism
to prevent tracking drifts in the long term. In addition, a deeply learned appearance
representation was applied in the MOTDT to enhance the identification capability. The ex-
perimental results showed that the MOTDT achieved state-of-the-art tracking performance
on the MOT-16 datasets [26]. Based on the YOLOvV3 and the MOTDT, Wang et al. [27]
proposed joint detection and embedding (JDE), which performed object detection and
feature extraction in a network. Therefore, the JDE significantly reduced the computational
overhead. The experimental results on the MOT-16 dataset [26] showed that the JDE
became the first real-time MOT method, with a tracking speed of 30.3 FPS.

However, realizing a trade-off between the tracking accuracy and speed in the MOT
task is still challenging. On the one hand, since the previous methods did not fully use
the information of objects in the past video frames, the tracking performance was seriously
affected by occlusions. On the other hand, the tracking robustness and speed can be
heavily affected by the detector. Thus, we design a motion prediction strategy to predict
the location of the occluded objects. To further improve the tracking performance of our
method, we utilize YOLOv4-tiny [28] to produce the detections.

3. The Proposed Method

In this section, a simple online and real-time tracking with the YOLOv4-tiny and
the motion prediction strategy (SORT-YM) is proposed. The detailed description of SORT-
YM is as follows.

3.1. Overall Framework of SORT-YM

As shown in Figure 3, we demonstrate the overall framework of the SORT-YM based
on the feature extraction, matching cascade, intersection-over-union (IOU) matching, mo-
tion state updating, and output tracklets. We perform the flowchart of SORT-YM as follows:

Step 1. The detection generation: We apply efficient YOLOv4-tiny to produce the detections
for each video frame.

Step 2. The appearance feature extraction: The appearance features of each detection are
extracted through a convolutional neural network.

Step 3. The tracklet location prediction: We can obtain the predicted location of every
tracklet in the next frame by utilizing the Kalman filter.

Step 4. The matching cascade: We calculate the appearance feature similarity and location
distance between the confirmed tracklets and detections. After that, the association results
of the confirmed tracklets and detections are obtained through the Hungarian algorithm.
Step 5. The IOU matching: We compute the intersection-over-union (IOU) between the de-
tection boxes and predicted bounding boxes of candidate tracklets. After that, the associa-
tion results of the candidate tracklets and detections are obtained through the Hungarian
algorithm.

Step 6. The motion state updating: We update the motion state of the tracklets by the Kalman
filter and the motion prediction model. Then, we initialize new tracklets for unassociated
detections.
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Figure 3. The overall framework of SORT-YM.

3.2. YOLOv4-Tiny Model

The performance of the tracking-by-detection paradigm can be heavily affected
by the detections. The MOT system with a two-stage detector is limited in tracking
speed. Moreover, the runtime increases significantly as the number of objects increases.
Therefore, comprehensively considered the tracking performance and speed, we apply
efficient YOLOv4-tiny to realize a trade-off between detection accuracy and speed. In con-
trast to Faster R-CNN [8], the YOLOv4-tiny is a lightweight convolutional network, which
achieves 371 FPS on GTX 1080Ti. The network structure of the YOLOv4-tiny [28] is shown
in Figure 4.
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Figure 4. The network structure of YOLOv4-tiny.
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Different from Faster R-CNN, the YOLOv4-tiny employs the CSPDarknet53-tiny net-
work as a backbone. The CSPDarknet53-tiny network applies CBLblock and CSPBlock
for feature extraction. The CBLblock contains the convolution operation, batch normaliza-
tion, and activation function. To further reduce computational overhead, the YOLOv4-tiny
utilizes the LeakyRelu function as an activation function, which is defined by:

_f x,x 20
yz—{ %"xi<0 (1)

where g; is a constant parameter larger than 1. By adopting a cross-stage partial connections
structure, the CSPBlock divides the input feature map into two parts and concatenates
the two parts in the cross-stage residual edge. Meanwhile, the CSPBlock can significantly
reduce the computational complexity by 10-20% while ensuring the detection accuracy
of the network. In the multi-feature fusion stage, the YOLOv4-tiny constructs a feature
pyramid network to extract feature maps. Through the feature pyramid network, we can
obtain two effective feature maps of different sizes. To estimate the detections, the YOLOv4-
tiny adopts the fused feature maps by the classification and location of the targets.

In the process of prediction, the YOLOv4-tiny divides the input images into grids
with the size S x S. For each grid, the network utilizes three anchors to predict objects.
As aresult, S x S x 3 bounding boxes will be generated for each input image. The anchors
in the grids that contain the center of objects will be used to regress the detection boxes.
Subsequently, to reduce redundant bounding boxes, we can calculate the confidence score
of each detection box. The detections with a confidence score lower than the preset
threshold will be removed. The confidence score of each detection is defined as:

Conf = Pr(object) x Ioui,’rﬁ;h, ()
where Pr(object) denotes the possibility that the detection box contains an object. Then,
the Io U;’r'g;h represents the IOU between the predicted bounding box RP"*? and the ground-

truth box R which can be denoted as:

‘Rpred ) Rtruth‘
truth _
ToUpreq = | Rpred () Riruh|*

®)
Then, the YOLOv4-tiny applies the classification loss function to measure the category
error between the predicted box and the ground-truth box. The classification loss function is:

SxS

Les = Z IOh] Y [pi(0)log(pi(c)) + (1 — pi(c)) log(1 — pi(c))]- 4)

c€Eclasses

Among them, if the j-th anchor in the i-th grid contains an object, Ifjbj =1, otherwise

Ob] =0. The p;(c) and p;(c) are the real possibility and predicted the possibility of the target
1n the anchor that belongs to class c. After that, the YOLOv4-tiny employs the CloU loss
function for bounding box regression. The CIoU loss function is defined as:

4
P
2 (ppred ptruth 16 (arctan —— —arctan®_— ,ed)
utru P ( 4 )+ _ h h s (5)

pred c2 4
truth 4
1-— Ioupred (arctan — arctan® — 0 md )

htruth

where p?(+) denotes the Euclidean distance. b""® and b represent the central points
of RP" and R, respectively. c indicates the diagonal length of the smallest enclosing
rectangle covering RP"* and R, w and h signify the width and height of the bounding
box, respectively. In Figure 5, we demonstrate detection results of the YOLOv4-tiny. After
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that, we send the detection results of each video frame to the data association model to
receive the association results of targets.

Figure 5. Examples of object detection results. (a) MOT-16-08. (b) MOT-16-12.

3.3. Data Association
3.3.1. Feature Extraction

In order to improve the tracking accuracy and robustness in complex scenes, such as
the interaction between targets and occlusion, we carry out the data association by extract-
ing the target appearance information. By using a convolution neural network (CNN), we
can pick up the appearance features of all detections in the current image. After counting
the aspect ratio of the ground-truth bounding boxes of the MOT-16 training set [26], we
found that approximately 70% of pedestrians have an aspect ratio between 0.3 and 0.7.
Thus, the input detections are reshaped to 128 x 64 and presented to the CNN in RGB
color space. As shown in Table 1, the CNN structure applies two convolution layers,
a max-pooling layer, and six residual blocks to squeeze the size of the feature map into
16 x 8. As a result, we can obtain the global feature vector of dimensionality 128 in a dense
layer. Finally, the feature vector is normalized.

Table 1. The CNN architecture.

Patch Size/Stride Output Size
Conv 1 3x3/1 32 x 128 x 64
Conv 2 3x3/1 32 x 128 x 64
Max-pooling 3 3x3/2 32 X 64 x 32
Residual block 4 3x3/1 32 x 64 x 32
Residual block 5 3x3/1 32 x 64 x 32
Residual block 6 3x3/2 64 x 32 x 16
Residual block 7 3x3/1 64 x 32 x 16
Residual block 8 3x3/2 128 x 16 x 8
Residual block 9 3x3/1 128 x 16 x 8
Dense 10 128
Normalization 128

We use the cosine-margin-triplet loss function [29] to train the feature extractor.
The cosine-margin-triplet is defined as:

R exp(fTf)
L= N L 8 e ) e (FT T ©

where N denotes the number of detections over a batch of video frames, f' indicates
the anchor of the triplet. f* and f~ is the positive and negative sample with respect to f T,
respectively. The function aims to minimize the distance between the positive pair and
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enlarge the distance between the negative pair. The dot product between the pair of feature
vectors is defined as:
FUEE=1F TN Il cos(8) )

where ||-|| denotes the two-norm of the feature vector and 6 indicates the angle between
the two vectors. This network contains a total of 2,800,864 parameters. Therefore, it realizes
a fast calculation speed that satisfies the real-time performance. We train the feature
extraction network on the popular person re-identification dataset [30], which contains
1261 pedestrians and more than 1,100,000 video frames. The CNN is tested on the Nvidia
RTX3070 GPU (NVIDIA, Santa Clara, CA, USA) and Nvidia GTX1050 GPU (NVIDIA, Santa
Clara, CA, USA), and the results show that it only takes 0.85 ms and 0.93 ms on average
to extract the feature of an object, respectively. Thus, this CNN is suitable for real-time
tracking on different hardware devices. We send all detections to the trained CNN network,
and the feature vectors of each target can be obtained as shown in Figure 6.

;{

/4

Input image YOLOvV4-tiny Detections CNN Feature vectors

Figure 6. Overview of feature extraction.

3.3.2. Motion State Estimation

In complex tracking scenarios, associating detections and tracklets based on appear-
ance feature only produces a large number of ID switches. To further improve tracking
accuracy, it is necessary to introduce the motion information of targets. As the velocity
of targets in adjacent video frames is relatively stable, we apply the Kalman filter [31] to
predict the motion state of targets in the next frame, as shown in Figure 7.

frame t frame t+1

I ‘ ;. B _ sy
| g

i P ———

Kalman
filter

Figure 7. Predicted object location via Kalman filter.

Firstly, we initialize a new motion state model based on the detection results for targets
that first appear in the video. The motion state model is defined as:

X = [CXI Cy, 7’, h/ UX/ Uy, vl’/ vh]T/ (8)

where [cy, ¢y, 7, h] is the location state of the target. Among them, (cy, ;) denotes the center
coordinate of the target, and r and & denote the aspect ratio and height of the bounding
box, respectively. [vy, v, vy, v},] is the velocity state of targets, which indicates the target’s
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speed in four directions. Then, for each new target based on the height of the bounding
box, we initialize the covariance matrix Py empirically, which is defined as:

— h2 -
15 02 0 0 0 0 0 0
0 & 0 0 0 0 0 0
0 0 10* o0 0 0 0 O

W

Py = 0 0 0 {% Ig 0 0 0 , ©)
0 0 0 0o I }?2 0 0
0 0 0 0 0 4% 0 0
0 0 0 0 0 0 0 0
h2

L 0 0 0 0 0 0 0 2.

According to the target motion state at frame k — 1, we estimate the motion state
of the object in frame k by the Kalman filter as:

& = Fi 1, (10)

where %;_1 denotes the motion state of the target in frame k — 1, and %, indicates the pre-
dicted motion state in frame k. F is the state-transition matrix, which is defined as:

1 0 0 0 d¢ 0 0 07
01 00 0 d 0 O
0010 0 0 d O
0001 0 0 0 4t

F= 00001 0 0 0} (1)

0000 O0O 1T 0 O
000O0O0O O0T1 O

L0 000 0 0 0 1

After that, by the covariance matrix Pj_; in the previous frame, we can computer
the covariance matrix at the current frame as:

P, =FP, F' +Q, (12)

where Q and P, are the noise matrix and the predicted covariance matrix, respectively.

As shown in Figure 3, we divide the tracklets into confirmed tracklets and unconfirmed
tracklets. The confirmed tracklets are formed by the associated detections of more than
three frames. The other tracklets are denoted as unconfirmed tracklets. For the confirmed
tracklets, we will associate them with subsequent detections by subsequent cascade match-
ing. For unconfirmed tracklets and remaining unassociated tracklets, we will associate
them with detections by subsequent IOU matching.

3.3.3. Matching Cascade

To improve the tracking accuracy and reduce the identity switches effectively, we
comprehensively consider the appearance feature and motion state of objects. The matching
cascade stage is performed as follows.

Firstly, we compute the cosine distance between the confirmed tracklet feature and
the detection feature. We denote the i-th tracklet feature and the j-th detection feature as
A=(ay, ap,...,a128) and B = (b1, by, ..., byag), respectively. The mathematical expression
of cosine distance between tracklet feature and detection feature can be formulated as:

128
X aib;
Ci=1-—t (13)

7
128 128
Yool [ Y0
i=1 i=1
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The smaller ¢; ; is, the higher similarity between the confirmed tracklet and detection is.

Then, we construct all ¢;; into the cosine distance matrix C. Considering that the loca-
tion of pedestrians changes little in the adjacent two frames, we get rid of the matching
pairs whose Mahalanobis distance is too large. For the i-th confirmed tracklet, we calculate
the squared Mahalanobis distance with the j-th detection as follows:

bij = (h—x) 5 (- x), (14)

where x; indicates the predicted location of the i-th confirmed tracklet, and lj denotes the loca-
tion of the j-th detection. X; is the first four rows and four columns of the predicted covariance
matrix P;_. The smaller bi,j is, the closer the confirmed tracklet and detection are.

If b;; is larger than the preset threshold ¢, we set the corresponding c;; of C to 10.
Next, we utilize C as the input of the Hungarian algorithm [32] to obtain the association
results through the matching cascade. The Hungarian algorithm is a commonly used
approach for solving assignment problems. By means of this method, it can be obtained
that the association results are both similar in appearance feature and location.

3.3.4. IOU Matching

There are still some unassociated tracklets and detections after the above matching
method. We use the unassociated confirmed tracklets and unconfirmed tracklets as can-
didate tracklets. Then, we send all candidate tracklets and unassociated detections to
participate in IOU matching.

In the process of IOU matching, we first compute the IOU between the predicted
boxes of the candidate tracklets and unassociated detection boxes. Then, we construct
the matrix U based on 1-I0U of each pair of tracklet and detection. The element u;; of U
denotes the value of 1-IOU between the i-th candidate tracklet and the j-th detection. If u;;
is smaller, it means that the overlap ratio of the two objects is larger, and the possibility
of being the same target is greater. After that, we employ U as the input of the Hungarian
algorithm to obtain the association results through the IOU matching.

3.3.5. Motion State Updating

The involves combining the association results of matching cascade and IOU matching,
and dividing all tracklets into associated tracklets and unassociated tracklets. In addition, all
detections are divided into matched detections and unmatched detections. Then, we update
the estimated motion states for tracklets and initialize new tracklets for unmatched detections.

For associated tracklets, the estimated motion states are updated by means of a Kalman
filter. Firstly, the tractor computes Kalman gain. Determining Kalman gain is a critical
step in establishing the Kalman filter model, which significantly impacts the efficiency and
accuracy of filtering. Kalman gain can be calculated as follows:

—gT
P H

K= — b,
“T HP_H' +R

(15)

where H denotes the transition matrix from state quantity to observation, and R indicates
the observation noise covariance matrix. Then, updating the estimated motion state
of the tracklets by the matched detections as follows:

X = 5Ck_ + Kk(Zk — chk_), (16)

where % denotes the modified motion state for the tracklets, and z; indicates the location
vector of the matched detections.
Finally, updating the covariance matrix for tracklets is as follows:

P, = (I- KH)P;, (17)
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where Py denotes the modified covariance matrix for tracklets, and I is an identity matrix.
As for unmatched detections, we regard them as new objects in the video and initialize
new motion states for them using Equation (8).

3.3.6. Motion Prediction Strategy

If the motion states of the unassociated tracklets are not updated, the difficulty of re-
associating the object with subsequent detections increases significantly after a period of disap-
pearance. When the object appears in the video again, it is very likely to increase the identity
switches. Therefore, we design a motion prediction strategy to estimate the moving speed
in four directions of the occluded objects. Since the occluded objects may be legible in the pre-
vious frames, we utilize the location of the objects in the earlier frames to estimate the speed
of the objects, thereby predicting the possible location of the occluded objects.

Firstly, the motion prediction model gets the velocity state model [vy, vy, vy, ]
of the unassociated tracklets in previous frames. As different video frames are of different
importance for predicting the current location, we give weights to each frame’s velocity
state model based on the time interval. The velocity state model closer to the current time
has a higher weight. The weight for each frame can be calculated as:

i—n

ﬁ%,s.t.n <i<m (18)

w; =

=1

where 1 represents the frame index when the object enters the video for the first time, and
m indicates the current frame index. Subsequently, we subtract the speed of the object
in the past two adjacent frames to get the acceleration of the object in each frame in the past.
After that, we sum up the weighted acceleration of the object in each frame in the earlier
frames to obtain the predicted acceleration. The predicted acceleration of the object can be

calculated as:
m—1

Apred = Y, Wi+ (Vi1 — ;). (19)

i=n
Then, based on the weight of each object in previous frames, we weighted sum

the speed of the object in the past. After that, we sum the result of the weighted summation
to the predicted acceleration to obtain the predicted velocity in the current frame as follows:

w—1
Vpred = Apred + Y, Wi - Vj. (20)

i=n

Finally, we add the estimated velocity to the location in the previous frame locaty_4
to obtain the predicted location locat,, of the object in the current frame as follows:

locatpred = locaty_1 + Vpred (21)

The main steps of the SORT-YM are shown in Algorithm 1.
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Algorithm 1. SORT-YM

Input: A video with T frames
Output: Tracklets of the video
fort=1,...,Tdo
Detect the location D]t( of objects by YOLOv4-tiny
Extract the appearance feature F| of each detected object through the CNN
Predict new location £, of each tracklet using Kalman filter
for each confirmed tracklet do
Calculate the cost matrix C = [c,«/]»] using cosine distance between the feature of tracklet and
each detection
Calculate the Mahalanobis distance matrix B = [bi,j] between the predicted location
of the i-th tracklet and the j-th detection

if bi,j > do
Ci,j =10
end
end

Obtain the association results of matching cascade using Hungarian algorithm based on C
for each unconfirmed tracklet and unassociated confirmed tracklet do
Calculate the IOU matrix U = [u;] using the IOU between the predicted box of tracklet and
each detection box
end
Obtain the association results of IOU matching using Hungarian algorithm based on U
Integrate the association results of matching cascade and IOU matching
for each associated tracklet do
Update the predicted location using Kalman filter
end
for each unassociated tracklet do
if the tracklet is continuously unassociated for 30 frames do
Remove the tracklet from candidates
else
Predict the location using motion prediction
end
end
for detections not associated with tracklets do
Initialize a new tracklet based on the detection results
end
end

4. Experimental Results and Analyses

In this section, we first describe the details of our experiments. Then, we evaluate
the performance of the proposed algorithm on two datasets. Meanwhile, we compare
the performance of the algorithm with state-of-the-art methods.

4.1. Experimental Settings

The Mahalanobis distance threshold  is set to 9.5. Based on the prior conditions of pedes-
trians, we design the anchor boxes in the light of numbers and aspect ratios. We set all anchor
boxes to an aspect ratio of 1:3. Meanwhile, we utilize three anchors for each scale. The height
of the anchors ranges from 24 to 640. At the same time, we construct an enormous dataset
by integrating training images and annotations from 7 datasets for pedestrian detection,
including the ETH dataset [33], CityPersons dataset [34], CalTech dataset [35], CUHK-SYSU
dataset [36], PRW dataset [37], MOT-15 dataset [23], and MOT-16 dataset [26], to improve
the tracking performance of the proposed algorithm. Additionally, our experiment is de-
veloped based on TensorFlow 2.3 using Python 3.8 and PyCharm 2020.3. Additionally, our
experiment equipment is a PC with an i5-10600KF CPU (Intel, Santa Clara, CA, USA) and
an Nvidia RTX3070 GPU (NVIDIA, Santa Clara, CA, USA). We train the network with stan-
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dard stochastic gradient descent for 30 epochs. The learning rate of the network is initially set
as 1072, and it decays to 102 at the 25th epoch.

4.2. Dataset and Evaluation Metrics
4.2.1. Dataset Protocol

We evaluate the performance of our algorithm on the testing sets of two extensively
used MOT benchmarks: MOT-15 and MOT-16. The MOT-15 dataset contains 22 video
sequences, including 11 training sets and 11 testing sets, with over 11,000 video frames
in total. The main difficulties of MOT-15 are as follows:

e A large number of objects: The number of the annotated bounding boxes for all testing
video sequences is 61,440. Therefore, it is difficult for the algorithm to achieve a high
tracking accuracy with a fast speed.

e  Static or moving camera: Among the 11 testing video sequences, six videos are taken
by a static camera, and a moving camera takes the remaining videos. These two modes
of videos increase the requirement for the algorithm to predict the location of tracklets.

The MOT-16 contains seven testing video sequences in total. Compared to the MOT-15,
the MOT-16 is a more challenging dataset. The scenarios of the videos in MOT-16 are more
crowded and more complex. In addition to the challenges of the MOT-15, there still exists
the following challenges in MOT-16 video sequences:

e Different viewpoints: Each video sequence has a different viewpoint owing to the dif-
ferent heights of the camera. Videos from multiple perspectives increase the difficulty
of object detection and feature extraction.

e Varying weather conditions: A sunny weather video may contain some shadows,
while the videos with dark or cloudy weather have lower visibility, making pedestrian
detection and tracking more difficult.

4.2.2. Evaluation Metrics

To evaluate the tracking performance, we utilize the evaluation metrics provided
by MOT Challenge Benchmark [38]. First, we adopt the multi-object tracking accuracy
(MOTA) to evaluate the robustness of our algorithm. MOTA comprehensively considers
three types of tracking errors, and it is defined as:

Zt (FNt + FPt + IDSt)

MOTA =1 — ,
Y GTy

(22)

where t is the index of the video frame, and FN denotes the number of false negatives, rep-
resenting the ground-truth objects that are not detected by the algorithm. GT is the number
of ground-truth objects in all video sequences. IDs indicates the number of ID switches
for all objects. Then, the tracking precision of the method is evaluated through the multiple
object tracking precision (MOTP), which is defined as:

d, :
MOTP = L Ct”, (23)
t Ct

where ¢; represents the number of the objects tracked correctly in frame t. d;; indicates
the bounding box overlap of the i-th successfully tracked object with the ground-truth
object in frame t. Mostly tracked objects (MT) is the ratio of tracklets that are tracked to
more than 80%. Mostly lost objects (ML) is the ratio of tracklets that are tracked for less
than 20%. After that, fragmentations (FM) indicates the number of interruptions for all
ground-truth tracklets. Finally, we evaluate the speed of the algorithm through the frames
per second (FPS).
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4.3. Comparison with the State-of-the-Art Algorithms
4.3.1. Experiment on MOT-15 Dataset

We test the performance of the SORT-YM on the MOT-15 dataset. We demonstrate
the comparative quantitative results on the MOT-15 dataset, as shown in Table 2. We com-
pared SORT-YM with 3 offline approaches and 13 online approaches. SORT-YM achieves
state-of-the-art performance in terms of MOTA (58.2%), MOTP (79.3%), and ML (12.2%).
Meanwhile, SORT-YM ranks second on MT (44.4%) and FN (20753). In addition, the track-
ing speed of our proposed method is faster than most online approaches. The tracking
speed of SiameseCNN, RNN_LSTM, and SORT is faster than SORT-YM. However, SORT-
YM has an obvious advantage in tracking accuracy.

Table 2. The quantitative results by our proposed method and state-of-the-arts on MOT-15 dataset. 1 denotes that higher is

better and | represents the opposite. The best and sub-optimal results are highlighted in bold and italics.

Method Mode MOTAT MOTPY MT?T ML| IDs) FN| FM| FPS?T
SiameseCNN [39] Offline 29.0% 71.2% 8.5% 48.4% 639 37,798 1316 52.8
Quad-CNN [40] Offline 33.8% 73.4% 12.9% 36.9% 703 32,061 1430 3.7
RMNet [41] Offline 28.1% 74.3% - - 477 36,952 790 16.9
MHT-DAM [17] Online 32.4% 71.8% 16.0% 43.8% 435 32,060 826 0.7
RNN_LSTM [42] Online 19.0% 71.0% 5.5% 45.6% 1490 36,706 2081 165.2
STAM [43] Online 34.3% 70.5% 11.4% 43.4% 348 34,848 1463 0.5
HybridDAT [44] Online 35.0% 72.6% 11.4% 42.2% 358 31,140 1267 4.6
AMIR [45] Online 37.6% 71.7% 15.8% 26.8% 1026 29,397 2024 1.0
AP_RCNN [46] Online 38.5% 72.6% 8.7% 37.4% 586 33,204 1263 6.7
RAN_DPM [47] Online 35.1% 70.9% 13.0% 42.3% 381 32,717 1523 5.4
TripT + BF [48] Online 37.1% 72.5% 12.6% 39.7% 580 29,732 1193 1.0
SORT [49] Online 33.4% 721% 11.7% 30.9% 1001 32,615 1764 260.0
MNC + CPM [50] Online 32.1% 70.9% 13.2% 30.1% 1687 33,473 2471 -
AP_RCNN [46] Online 53.0% 75.5% 29.1% 20.2% 708 22,984 1476 6.7
RAN_FRCNN [47] Online 56.5% 73.0% 45.1% 14.6% 428 16,921 1364 5.1
SORT-YM (proposed) Online 58.2% 79.3% 44.4% 12.2% 604 20,753 901 244

The visual tracking result on the MOT-15 dataset of SORT-YM is shown in Figure 8.
As shown in Figure 8b-d,g, SORT-YM obtain accurate tracklets in videos taken by a moving
camera. Among them, our proposed method maintains robust tracking performance
in Figure 8c with large shadows and small objects. As shown in Figure 8a,e,f, SORT-
YM achieves higher tracking accuracy in videos taken by a static camera. Among them,
tracking bounding box drift does not occur in complex scenes with interference with many
similar objects, as shown in Figure 8e. In addition, our algorithm keeps strong robustness
in crowded tracking scenarios with many occlusions and interactions between objects, as
shown in Figure 8f. In summary, SORT-YM shows high tracking accuracy and outputs
relatively complete tracklets on the MOT-15 dataset.
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Figure 8. Tracking results of SORT-YM on MOT-15 dataset. The number in the upper left corner represents the frame number
of the image. (a) KITTI-16. (b) TUD-Crossing. (c) KITTI-19. (d) ETH-Linthescher. (e) AVG-TownCenter. (f) PETS09-S2L2.

(g) ETH-Jelmoli.

4.3.2. Experimental on MOT-16 Dataset

We first perform ablation analysis on the MOT-16 dataset to verify the necessity of each
component in SORT-YM. We apply the Deep SORT [24] as our baseline, and we remove
proposed components to investigate the contribution to our method. The comparison
results are shown in Table 3.

Table 3. The ablation experiments on the MOT-16 dataset.

Methods MOTA? MOTP+ ML, 1IDs, FNJ FM| FPSt}
Baseline 61.4% 79.1% 182% 781 56,668 2008 14
Baseline + YOLOv4-tiny  62.6% 81.2% 173% 739 30771 1995  23.8
Baseline + motion 62.3% 79.6% 170% 746 28,768 1923 137
prediction
SORT-YM 63.4% 81.4% 167% 707 21439 1888  23.1

Effect of YOLOv4-tiny. To evaluate the effectiveness of using YOLO-tiny, we perform
an experiment to see the benefit. As shown in Table 3, compared to the Deep SORT baseline,
which utilizes the Faster R-CNN [8] as the detector, the tracking speed of the algorithm
with YOLOv4-tiny significantly improves. Meanwhile, the MOTA and MOTP increase
by 1.2% and 0.9%, respectively.

Effect of motion prediction. We also experiment to verify the necessity of motion
prediction. We added the motion prediction module to the Deep SORT baseline. The ex-
perimental results show that adding the motion prediction module reduces the number
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of FN and FM by 27900 and 85, respectively. In addition, compared with the case where
no motion prediction is employed, SORT-YM improves the MOTA by 0.8%. Meanwhile,
the number of FN and FM is reduced by 9332 and 107, respectively, due to the strong ability
of the motion prediction to retrieve the lost objects.

To further measure the tracking performance, we compare the SORT-YM with an-
other 14 recent tracking methods on the MOT-16 dataset, including MHT_DAM [17], Deep
SORT [24], SORT [49], TBD [51], LTTSC-CREF [52], LINF [53], JMC [54], NOMTwSDP16 [55],
NOMT [55], KDNT [56], LMP_P [57], OVBT [58], EAMTT private [59], and
EAMTT _public [59].

As shown in Table 4, SORT-YM achieves state-of-the-art performance in terms of MOTP
(81.7%), ML (16.7%), and FN (21439). Meanwhile, our proposed method reaches the highest
MOTA (63.4%) in online methods. Compared to KDNT and LMP_P, the speed of SORT-YM
is much faster. In fact, SORT-YM achieves the second-fastest tracking speed. Compared
with the Deep SORT baseline, the SORT-YM has improved in all indexes. Among them,
MOTA and MOTP increase by 2% and 2.6%, respectively, which shows that our algorithm
has improved both in tracking accuracy and precision. In addition, SORT-YM reduces
74 1D switches, which indicates that our algorithm can better deal with the interference
of occlusion and interaction. Meanwhile, the tracking speed of SORT-YM increases signifi-
cantly. In general, SORT-YM achieved high performance on both tracking robustness and
speed on the MOT-16 dataset.

Table 4. The quantitative results by our proposed method and state-of-the-arts on MOT-16 dataset. 1 Denotes that higher is
better and | represents the opposite. The best and sub-optimal results are highlighted in bold and italics.

Method Mode  MOTAT  MOTP?t MT+ ML,  IDs| FNJ FM|  FPSt
TBD Offline 33.7% 76.5% 7.2% 542% 2418 112587 2252 -
LTTSC-CRF Offline 37.6% 75.9% 9.6% 55.2% 481 101,343 1012 0.6
LINF Offline 41.0% 74.8% 11.6%  51.3% 430 99,224 963 42
MHT_DAM Offline 42.9% 76.6% 13.6%  46.9% 499 97,919 659 08
MC Offline 46.3% 75.7% 155%  39.7% 657 90,914 1114 0.8
NOMT Offline 46.4% 76.6% 183%  414% 359 87,565 504 2.6
NOMTwSDP16 Offline 62.2% 79.6% 325%  31.1% 406 - 642 3
KDNT Offline 68.2% 79.4% 41.0% 19.0% 933 45,605 1093 0.7
LMP_P Offline 71.0% 80.2% 46.9%  21.9% 434 44,564 587 0.5
OVBT Online 38.4% 75.4% 7.5% 473% 1321 99,463 2140 0.3
EAMTT_public Online 38.8% 75.1% 7.9% 49.1% 965 102452 1657 118
EAMTT_private Online 52.5% 78.8% 19.0%  34.9% 910 81,223 1321 12
SORT Online 59.8% 79.6% 254%  22.7% 1423 63,245 1835 60
Deep SORT (baseline) Online 61.4% 79.1% 32.8%  18.2% 781 56,668 2008 14
SORT-YM Online 63.4% 81.7% 338%  16.7% 707 21,439 1888  23.1

The visual tracking result on the MOT-16 dataset of SORT-YM is shown in Figure 9.
In the dark tracking scenario shown in Figure 9a, SORT-YM achieves strong robustness.
Meanwhile, our algorithm achieves high tracking accuracy for both dark and bright ob-
jects, as shown in Figure 9d. In the crowded scene with a large number of occlusions
shown in Figure 9b, since the proposed motion prediction strategy can predict the location
of the occluded objects, SORT-YM still accurately obtain the relatively complete tracklets
of most objects. In addition, our proposed method shows strong tracking robustness
for objects of different sizes, as shown in Figure 9¢,e. In conclusion, SORT-YM shows high
tracking accuracy and outputs relatively complete tracklets in various complex scenes
of the MOT-16 dataset.
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Figure 9. Tracking results of SORT-YM on MOT-16 dataset. The number in the upper left corner represents the frame
number of the image. (a) MOT-16-01. (b) MOT-16-03. (c) MOT-16-07. (d) MOT-16-08. (e) MOT-16-12. (f) MOT-16-14.
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5. Conclusions
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in existing multi-object tracking methods, this study designs a motion prediction strategy
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and speed, SORT-YM is a competitive algorithm. Compared with the Deep SORT, our algo-
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