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Abstract: A high-speed column driver IC with an area-efficient high-slew-rate buffer amplifier is
proposed for use in a large-sized, high-resolution TFT-LCD panel application. In the proposed
architecture, explicit isolation switches have been embedded into the buffer amplifier resulting in
a fast settling response. The amplifier also has a structure that adjusts the tail current of the input
stage using a very compact adaptive biasing. The proposed column driver IC, having the proposed
buffer amplifier for driving a 55-inch 4K ultra-high-definition (UHD) TV panel, was fabricated in
a 0.18-µm 1.8-V low-voltage, 1.2-µm 9-V medium-voltage, and 1.6-µm 18-V high-voltage CMOS
process. The performance evaluation results indicated that 90% and 99.9% falling settling times
were improved from 1.947 µs to 0.710 µs (63.5% improvement) and 4.131 µs to 2.406 µs (41.7%
improvement), respectively. They also indicated that the layout size of the proposed buffer amplifier
was reduced from 5580 µm2 to 4402 µm2 (21.1% reduction).

Keywords: high-slew-rate; high-speed; settling time; low-power; buffer amplifier; adaptive biasing;
column driver; source driver; flat-panel display (FPD)

1. Introduction

Large-sized, high-resolution, flat-panel display (FPD) monitors and TVs require low-
power, small-area, high-slew-rate amplifiers as column (data or source) drivers [1–10].
As display panels are becoming larger and require higher resolution, driving an FPD
will be challenged because the driver has to drive heavy R and C panel loads more
effectively, with a faster settling time, less power, and smaller area. The R and C panel
loads driven by a buffer amplifier are ever increasing with the advancement of FPD
technology, whereas the constraint on settling time is becoming tighter. A column driver
for a large FPD typically requires receiver comparators, data registers, and shift registers,
which are composed of low-voltage transistors, gamma reference voltages and digital-to-
analog converters (DACs), which are composed of middle-voltage transistors, level shifters
and output buffers with output-polarity switches, which are composed of high-voltage
transistors [1–14]. Recently, the column driver may include a delay-locked loop (DLL) or
phase-locked loop (PLL) for high-frequency operation, analog-to-digital converters (ADCs)
for compensating the organic light-emitting diode (OLED) display degradation, and a
temperature sensor for monitoring the ambient temperature. The driver sub-system can
use either an analog [1–12,14] or a digital [13] approach as its driving scheme. The thin-film
transistor liquid-crystal displays (TFT-LCDs) adopt inversion driving methods (column,
frame, line, dot, and 2-dot inversions) to alternate the polarities of liquid crystal (LC) cells in
regard to common electrode voltage (VCOM). Among various inversion methods to prevent
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the deterioration of the liquid crystal material in a TFT-LCD, the dot inversion is popularly
used in high-resolution displays since it can provide a high image quality. However, this
type of inversion method can have higher power consumption than other methods because
twice as high a driving voltage is required for reliable operation. The power consumption
of the FPD column driver has been reduced by using the charge recycling (charge sharing)
of adjacent odd and even output channels [15–18]. Moreover, the dot inversion method
typically requires explicit components such as polarity multiplexer switches to alternate
the LC polarity, which can degrade the panel driving speed. Actually, in the FPD column
driver, the time for panel driving is critical since it must not exceed the horizontal scanning
pattern time [19–26].

To satisfy these requirements, class AB or B amplifiers [18–26] have been widely
used as output buffer amplifiers in FPDs. In this case, there can be numerous issues
concerning explicit switch on-resistance, high-slew-rate amplifier design, adaptive biasing
circuit design, and the resulting overheads in terms of area and power consumption. Let
us describe these issues and conventional approaches to address them in more detail.
As mentioned earlier, to provide high image quality, the dot inversion method requires
explicit polarity multiplexer switches at buffer outputs as shown in Figure 1a. In this
case, the settling time of the buffer amplifier increases due to the ON-resistance of these
switches. To overcome this problem [23], proposed a driving scheme using embedded
polarity multiplexer switches instead of explicit polarity multiplexer switches. In this
scheme, the settling time can be enhanced but requires so many transistors for embedding
the switches, resulting in an area increase. Moreover, in case of using charge recycling to
reduce the power consumption [15–17], as mentioned earlier, another type of switch is
required at the output of the buffer amplifiers, resulting in a settling time degradation. The
class AB amplifier in [18] has been traditionally used as a buffer amplifier for FPD column
drivers. Since the slew-rate of the buffer amplifier increases in proportion to the input
bias current, the bias current at the input should be increased to provide a high-slew-rate
operation. The authors of [24], having an interpolation structure where several input
stages collectively work as a group, also adopted the buffer amplifier, performing the same
operation as in [18]. This uses a 3- or 4-bit DAC-embedded operational amplifier with gm-
modulation of multiple differential input stages for voltage interpolation, and implements
a 10-bit DAC with buffer-reusing. A rail-to-rail class B output buffer with comparator
stage was proposed in [25]. The buffer amplifier with comparator structure consumes a lot
of static current in static driving such as the black (TV) or white (Note-PC) pattern of an
FPD. For the buffer amplifiers in [23–25], the class AB or B configuration has its slew-rate
proportional to the bias current at the input. Thus, the power consumption increases as the
bias current increases to provide a higher slew-rate. The class AB amplifiers with various
adaptive biasing schemes have been proposed to improve the slew-rate without having
a large input bias current [21,22,26]. In [21,22], the settling time is reduced but the circuit
for implementing the adaptive biasing requires so many transistors, resulting in increased
power consumption and chip area. In [26], the number of transistors for implementing the
adaptive biasing has been reduced from 26 to 10 as compared to [22]. However, the area
overhead is not small enough since there are still many current mirror transistors used.
Consequently, a high-slew-rate low-power buffer amplifier with small active area is still
required for use in FPD column driver ICs.

In this paper, to address the issues mentioned above, an adaptively biased high-slew-
rate output buffer amplifier and a high-speed column-line driving method are proposed.
We present a new driving scheme in which there are no explicit switches at the output of the
buffer amplifiers to reduce the settling time and minimize the layout area. We also present
a novel buffer amplifier with embedded isolation switches and a very compact adaptive
biasing circuit to improve the settling time and reduce overheads in terms of chip area and
power consumption. The rest of this paper is structured as follows. Section 2 presents the
architecture and operation of the proposed driving scheme and buffer amplifier. Section 3
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demonstrates performance comparison and evaluation results. Finally, conclusions are
drawn in Section 4.
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Figure 1. Conventional column driver IC with output buffer amplifiers having polarity multiplexer switches (PMUXs) 

and charge-sharing switches (CSSWs): (a) with output-polarity multiplexer switches (OPMUXs) and (b) with input-polar-

ity multiplexer switches (IPMUXs) and output-isolation switches (OISWs) [2]. 
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Figure 1. Conventional column driver IC with output buffer amplifiers having polarity multiplexer switches (PMUXs) and
charge-sharing switches (CSSWs): (a) with output-polarity multiplexer switches (OPMUXs) and (b) with input-polarity
multiplexer switches (IPMUXs) and output-isolation switches (OISWs) [2].

2. Proposed Driving Method and Buffer Amplifier

As shown in Figure 1a, the conventional column driver having n-bit R-string digital-
to-analog converters (R-DACs) with multiple gamma reference voltages comprises data
resisters (DRs), shift registers (SRs), data multiplexer switches (DMUXs), data latches (DLs),
level shifters (LSs), positive- and negative-polarity DACs (PDACs and NDACs), positive-
and negative-polarity buffer amplifiers (PAMPs and NAMPs), output-polarity multiplexer
switches (OPMUXs), and charge-sharing switches (CSSWs) [16]. The OPMUXs are located
at the rear of the buffer amplifiers. In [23], to avoid the ON-resistance of the OPMUXs, they
have been embedded into the output stages of the buffer amplifiers. By this approach, the
settling time can be improved but requires so many additional transistors (as many as 14),
resulting in an area overhead. As shown in Figure 1b, the polarity multiplexer switches can
be located in front of the buffer amplifiers for the same purpose [2]. The resulting input-
polarity multiplexer switches (IPMUXs) can be designed to be small without degrading
the settling time, leading to an area reduction. However, as seen in Figure 1b, there is
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still the need for switches after the buffer amplifiers, which are called output-isolation
switches (OISWs), to prevent the sourcing and sinking of the current through the driver
transistors during the charge recycling by CSSWs. Since OISWs can cause a non-negligible
ON-resistance at buffer outputs in the same way as OPMUXs, the settling time cannot be
improved as expected.

The schematic diagram of the proposed n-bit fully RDAC-based column driver is
shown in Figure 2. As compared to the conventional design shown in Figure 1b, the
proposed column driver has no explicit OISWs, letting the ON-resistance at buffer outputs
be zero. As a result, the time constant governing the settling time at the output of the buffer
amplifier will be reduced leading to a substantial improvement in the settling behaviour.
Actually, the role of OISWs is embedded into the proposed buffer amplifier as will be
explained later. Embedding OISWs into the buffer amplifiers in our driving scheme can
also lead to an area reduction since the embedded switches can have a smaller size. The
polarity multiplexer switches (PMUXs) at the outputs of the buffer amplifiers in Figure 1a
are also moved to the inputs of the buffer amplifiers as in [2]. Placing PMUXs at the inputs
of the buffers does not cause any degradation of the input settling behaviour since the input
capacitance of the buffers is relatively small. The size of the input-polarity multiplexer
switches (IPMUXs) can also be made to be small, leading to an area reduction.
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Figure 2. Architecture of the proposed column driver IC with input-polarity multiplexer switches (IPMUXs) and isolation 

switch-embedded buffer amplifiers. 
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Figure 2. Architecture of the proposed column driver IC with input-polarity multiplexer switches (IPMUXs) and isolation
switch-embedded buffer amplifiers.

The structure of the proposed class AB buffer amplifier is shown in Figure 3. As
described above, the proposed driving scheme shown in Figure 2 has no explicit output-
isolation switches (OSIWs) at the outputs of buffer amplifiers. Then, to allow for the output
channels to perform charge recycling and not fight against the buffer output stages even
without OISWs, the proposed buffer amplifier has a pair of embedded isolation switches
(EISWs), MPISW and MNISW. When these switches are off, driver transistors MPD1 and
MND1 are enabled and work as a normal buffer output stage. When they are on, Pup
and Pdn are at VDD2 and GND, respectively, letting the driver transistors be fully off.
Note that bias voltages VBP3 and VBN4 must also be disabled during the period in which
these switches are on. The EISWs can also be used for measuring the leakage of the driver
transistors. On top of these merits, having no explicit isolation switches at the outputs of
the buffer amplifiers can provide another important advantage of allowing bulky adaptive
biasing circuits in the conventional designs to be replaced with a very compact circuit.

To see this aspect in more detail, let us consider a pair of auxiliary current sources
MPT1A and MNT1A of the conventional buffer amplifier in Figure 4 [26], which provide an
adaptive bias current to the input differential pair for slew-rate enhancement. Another pair
of auxiliary current mirrors composed of MN7A, MP8A, MP9A, MP10A and MP7A, MN8A,
MN9A, and MN10A perform the same role for the opposite type of input differential pair.
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As is well known, the slew-rate improvement provided by adaptive biasing is effective
while the buffer amplifier is slewing. It should be noted here that the proposed driving
scheme, having no explicit series switches at buffer outputs, can provide a very high-slew-
rate so that the 0~90% output transition (slewing) period is much shorter than the 90~100%
transition (settling) period (see the waveform referred to as ‘proposed’ in Figure 7). This fact
implies that there is no need to use a bulky adaptive biasing circuit as conventional designs
do. For example, in a conventional design [22], a very bulky adaptive biasing circuit
composed of 26 transistors was used. In another conventional design [26], the number of
transistors for the same purpose was reduced but still summed up to 10. Meanwhile, as
shown in Figure 3, the proposed buffer amplifier uses only two auxiliary current source
transistors (MPT1A and MNT1A) for enhancing the slew-rate. The bulky auxiliary current
mirror circuits (MN7A, MP8A, MP9A, MP10A and MP7A, MN8A, MN9A, and MN10A) in
the conventional buffer amplifier in Figure 4 are all eliminated. By this approach, the slew-
rate of the proposed buffer amplifier may be somewhat less than that of the conventional
buffer, but the overall settling behaviour of the proposed driver IC will be even better
due to there being no explicit series switches at the output of the buffer amplifier. For the
conventional buffer amplifier in Figure 4, the bulky auxiliary current source circuits will be
required to compensate the settling time degradation due to non-negligible ON-resistance
caused by the explicit series switches at the output of the buffer.
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Figure 3. Proposed class AB buffer amplifier having embedded isolation switches (EISWs) and a very compact adaptive
biasing circuit.

In the proposed output buffer amplifier in Figure 3, the voltage levels of Pup and Pdn
driving output transistors MPD1 and MND1 and auxiliary current sources MPT1A and
MNT1A, respectively, are adjusted for a push–pull operation of the driver in conjunction
with the capacitive load at the output. The greater the output capacitive (CL) load is,
the larger the amount of voltage change at Pup and Pdn occurs. Hence, the slew-rate of
the proposed output buffer amplifier becomes larger as the output capacitive (CL) load
becomes heavier since the buffer uses main and auxiliary current sources (MPT1/MNT1
and MPT1A/MNT1A) to generate an adaptive input bias current. The size of MPT1A
(MNT1A) is about 40 times smaller than that of MPD1 (MND1) as in [26]. The threshold
voltage of MPT1A (MNT1A) is also higher than that of MPD1 (MND1). This results in
an auxiliary bias current of about 5 nA for MPT1A (MNT1A), which is negligibly small
as compared to the bias currents of MPT1 (MNT1) (1.6 uA), MP4 (MP6) and MN4 (MN6)
(2.1 uA), and MPD1 (MND1) (5.6 uA). This causes almost no increase in the static power
consumption of the buffer amplifier in the steady state. When there is either a large voltage
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step at the input or a heavy capacitive load at the output of the buffer, the voltage of Pup
(Pdn) changes from its nominal value to near GND (VDD2). Then, the amount of current
flowing through the auxiliary current source MPT1A (MNT1A) increases considerably
resulting in a substantial increase in the slew-rate. When the incoming input voltage swing
is small, Pup (Pdn) will have a small voltage change, resulting in a small or no current
through MPT1A (MNT1A).
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Considering the theoretical point of view, the rising and falling slew-rates of the
proposed buffer amplifier can be written as

dVout_rise

dt
=

IMPT1 + IMPT1A

CC
(1)

dVout_fall

dt
=

IMNT1 + IMNT1A

CC
(2)

where IMPT1 and IMNT1 are the base tail currents, IMPT1A and IMNT1A are the auxiliary
tail currents, and CC is the compensation capacitor. As described earlier, when a large
voltage change occurs at the input, either IMPT1A or IMNT1A increases fast, resulting in a
substantially increased slew-rate. The settling time at the output of the buffer amplifier can
be expressed as

Vout(t) = Vip

(
1 − e−

t
τ

)
(3)

where Vip is the step-input voltage and τ is the time constant of the network. In the
conventional schemes shown in Figure 1, τ will be (RON-DRIVER + RON-SWITCH +
RESD)·CLOAD where RON-DRIVER is the ON-resistance of a driver transistor in the
buffer amplifier, RON_SWITCH is the ON-resistance of an explicit switch at buffer output,
RESD is the electrostatic discharge (ESD) protection resistor, and CLOAD is the capacitive
load at the pad. On the other hand, the settling time for the proposed scheme shown
in Figure 2 is determined by a time constant (τ) of (RON-DRIVER + RESD)·CLOAD.
Considering that the ON-resistance of the explicit switch has a substantial portion of
the total resistance value, having no explicit switches at buffer outputs is important for
speeding up the settling time.

In summary, the proposed column-line driving scheme can provide an improved
settling behaviour by having no explicit series switches at the outputs of the buffer am-
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plifiers. This feature has been achieved by having embedded isolation switches (EISWs)
in the proposed buffer amplifier and by moving OPMUXs to the inputs of the buffer.
By doing so, the active area can also be reduced since the size of these switches can be
made to be smaller. On top of having EISWs, the proposed output buffer amplifier has an
area-efficient adaptive biasing circuit composed of just two extra transistors for enhancing
the slew-rate. As mentioned earlier, the conventional designs in [22,26] used as many as
26 and 10 extra transistors, respectively, for the same purpose. The compact design of the
proposed buffer amplifier allows our driving scheme to be more area- and energy-efficient
with substantially improved settling performance.

3. Experimental Results

A column driver IC, having the proposed driving scheme and output buffer amplifier,
was fabricated in a 0.18-µm 1.8-V low-voltage, 1.2-µm 9-V medium-voltage, and 1.6-µm 18-V
high-voltage CMOS process. Figure 5 shows a chip photograph of the column driver IC and
a layout picture of a pair of the proposed buffer amplifiers, which occupy areas of 17, 368 ×
888 µm2 and 142 × 31 µm2, respectively. Figure 6 shows measured output buffer waveforms
for a full-swing white pattern in dot inversion with charge recycling to verify the fast settling
response of the proposed scheme. The driving condition for the measurement has used 8.5-KΩ
and 300-pF load of a 4K ultra-high-definition (UHD) 55-inch TFT-LCD panel having a voltage
swing of 16.6 V (0.2–16.8 V). There is some noise in the measured waveforms due to the high
sampling rate of the oscilloscope used in the measurement.
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The simulated single-cycle transition waveforms for conventional [18,23,26] and pro-
posed output buffer amplifiers without charge recycling are comparatively shown in
Figure 7. The reason for having waveforms without charge recycling is to clearly compare
the settling behaviour of the buffer amplifiers. As seen in Figure 7, the settling time for
the rising and falling transient responses (90% and 99.9%) of the proposed output buffer
amplifier is the fastest. Table 1 summarizes important performance matrices such as the
static and dynamic currents, settling times (90% and 99.9%), slew-rates (90% and 99.9%)
and active area of the conventional [18,23,26] and proposed buffer amplifiers, which are
obtained by a simulation in the same process technology to compare the performance
in the same conditions. Measurement results are also included for the proposed design,
which indicates that the measured and simulated performance are well matched to each
other. As seen in Table 1, although the static and dynamic currents of the output buffer
amplifier in [18] are similar to those of the proposed buffer amplifier, the setting time
and slew-rate are much slower, and the active area is larger. In the case of [18], having
the PMUXs at the rear of the buffer amplifier requires larger switch transistors to reduce
the ON-resistance to obtain a fast transient response. The buffer amplifier in [23] has a
somewhat improved settling time and slew-rate than that in [18] by embedding the PMUXs
into the buffer amplifier. However, since it does not use any adaptive biasing, the settling
time and slew-rate are slower than the proposed buffer. Adapting the adaptive biasing in
the buffer amplifier in [26] improved the settling time and slew-rate as compared to [18,23].
The proposed buffer amplifier consumes static and dynamic currents similar to those of
the buffer amplifier in [26], but due to there being no explicit switches at the output of the
buffer amplifier, the settling time and slew-rate are substantially improved. The active area
of the proposed buffer amplifier, having a very compact adaptive biasing circuit, is about
4402 µm2 achieving up to 21.1% reduction as compared to conventional designs.
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amplifiers.

Table 1. Simulated and measured performance comparison of buffer amplifiers in the same process.

Items

[18] [23] [26] This work

1994 2015 2020

Simulated Simulated Simulated Simulated Measured

CMOS Process (µm)
(Poly/Metal) 0.18 (1P/3M) 0.18 (1P/3M) 0.18 (1P/3M) 0.18 (1P/3M) 0.18 (1P/3M)

Supply Voltage (V) 1.8/9/18 1.8/9/18 1.8/9/18 1.8/9/18 1.8/9/18

DC (Static) current
(µA, DC 8.5 V @ 17 V) 11.42 11.43 11.45 11.44 11.4

Operating (Dynamic) current
(µA, 0.2–16.8 V@17 V) 376.4 393.4 389.4 399 380

90% Settling time
(µs, rising/falling) 1.817/1.947 1.651/1.814 0.989/0.991 0.669/0.710 0.59/0.62

99.9% Settling time
(µs, rising/falling) 3.943/4.131 3.111/3.081 3.404/3.305 2.534/2.406 2.33/2.24

90% Slew-rate
(V/µs, rising/falling) 8.222/7.673 9.049/8.235 15.106/15.075 22.331/21.042 25.322/24.096

99.9% Slew-rate
(V/µs, rising/falling) 4.205/4.014 5.330/5.382 4.871/5.017 6.544/6.892 7.117/7.403

Height area
(µm, cell pitch = 31 µm) 180 158 160 142 142

Panel loads R = 8.5 KΩ 1, C = 300 pF 1

Conditions VDD2 = 17 V, VSS = 0 V, Ta = 25 ◦C, Period=7.4 µs 2, Driving range = 0.2–16.8 V
1 R and C: five-order distributed RC network, 2 Period for one-line horizontal operation.

Table 2 compares the experimentally measured performance for the conventional [18,23–26]
and proposed buffer amplifiers. Although the buffer having a DAC-embedded op-amp
with gm-modulation [24] used a driving voltage higher by 1-V (6%) than others and a
resistive load (3.5-KΩ) smaller by 41.2% than ours, it has a slower settling time than the
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proposed design. The output buffer amplifier in [25] has a slower settling time (99.9%
rising) than the proposed buffer, even though the R and C panel loads are much smaller
and the operating voltage is lower. Although the proposed output buffer amplifier con-
sumes static and dynamic currents similar to those of the buffer amplifier in [26], due to
it having no switches at buffer outputs, the 90% rising and 99.9% falling settling times
are improved from 0.91 µs to 0.59 µs (35.1% improvement) and 3.04 µs to 2.24 µs (26.3%
improvement), respectively. As compared to the buffer amplifier in [18] widely used in the
industry, the enhancements are as much as 63.5% (90% falling) and 41.7% (99.9% falling).
Table 3 summarizes the corner simulation results of the proposed buffer amplifier at FF
(−30 ◦C), NN (25 ◦C), and SS (125 ◦C) with 18-V high-voltage p/n MOSFET transistors
to verify the operation robustness of the proposed scheme. Table 4 summarizes the metal-
oxide-semiconductor field-effect transistor (MOSFET) device-related parameters used in
our design. Figure 8 depicts the experimental setup to obtain the simulated waveforms
and measured data. The top figure shows the block diagram of on-chip connectivity, and
the figures in the middle and bottom show the configurations at board level, where a five-
segment distributed RC network was used for simulation and a real panel was attached for
measurement.

Table 2. Measured performance of buffer amplifiers.

Items

[18] [23] [24] [25] [26] This work

1994 2015 2019 2020 2020

Measured

CMOS Process
(µm)

(Poly/Metal)
- 0.18

(1P/3M)
0.18

(1P/4M)
0.35

(2P/3M)
0.18

(1P/3M)
0.18

(1P/3M)

Supply Voltage
(V) 2.5~6 1.8/7/13.5 1.8/9/18 3.3/5 1.8/9/18 1.8/9/18

Number of bits - 8 10 10 8 8

DC (Static)
current (µA) 180 - 7 1 - 11.40 11.40

Operating voltage
(V) 3.3 10.36 9/18 2 5 DC 8.5 @17 DC 8.5 @17

Operating
(Dynamic)

current (µA)
- 247 - - 371 380

90% Settling time
(µs, rising) - 1.47 - - 0.91 0.59

90% Settling time
(µs, falling) - 1.38 - - 0.95 0.62

99.9% Settling
time (µs, rising) - 2.61 3 5.6 4, 5 5.6 3.11 2.33

99.9% Settling
time (µs, falling) - 2.53 3 - - 3.04 2.24

Area (µm2) 4000 31 × 158 6 23 × 510 - 31 × 160 6 31 × 142 6

Panel loads R = 10 KΩ, C = 10
pF

R = 3.29 KΩ,
C = 364 pF

R = 5 KΩ 5, C =
300 pF 5

R = 1.5 KΩ, C =
100 pF

R = 8.5 KΩ,
C = 300 pF

R = 8.5 KΩ,
C = 300 pF

Conditions VDD = 3.3 V
T = 27 ◦C

VDD = 10.36 V
T = 25 ◦C,

Period = 7.4 µs 7

0.2–10.16 V

VDD = 18 V
0.2~17.8 V

VDD = 5 V
0~4.995 V

VDD = 17 V,
T = 25 ◦C Period

= 7.4 µs 7

0.2–16.8 V

VDD = 17 V,
T = 25 ◦C Period

= 7.4 µs 7

0.2–16.8 V
1 Simulated data. 2 9 V(0–9 V), 18 V(9–18 V). 3 2.61 µs, 2.53 µs at 99% rising/falling settling time. 4 Target voltage—10 mV (0.2–17.8
V@VDD2 = 18 V). 5 R and C: five-order distributed RC network. 6 Buffer area with input-polarity multiplexer switches or output-polarity
multiplexer switches. 7 Period for one-line horizontal operation.
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Table 3. Corner simulation results of the proposed buffer amplifier.

Conditions

CMOS Process Parameter
(High-Voltage p/n MOSFET)

Best
(FF)

Typical
(NN)

Worst
(SS)

Temp. (◦C) 25 −30 125
Panel loads

Input voltage swing
Input DC voltage

Period

R = 8.5 KΩ, C = 300 pF,
0.2~16.8 V,

8.5 V @VDD2 = 17 V
Period = 7.4 µs 1

Compensation capacitor (pF) 0.15
Open-loop voltage gain (dB) 88.7 89.1 83.1

Phase margin (◦) 63.4 60.2 71.2
Unit-gain frequency (Gain-bandwidth product) (MHz) 17.3 14.9 12.6

DC (Static) current (µA) 14.32 11.44 10.78
Operating (Dynamic) current (µA) 538.2 399 363.9

1 Period for one-line horizontal operation.

Table 4. Device parameters used in the proposed column driver IC.

CMOS Process Parameter LV MOSFET MV MOSFET HV MOSFET 1

Supply voltage 1.8 V 9 V 18 V

Transistor type Low voltage Medium voltage High voltage
LVP/LVN MVP/MVN HVP/HVN

Minimum length 0.18 µm 1.2 µm 1.6 µm

Application block
Receiver (Comparator), DRs

(Deserializers), DLL, SRs,
DMUXs, DLs

R-DACs
(PDACs, NDACs)

Output Buffers
(PAMPs, NAMPs)

AMP Bias, LSs, IPMUXs
1 MOSFET applied to the proposed output buffer amplifiers and IPMUXs.
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The improved performance of the proposed design in terms of settling time, active
area, and power consumption comes from the fact that the proposed buffer amplifier uses a
smaller number of transistors for incorporating the adaptive biasing, and the polarity and
isolation switches at the output of the buffer amplifier are moved either in front of or into
the buffer amplifier. From the experimental evaluation results presented above, it can be
implied that the proposed scheme is suitable for applications requiring a very high-speed
operation, especially as a buffer amplifier for driving large-size high-definition FPDs.

4. Conclusions

A column driver with a high-speed driving scheme and an area-efficient high-slew-
rate buffer amplifier for FPD applications is proposed in this paper. To obtain a fast settling
response with reduced active area and power consumption, the proposed driving scheme
has eliminated all series switches in front of the output channels by moving them either
to the buffer amplifier inputs or into buffer output stages. The proposed buffer amplifier
also has a very compact adaptive biasing circuit composed of just two transistors that can
draw a large amount of bias current during the transient period. The performance of the
proposed driving scheme and buffer amplifier has been proven by an experimental chip
fabrication, which indicates that the proposed approach is well suited for a high-speed
column driver design in a large-sized high-resolution TFT-LCD. Other possible application
areas for our design are quantum-dot LCDs (QD-LCDs), organic light-emitting diodes
(OLEDs), quantum-dot LEDs (QLEDs), and a variety of other flat-panel displays with large
capacitive loads.
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